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Abstract

Fast and precise Lipschitz constant estimation of neural networks is an important
task for deep learning. Researchers have recently found an intrinsic trade-off
between the accuracy and smoothness of neural networks, so training a network
with a loose Lipschitz constant estimation imposes a strong regularization, and can
hurt the model accuracy significantly. In this work, we provide a unified theoretical
framework, a quantitative geometric approach, to address the Lipschitz constant
estimation. By adopting this framework, we can immediately obtain several theoret-
ical results, including the computational hardness of Lipschitz constant estimation
and its approximability. We implement the algorithms induced from this quantita-
tive geometric approach, which are based on semidefinite programming (SDP).1
Our empirical evaluation demonstrates that they are more scalable and precise than
existing tools on Lipschitz constant estimation for ℓ∞-perturbations. Furthermore,
we also show their intricate relations with other recent SDP-based techniques, both
theoretically and empirically. We believe that this unified quantitative geometric
perspective can bring new insights and theoretical tools to the investigation of
neural-network smoothness and robustness.

1 Introduction

The past decade has witnessed the unprecedented success of deep learning in many machine learning
tasks (Krizhevsky et al., 2017; Mikolov et al., 2013). Despite the growing popularity of deep learning,
researchers have also found that neural networks are very vulnerable to adversarial attacks (Szegedy
et al., 2014; Goodfellow et al., 2015; Papernot et al., 2016). As a result, it is important to train
neural networks that are robust against those attacks (Madry et al., 2018). In recent years, the deep
learning community starts to focus on certifiably robust neural networks (Albarghouthi, 2021; Hein
and Andriushchenko, 2017; Katz et al., 2017; Cohen et al., 2019; Raghunathan et al., 2018; Wang
et al., 2022; Leino et al., 2021). One way to achieve certified robustness is to estimate the smoothness
of neural networks, where the smoothness is measured by the Lipschitz constant of the neural network.
Recent works have found that to achieve both high accuracy and low Lipschitzness, the network has
to significantly increase the model capacity (Bubeck and Sellke, 2021). This implies that there is an
intrinsic tension between the accuracy and smoothness of neural networks.

Commonly considered adversarial attacks are the ℓ∞ and ℓ2-perturbations in the input space. Leino
et al. (2021); Cohen et al. (2019) have successfully trained networks with low ℓ2-Lipschitz constant,

1Our code is available at https://github.com/z1w/GeoLIP.
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and Huang et al. (2021) trained networks with low local Lipschitzness for ℓ∞-perturbations. There
are few well-established techniques to train neural networks with low global Lipschitzness for ℓ∞-
perturbations. The techniques for the ℓ2-perturbation do not easily transfer to the ℓ∞-case (Leino
et al., 2021). One critical step is to measure the Lipschitz constant more precisely and efficiently.
Jordan and Dimakis (2020) showed that for ReLU networks, it is NP-hard to approximate the
Lipschitz constant for ℓ∞-perturbations within a constant factor , and proposed an exponential-time
algorithm to compute the exact Lipschitz constant. However, researchers are interested in more
scalable approaches to certify and train networks. In this work, we consider the Formal Global
Lipschitz constant (FGL) (See Equation (3)), which is roughly the maximum of the gradient operator
norm, assuming all activation patterns on hidden layers are independent and possible. FGL is an
upper bound of the exact Lipschitz constant and has been used in Raghunathan et al. (2018); Fazlyab
et al. (2019); Latorre et al. (2020).

We address the Lipschitz constant estimation from the quantitative geometric perspective. Quantitative
geometry aims to understand geometric structures via quantitative parameters, and has connections
with many mathematical disciplines, such as functional analysis and combinatorics (Naor, 2013). In
computer science, quantitative geometry plays a central role in understanding the approximability
of discrete optimization problems. We approach those hard discrete optimization problems by
considering the efficiently solvable continuous counterparts, and analyze the precision loss due to
relaxation, which is often the SDP relaxation (Goemans and Williamson, 1995; Nesterov, 1998;
Alon and Naor, 2004). The natural SDP relaxations for the intractable problems usually induce the
optimal known polynomial time algorithms (Bhattiprolu et al., 2022). By adopting the quantitative
geometric approach, we can immediately understand the computational hardness and approximability
of FGL estimations. Our algorithms on two-layer networks are the natural SDP relaxations from the
quantitative geometric perspective.

Latorre et al. (2020) employed polynomial optimization methods on the FGL estimation for ℓ∞-
perturbations. Polynomial optimization is a very general framework, and many problems can be cast
in this framework (Motzkin and Straus, 1965; Goemans and Williamson, 1995). Therefore, we argue
that this is not a precise characterization of the FGL-estimation problem. On the other hand, there are
also several SDP-based techniques for FGL estimations. Raghunathan et al. (2018) proposed an SDP
algorithm to estimate the FGL for ℓ∞-perturbations of two layer networks, and Fazlyab et al. (2019)
devised an SDP algorithm to estimate the ℓ2-FGL. We will demonstrate the intricate relationships
between our algorithms and these existing SDPs on two-layer networks.

Several empirical studies have found that techniques on one ℓp-perturbations often do not transfer to
another ones, even though the authors claim that in theory these techniques should transfer (Fazlyab
et al., 2019; Leino et al., 2021). This in-theory claim usually comes from a qualitative perspective.
In finite-dimensional space, one can always bound one ℓp-norm from another one, so techniques
for one ℓp-perturbations can also provide another bound for a different ℓp-perturbations. However,
this bound is loose and in practice not useful (Latorre et al., 2020). Instead, we believe that when
transferring techniques from one norm to another one, we should consider the quantitative geometric
principle: we should separate the geometry-dependent component from the geometry-independent
one in those techniques, and modify the geometry-dependent component accordingly for a different
normed space. As we will demonstrate, our whole work is guided by this principle. We hope that
our unified quantitative geometric framework can bring insights to the empirical hard-to-transfer
observations, and new tools to address these issues.

Contributions. To summarize, we have made the following contributions:

1. We provide a unified theoretical framework to address FGL estimations, which immediately
yields the computational hardness and SDP-based approximation algorithms on two-layer
networks (Section 3).

2. We demonstrate the relations between our algorithms and other SDP-based tools, which in
return inspires us to design the algorithms for multi-layer networks. This provides more
insightful and compositional interpretations of existing works, and makes them easier-to-
generalize (Sections 4 and 5).

3. We implement the algorithms and name the tool GeoLIP. We empirically validate our theoreti-
cal claims, and compare GeoLIP with existing methods to estimate FGL for ℓ∞-perturbations.
The result shows that GeoLIP provides a tighter bound (20%-60% improvements) than
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existing tools on small networks, and much better results than the naive matrix-norm-product
method for deep networks, which existing tools cannot handle (Section 6).

2 Preliminaries

Notation. Let [n] = {1, . . . , n}. For two functions f and g, f ◦ g(x) = f(g(x)). A 0-1 cube
is {0, 1}n, and a norm-1 cube is {−1, 1}n for some integer n > 0. R+ = [0,∞). For any vector
v ∈ Rn, diag(v) is an n× n diagonal matrix, with diagonal values v. Let en = (1, . . . , 1) ∈ Rn be
an n-dimensional vector of all 1’s; and In = diag(en), the identity matrix. Let ||v||p denote the ℓp
norm of v. We use q to denote the Hölder conjugate of p as a convention, i.e., 1

p + 1
q = 1. If v is an

operator in the ℓp-space, the operator norm of v is then ||v||q. Throughout the paper, we consider
the ℓp-norm of the input’s perturbation, and therefore, the ℓq-norm of the gradient, which acts as an
operator on the perturbation. A square matrix X ⪰ 0 means that X is positive semidefinite (PSD).
Let tr(X) be the trace of a square matrix X . If a, b ∈ Rn, let ⟨a, b⟩ be the inner product of a and b.

Lipschitz function. Given two metric spaces (X, dX) and (Y, dY ), a function f : X → Y is
Lipschitz continuous if there exists K > 0 such that for all x1, x2 ∈ X ,

dY (f(x2), f(x1)) ≤ KdX(x2, x1). (1)

The smallest such K satisfying Equation (1), denoted by Kf , is called the Lipschitz constant of
f . For neural networks, X is in general Rm equipped with the ℓp-norm. We will only consider
the case when Y = R. In actual applications such as a classification task, a neural network has
multiple outputs. The prediction is the class with the maximum score. One can then use the margin
between each pair of class predictions and its Lipschitz constant to certify the robustness of a given
prediction (Raghunathan et al., 2018; Leino et al., 2021). From Rademacher’s theorem, if f is
Lipschitz continuous, then f is is almost everywhere differentiable, and Kf = supx ||∇f(x)||q .

Neural network as function. A neural network f : Rm → R is characterized by:

f1(x) = W 1x+ b1; fi(x) = W iσ(fi−1(x)) + bi, i = 2, . . . , d.

where W i ∈ Rni+1×ni is the weight matrix between the layers, n1 = m, d is the depth of the neural
network, σ denotes an activation function, bi ∈ Rni+1 is the bias term, and f = fd ◦ · · · ◦f1. Because
we only consider the R as the codomain of f , W d = u ∈ R1×nd is a vector. From chain rule, the
gradient of this function is

∇f(x) = (W 1)T [diag(σ′(f1(x)))(W
2)T · · · diag(σ′(fd−1(x)))(W

d)T ]. (2)

Common activation functions, including ReLU (Nair and Hinton, 2010), sigmoid functions, and
ELU (Clevert et al., 2016) are almost everywhere differentiable. As a result, we are interested in the
supremum operator norm of Equation (2).

However, checking all possible inputs x is infeasible, and common activation functions have bounded
derivative values, say [a, b]. We are then interested in the following value instead:

max
vi∈[a,b]ni

||(W 1)T · diag(v2) · · · · · diag(vd)(W d)T ||q, (3)

where ni is the dimension of each diag(vi). We call this value the formal global Lipschitz constant
(FGL) because we treat all activation functions independent but in reality not all activation patterns are
feasible. Therefore, this is an upper bound of the true global Lipschitz constant of the neural network.
However, it is the value studied in most global Lipschitzness literature (Scaman and Virmaux, 2018;
Fazlyab et al., 2019; Latorre et al., 2020), and also turns out useful in certifying the robustness of
neural networks (Raghunathan et al., 2018; Leino et al., 2021; Pauli et al., 2022). We use ℓp-FGL to
denote the FGL for ℓp-perturbations.

In this paper, we focus on the ℓp-perturbation on the input, where p = ∞ or p = 2. Because q is the
Hölder conjugate of p, we are interested in the value of Equation (3), when q = 1 (for p = ∞), and
q = 2 (for p = 2). Notice that in the ReLU-network case, [a, b] is [0, 1]. We will use ReLU-networks
as the illustration for the rest of the paper because of the popularity of ReLU in practice and the easy
presentation of the 0-1-cube. However, the algorithms presented in this work can be adapted with
minor adjustments to other common activation functions.
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Remark 2.1. FGL considers all possible activation patterns on the hidden layers, while some of the
activation patterns might be unachievable in reality. Therefore, FGL is an upper bound of the true
Lipschitz constant. Notice that the activation pattern induced from an input is also decided by the
bias term. Therefore, to find the true Lipschitz constant, one has to incorporate the information from
the bias term.

3 Two-layer neural networks

In this section, we consider the two-layer neural network case. We reduce the FGL estimation
to the matrix mixed-norm problem. This immediately yields the computational complexity and
approximation algorithms for FGL estimations. In Appendix A.1, we show that we can consider
{0, 1} instead of [0, 1] in Equation (3) for two-layer networks.

Problem description. For a two-layer network where W 1 = W ∈ Rn×m and W d = u ∈
R1×n, its FGL (as in Equation (3)) is maxy∈{0,1}n ||WT diag(y)uT ||q, where we use y to denote
v1 in this case. If we expand the matrix multiplication, it is easy to check that this equals to
maxy∈{0,1}n ||WT diag(u)y||q . Let A = WT diag(u), then the ℓp-FGL is

max
y∈{0,1}n

||Ay||q. (4)

3.1 ℓ∞-FGL estimation

We consider a natural SDP relaxation to Equation (4) when q = 1, and analyze the result using the
celebrated Grothendieck Inequality, which is a fundamental tool in functional analysis.

Mixed-norm problem. The ∞ → 1 mixed-norm of a matrix is defined as

||A||∞→1 = max
||x||∞=1

||Ax||1.

The mixed-norm problem appears similar to Equation (4) when q = 1, except for that instead of a
norm-1-cube, the cube in Equation (4) is a 0-1-cube. Alon and Naor (2004) showed that it is NP-hard,
specifically MAXSNP-hard, to compute the ∞ → 1 mixed-norm of a matrix A, via a reduction to
the graph Max-Cut problem. Moreover, Alon and Naor (2004) constructed a natural SDP relaxation
for the mixed-norm problem:

max tr(BX)

s.t. X ⪰ 0, Xii = 1,i ∈ [n+m],
(5)

where A is a submatrix of B. We provide the detailed derivation of this relaxation in Appendix A.3.
In fact, this relaxation admits a constant approximation factor. Grothendieck (1956) developed the
local theory of Banach spaces, and showed that there exists an absolute value KG such that
Theorem 3.1. For any m,n ≥ 1, A ∈ Rn×m, and any Hilbert space H , the following holds:

max
ui,vj∈B(H)

∑
i,j

Aij⟨ui, vj⟩H ≤ KG||A||∞→1,

where B(H) denotes the unit ball of the Hilbert space.

The precise value of KG is still an outstanding open problem, and it is known that KG < 1.783 (Kriv-
ine, 1979; Braverman et al., 2011). The approximation factor of the SDP relaxation in Equation (5) is
KG. Similar to the mixed-norm problem, we show that the ℓ∞-FGL estimation is MAXSNP-hard
and provide an SDP relaxation, which also admits the KG-approximation ratio. We provide a detailed
explanation on why KG is the approximation ratio and how we can view the SDP relaxation as a
geometric transformation in Appendix A.4.
Theorem 3.2. ℓ∞-FGL estimation is MAXSNP-hard.

From 0-1 cube to norm-1 cube. If we can transform the 0-1 cube in Equation (4) to a norm-
1 cube, and formulate an equivalent optimization problem, then one can apply the SDP program
in Equation (5) to compute an upper bound of the FGL. Indeed, we provide a cube rescaling technique,
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and it allows us to construct the SDP for the ℓ∞-FGL estimation. We provide the full detail of this
technique in Appendix A.5, and the result SDP for the ℓ∞-FGL estimation is

max
1

2
tr(BX)

s.t. X ⪰ 0, Xii = 1, i ∈ [n+m+ 1],
(6)

where B is a (n+ 1 +m)× (n+ 1 +m) matrix, and B =

(
0 0 0
A Aen 0

)
. As a result, we have:

Theorem 3.3. There exists a polynomial-time approximation algorithm to estimate the ℓ∞-FGL of
two-layer neural networks, moreover, the approximation ratio is KG.

3.2 ℓ2-FGL estimation

Scaman and Virmaux (2018) showed that the ℓ2-FGL estimation is NP-hard. If q = 2 in Equation (4),
the objective becomes similar to the ∞ → 2 mixed-norm problem. This is a quadratic optimization
problem with a PSD weight matrix over a cube, and can be viewed as a generalization of the graph
Max-Cut problem. In the quadratic-optimization formulation of Max-Cut, the weight matrix is the
Laplacian of the graph, a special PSD matrix (Goemans and Williamson, 1995). Nesterov (1998)
generalized Goemans-Williamson’s technique and analyzed the case when the weight matrix is PSD,
showing that the natural SDP relaxation in this case has a π

2 -approximation ratio. This provides a√
π
2 -approximation algorithm for the ℓ2-FGL estimation. The approximation ratio comes from a

similar inequality to the one in Theorem 3.1, known as the Little Grothendieck Inequality. The SDP
for ℓ2-FGL estimation is:

max
1

2

√
tr(
(

ATA ATAen
eTnA

TA eTnA
TAen

)
X)

s.t. X ⪰ 0, Xii = 1, i ∈ [n+ 1].

(7)

The full derivation is provided in Appendix A.8, and we have the following theorem:
Theorem 3.4. There exists a polynomial-time approximation algorithm to estimate the ℓ2-FGL of
two-layer neural networks with an approximation factor

√
π
2 .

Remark 3.5. As we have discussed, for two-layer networks, the ℓp-FGL estimation is essentially the
∞ → q mixed-norm problem. Indeed the mixed-norm problem is an outstanding topic in theoretical
computer science. As discussed in Bhattiprolu et al. (2018), the ∞ → q mixed norm problem has
constant approximation algorithms if q ≤ 2, and is hard to approximate within almost polynomial
factors when q > 2. Because when q > 2, its Hölder conjugate p < 2. This implies that for two-layer
networks, the FGL estimation can be much harder for ℓp-perturbations when p < 2.

Briët et al. (2017) showed that it is NP-hard to approximate the ∞ → 2 mixed-norm problem better
than

√
π
2 . Raghavendra and Steurer (2009) proved that assuming the unique games conjecture (Khot,

2002), it is NP-hard to approximate the ∞ → 1 mixed-norm problem better than KG. These optimal
approximation ratios match our SDP relaxations for FGL estimations accordingly.

4 Relations to existing SDP works

Before introducing our approach for multi-layer networks, we first examine some existing SDP works
on FGL estimations, and discuss their relationships with our natural SDP relaxations in Section 3.

ℓ∞-FGL estimation. Raghunathan et al. (2018) formulated an SDP that only works for two-layer
networks. Theirs is essentially the same as ours in Equation (6) (See the detailed comparison
in Appendix A.10). However, we provide a rigorous derivation and simpler formulation, and also a
sound theoretical analysis of the bound, which illustrate more insights to this problem. Raghunathan
et al. (2018) treated the SDP relaxation as a heuristic to a hard quadratic programming problem. We
prove that this relaxation is not only a heuristic, but in fact induces an approximation algorithm with
a tight bound.

ℓ2-FGL estimation. Fazlyab et al. (2019) proposed LipSDP, another SDP-based algorithm for the
ℓ2-FGL estimation problem. Fazlyab et al. (2019) provided several variants of LipSDP to balance the
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precision and scalability. Pauli et al. (2022) demonstrated that the most precise version of LipSDP,
LipSDP-Network, fails to produce an upper bound for ℓ2-FGL. In this paper, all the references of
LipSDP are to LipSDP-Neuron, the less precise version. Surprisingly, even though the approach in
LipSDP appears quite different from Equation (7), we show that LipSDP is dual of Equation (7) to
estimate the ℓ2-FGL on two-layer networks. LipSDP for two-layer networks is:

min
ζ,λ

{√
ζ :

(
−2abWTWT − ζIm (a+ b)WTT

(a+ b)TW −2T + uTu

)
⪯ 0, λi ≥ 0

}
,

where T = diag(λ) for λ ∈ Rn
+; a and b are the lower and upper bounds of the activation’s derivative.

We will construct a new quadratic program, which we show is equivalent to Equation (4) when q = 2,
and LipSDP is its dual SDP relaxation.

Let the input of the i-th activation node on diag(y) be yi, and wi be the row vector of W . Hence,
yi = wix. Let ∆x ∈ Rm be a perturbation on x, so ∆yi = wi∆x. Let ∆σ(y) ∈ Rn denote the
induced perturbation on diag(y). The constraint from the activation function is ∆σ(y)i

∆yi
∈ [a, b], in

other words, ∆σ(y)i
wi∆x ∈ [a, b]. One can write the range constraint as

(∆σ(y)i − a · wi∆x)(∆σ(y)i − b · wi∆x) ≤ 0.

This can be written in the quadratic form:(
wi∆x
∆σ(y)i

)T (−2ab a+ b
a+ b −2

)(
wi∆x
∆σ(y)i

)
≥ 0, ∀i ∈ [n]. (8)

Since for the two layer network, f(x) = uσ(y), then ∆f(x) = u∆σ(y). The objective for ℓ2-FGL

estimation is max∆x,∆σ(y)

√
(u∆σ(y))2

(∆x)2 . The equivalence between this program and Equation (4)
when q = 2 is presented in Appendix A.11.
Remark 4.1. Another interpretation for the quadratic program is that we want to quantify how the
output changes given a data-independent input change, i.e., ∆x. In other words, we want to analyze
the effect of ∆x propagating from the input to the output, with symbolic values rather than actual
inputs. The idea is similar to symbolic execution from program analysis (Baldoni et al., 2018).

Duality to LipSDP. Now we will show that LipSDP is the dual SDP to the program formulated
above. The dual SDP derivation is of similar form in Ben-Tal and Nemirovski (2001, Ch.4.3.1). Let
us introduce a variable ζ such that ζ − (u∆σ(y))2

(∆x)2 ≥ 0. In other words,

ζ(∆x)2 − (u∆σ(y))2 ≥ 0. (9)

For each constraint in Equation (8), let us introduce a dual variable λi ≥ 0. Multiply each constraint

with λi, then
(

∆x
∆σ(y)i

)T (−2abλiw
T
i wi (a+ b)λiw

T
i

(a+ b)λiwi −2λi

)(
∆x

∆σ(y)i

)
≥ 0, ∀i ∈ [n].

Sum all of them, then we have
(

∆x
∆σ(y)

)T (−2abWTWT (a+ b)WTT
(a+ b)TW −2T

)(
∆x

∆σ(y)

)
≥ 0, where

T = diag(λ) is the n× n diagonal matrix of dual variables λ1, . . . , λn.

Equation (9) can be rewritten as:
(

∆x
∆σ(y)

)T (
ζIm 0
0 −uTu

)(
∆x

∆σ(y)

)
≥ 0. As a result, the dual

program for the new optimization program is

min
ζ,λ

{√
ζ :

(
−2abWTWT − ζIm (a+ b)WTT

(a+ b)TW −2T + uTu

)
⪯ 0, λi ≥ 0

}
.

Remark 4.2. In Remark 3.5, we mention that
√

π
2 is the optimal approximation ratio for the ∞ → 2

mixed-norm problem, which matches the approximation ratio in Theorem 3.4. Hence, improving the
natural SDP relaxation in Equation (7) can be very hard. The duality provides another evidence of
LipSDP-Neuron’s correctness, and hints that LipSDP-Network, the improved variant, may be wrong.
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5 ℓ∞-FGL estimation for multi-layer networks

For a multi-layer neural network, the formal gradient becomes a high-degree polynomial, and its
ℓq-norm estimation becomes a high-degree polynomial optimization problem over a cube, which is in
general a hard problem (Lasserre, 2015). We provide a discussion of the polynomial optimization
approach of FGL estimation in Appendix B. Here we provide an SDP dual program of the ℓ∞-FGL
estimation inspired by the dual SDP approach in Section 4. The difference is that now we consider
ℓ∞-perturbations to the input space instead of ℓ2. Hence, the objective becomes

max
∆x,∆σ(y)

|u∆σ(y)|
||∆x||∞

.

If we add an extra constraint ||∆x||∞ = 1, the above objective becomes

max
∆x,∆σ(y)

1

2
(u∆σ(y) + u∆σ(y)). (10)

The constraints are(
wi∆x
∆σ(y)i

)T (
2ab −(a+ b)

−(a+ b) 2

)(
wi∆x
∆σ(y)i

)
≤ 0, ∆(x)2j ≤ 1, ∀i ∈ [n], j ∈ [m].

We can write ∆(x)2j ≤ 1 as
(

1
∆xj

)T (
1 0
0 −1

)(
1

∆xj

)
≥ 0.

Now let us introduce n+m non-negative dual variables (τ, λ), where τ ∈ Rm
+ and λ ∈ Rn

+. If we
multiply each dual variable with the constraint and add all the constraints together, we will have(

1
∆x

∆σ(y)

)T
∑m

j=1 τj 0 0

0 −2abWTWT2 − T1 (a+ b)WTT2

0 (a+ b)T2W −2T2

( 1
∆x

∆σ(y)

)
≥ 0,

where T1 = diag(τ) and T2 = diag(λ). As a result, we can incorporate the objective Equation (10)
and obtain the dual SDP for the ℓ∞-FGL estimation:

min
ζ,λ,τ

{ζ
2
:

∑m
j=1 τj − ζ 0 u

0 −2abWTWT2 − T1 (a+ b)WTT2

uT (a+ b)T2W −2T2

 ⪯ 0, λi, τj ≥ 0
}
. (11)

Remark 5.1. The SDP programs in Section 3 are strictly feasible because the identity matrix is a
positive definite solution. Hence, Slater’s condition is satisfied and strong duality holds.

Multi-layer extension. We can simply extend the dual program to multiple-layer networks. We first
vectorize all the units in the input layer and hidden layers, and then constrain them using layer-wise
inequalities to formulate an optimization problem. Let us consider a general d-layer multi-layer
network, where W i ∈ Rni+1×ni for i ∈ [d − 1], and W d = u ∈ R1×nd . Let ∆x denote the
perturbation on the input layer, ∆zi be the perturbation on the i-th hidden layer, and wi

j be the j-th
row vector of W i. The only difference between two layer networks and multi-layer networks is that
we have the additional constraints:(

∆zi

∆zi+1
j

)T (−2ab(wi+1
j )Twi+1

j (a+ b)(wi+1
j )T

(a+ b)wi+1
j −2

)(
∆zi

∆zi+1
j

)
≥ 0.

Let Λi ∈ Rni
+ and Ti = diag(Λi) for i ∈ [d]. Following the similar SDP dual approach, we can add

all the constraints together and formulate the following SDP program:

min
ζ,Λi

{ζ
2
: (L+N) ⪯ 0, i ∈ [d]

}
, (12)

where

L =


0 0 0 . . . 0 0
0 −2ab(W 1)TW 1T2 (a+ b)(W 1)TT2 . . . 0 0
0 (a+ b)T2W

1 −2T2 − 2ab(W 2)TW 2T3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . (a+ b)TdW

d−1 −2Td

 ,

(13)
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Table 1: ℓ∞-FGL estimation of various methods: DGeoLIP and NGeoLIP induce the same values on
two layer networks. DGeoLIP always produces tighter estimations than LiPopt and MP do.

Network DGeoLIP NGeoLIP LiPopt MP Sample BruF

2-layer/16 units 185.18 185.18 259.44 578.54 175.24 175.24
2-layer/256 units 425.04 425.04 1011.65 2697.38 306.98 N/A

8-layer/64 units per layer 8327.2 —– N/A 8.237 ∗ 107 1130.6 N/A

Table 2: Running time (in seconds) of various tools on ℓ∞-FGL estimation: DGeoLIP and NGeoLIP
are faster than LiPopt. Notice that the running time is implementation and solver-dependent.

Network DGeoLIP NGeoLIP LiPopt BruF

2-layer/16 units 28.1 22.3 1572 4.8
2-layer/256 units 976.0 70.9 2690 N/A
8-layer/64 units 329.5 —– N/A N/A

N =


∑n1

k=1 Λ1k − ζ 0 . . . u
0 −T1 . . . 0
...

...
. . .

...
uT 0 · · · 0

 .

Remark 5.2. If we expand the matrix inequality derived from the compact neural-network repre-
sentation in Fazlyab et al. (2019, Theorem 2), we will have exactly the same matrix for network
constraints as L (Equation (13)) in the dual program formulation. In other words, we provide a
compositional optimization interpretation to the compact neural-network representation in LipSDP.
With this interpretation, one can extend the SDP to beyond feed-forward structures, such as skip
connections (He et al., 2016). Notice that if we apply the similar reasoning to the multi-layer network
ℓ2-FGL estimation, we will obtain LipSDP-Neuron.

6 Evaluation and discussion

The primary goal of our work is to provide a theoretical framework, and also algorithms for ℓ∞-FGL
estimations on practically used networks. The ℓ2-FGL can be computed using LipSDP. We have
implemented the algorithms using MATLAB (MATLAB, 2021), the CVX toolbox (CVX Research,
2020) and MOSEK solver (ApS, 2019), and name the tool GeoLIP. To validate our theory and the
applicability of our algorithms, we want to empirically answer the following research questions:

RQ1: Is GeoLIP better than existing methods in terms of precision and scalability?
RQ2: Are the dual SDP programs devised throughout the paper valid?

As we shall see, GeoLIP is indeed better than existing methods in terms of precision and scalability;
and the dual SDP programs produce the same values as their natural-SDP-relaxation counterparts.

6.1 Experimental design

To answer RQ1, we will run GeoLIP and existing tools that measure the ℓ∞-FGL on various feed-
forward neural networks trained with the MNIST dataset (LeCun and Cortes, 2010). We will record
the computed ℓ∞-FGL to compare the precision, and the computation time to compare the scalability.

To answer RQ2, we will run the natural SDP relaxations for ℓp-FGL estimations proposed in Section 3,
LipSDP for ℓ2-FGL estimation, and the dual program Equation (11) for ℓ∞-FGL on two-layer neural
networks, and compare their computed FGLs.
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Measurements. Our main baseline tool is LiPopt (Latorre et al., 2020), which is an ℓ∞-FGL
estimation tool.2 Notice that LiPopt is based on the Python Gurobi solver (Gurobi Optimization, LLC,
2022), while we use the MATLAB CVX and MOSEK solver. LiPopt relies on a linear programming
(LP) hierarchy for the polynomial optimization problem. We use LiPopt-k to denote the k-th degree
of the LP hierarchy. BruF stands for an brute-force exhaustive enumeration of all possible activation
patterns. This is the ground truth for FGL estimations. However, this is an exponential-time search,
so we can only run it on networks with a few hidden units. Sample means that we randomly sample
200, 000 points in the input space and compute the gradient norm at those points. Notice that this is a
lower bound of the true Lipschitz constant, and thus a lower bound of the FGL. MP stands for the
weight-matrix-norm-product method. This is a naive upper bound of FGL. We use NGeoLIP to denote
the natural SDP relaxations devised in Section 3, and DGeoLIP to denote the dual SDP Equation (12)
for ℓ∞-FGL estimation. Notice that NGeoLIP only applies to two-layer networks.

We use “—” in the result tables to denote that the experimental setting is not in the scope of the tool’s
application, and “N/A” to denote the computation takes too much time (> 20 hours).

Network setting. We run the experiments on fully-connected feed-forward neural networks, trained
with the MNIST dataset for 10 epochs using the ADAM optimizer (Kingma and Ba, 2015). All the
trained networks have accuracy greater than 92% on the test data. For two-layer networks, we use 8,
16, 64, 128, 256 hidden nodes. For multiple-layer networks, we consider 3, 7, 8-layer networks, and
each hidden layer has 64 ReLU units. Because MNIST has 10 classes, we report the estimated FGL
with respect to label 8 as in Latorre et al. (2020), and the average running time per class: we record
the total computation time for all 10 classes from each tool, and report the average time per class.

6.2 Discussion

We present selected results in Tables 1 and 2, and related major discussions here. The full results,
more experimental setup and additional discussions can be found in Appendix C.

RQ1. In the experiments of LiPopt, we only used LiPopt-2. In theory, if one can go higher in the LP
hierarchy in LiPopt, the result becomes more precise. However, in the case of fully-connected neural
networks, using degree-3 in LiPopt is already impractical. For example, on the simplest network that
we used, i.e., the single-hidden-layer neural network with 8 hidden units, using LiPopt-3, one ℓ∞-FGL
computation needs at least 200 hours projected by LiPopt. As a result, for all the LiPopt-related
experiments, we were only able to run LiPopt-2. As Latorre et al. (2020) pointed out, the degree has
to be at least the depth of the network to compute a valid bound, so we have to use at least LiPopt-k
for k-layer networks. LiPopt is unable to handle neural networks with more than two layers because
this requires LiPopt with degrees beyond 2. Even if we only consider LiPopt-2 on two-layer networks,
the running time is still much higher compared to GeoLIP. This demonstrates the great advantage
of GeoLIP in terms of scalability compared with LiPopt. If we compare LiPopt-2 with GeoLIP on
two-layer networks from Table 1, it is clear that GeoLIP produces more precise results. For networks
with depth greater than 2, we can only compare GeoLIP with the matrix-norm-product method. As
we can see from all experiments, GeoLIP’s estimation on the FGL is always much lower than MP.

We have also shown that the two-layer network ℓ∞-FGL estimation from GeoLIP has a theoretical
guarantee with the approximation factor KG < 1.783 (Theorem 3.3). If we compare the two-layer
network results from GeoLIP and Sampling in Table 1, which is a lower bound of true Lipschitz
constant, the ratio is within 1.783. This validates our theoretical claim.

RQ2. In Section 4, we have demonstrated the duality between NGeoLIP and LipSDP for the ℓ2-FGL
estimation on two-layer networks, even though the approaches appear drastically different. The
experiments show that on two-layer networks, LipSDP and NGeoLIP for ℓ2-FGL estimations (Table 7
in the appendix), and DGeoLIP and NGeoLIP for ℓ∞-FGL estimations produce the same values.
These results empirically validate the duality arguments, and also all the related SDP programs.

SDP relaxation. Applying SDP on intractable combinatorial optimization problem was pioneered
by the seminal Goemans-Williamson algorithm for the Max-Cut problem (Goemans and Williamson,
1995). For two-layer networks, we have reduced the FGL estimation to the mixed-norm problem, and

2Another method was proposed by Chen et al. (2020), however, the code is not available and we are not able
to compare it with GeoLIP.
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provide approximation algorithms with ratios compatible with the known optimal constants in the
corresponding mixed-norm problems. Improving them can be a very hard task. We also provide a
compositional SDP interpretation of LipSDP-Neuron. Although Pauli et al. (2022) demonstrated the
flaw in LipSDP-Network, our compositional SDP interpretation shows that LipSDP-Neuron is correct.
In fact, from the compositional SDP interpretation, the program is only constrained by the underlying
perturbation geometry and the layer-wise restriction from each hidden unit, so the constraints and
objective exactly encode the FGL-estimation problem without additional assumptions. Because often
the SDP relaxation for intractable problems gives the optimal known algorithms, we conjecture that
GeoLIP and LipSDP are also hard to improve on FGL estimations.

Latorre et al. (2020) used polynomial optimization to address the ℓ∞-FGL estimation. We argue that
approaching FGL-estimations from the perspective of polynomial optimization loses the accurate
characterization of this problem. For example, for two-layer networks, we have provided constant
approximation algorithms to estimate FGLs in both ℓ∞ and ℓ2 cases. However, for a general
polynomial optimization problem on a cube, we cannot achieve constant approximation. For example,
the maximum independent set of a graph can be encoded as a polynomial optimization problem over a
cube (Motzkin and Straus, 1965), but the maximum independent set problem cannot be approximated
within a constant factor in polynomial time unless P = NP (Trevisan, 2004).

7 Related work

Chen et al. (2020) employed polynomial optimization to compute the true Lipschitz constant of
ReLU-networks for ℓ∞-perturbations, and used Lasserre’s hierarchy of SDPs (Lasserre, 2001) to
solve the polynomial optimization problem. However, their approach is highly tailored to ReLU
networks, while ours, like LipSDP, can handle common activations, such as sigmoid and ELU.

Latorre et al. (2020) also proposed to use LiPopt to estimate the local Lipschitz constant. However,
estimating this quantity is not the problem studied in our work, and there are tools specifically
designed for local perturbations and the Lipschitz constant (Laurel et al., 2022; Zhang et al., 2019).

Lipschitz regularization of neural networks is an important task, and recent works (Aziznejad et al.,
2020; Bungert et al., 2021; Gouk et al., 2021; Krishnan et al., 2020; Terjék, 2020) have investigated
this problem. However, here we study a related but different problem, i.e., Lipschitzness measurement
of neural networks. Our work can motivate new Lipschitz regularization techniques.

8 Conclusion

In this work, we have provided a quantitative geometric framework for FGL estimations, and also
algorithms for the ℓ∞-FGL estimation. One important lesson is that when transferring techniques
from one perturbations to another ones, we should also transfer the underlying geometry. One future
work is to train smooth neural networks using the SDPs proposed in this paper.
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
discussed them in Appendix D.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes] We have read the ethics review guidelines. Because our work is to
measure the smoothness of neural networks (see Sections 1 and 2), and we only used
the standard MNIST dataset (see Section 6.1), the paper conforms to guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We clearly
defined the quantity to measure and the network structures in Sections 2 to 5.

(b) Did you include complete proofs of all theoretical results? [Yes] We provided important
intuition and ideas in the main paper (see Sections 3 to 5), and included complete
proofs in Appendix A.
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We included
the code, data, and instructions as a URL.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We included major experimental setting in Section 6.1, and
detailed specification in Appendix C.1.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [N/A] Our experiments are deterministic. Given a neural
network, our algorithm always returns the same result.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] This was provided in Appendix C.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] In terms of dataset,
we only used the standard MNIST, and cited the creators. All the tools used in the
paper were properly cited. See Section 6.1 and Appendix C.1.

(b) Did you mention the license of the assets? [Yes] See Appendix C.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We included our code as a URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Elided background, derivations and proofs

A.1 Additional analysis background

Gradient as operator. If a function g : Rm → R is a differentiable function at a ∈ Rm, then the
total derivative of g at a is

Dg(a) = [
∂g

∂x1
(a), . . . ,

∂g

∂xm
(a)],

and the gradient of g at a is ∇g(a) is the transpose of Dg(a). The linear approximation of g at a
is ⟨Dg(a), dx⟩. Equivalently, we can view the change of a function with respect to an infinitesimal
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perturbation as the inner product of ∇g(a) and dx. In this sense, the gradient acts as an operator on
the perturbation.

Differentiable activation. Because we want to upper bound the true Lipschitz constant, we only
need to show that the quantity considered in the paper indeed upper bounds the true Lipschitz constant
considered in the paper. If the activation function is differentiable, then the neural network f is also
differentiable, so Equation (3) is trivially true, as proved and applied in Latorre et al. (2020, Theorem
1 and Equation 4).

ReLU activation. For ReLU networks, it is true if we have [a, b] = [0, 1]. One can consider the
(Clarke) generalized Jacobian as in Jordan and Dimakis (2020). At each input point, the Clarke
Jacobian is contained in {(W 1)T · diag(v2) · · · · · diag(vd)(W d)T | vi ∈ [a, b]ni}. Alternatively,
we can also use the perturbation propagation argument in Section 4 to see this upper bound. Note
that Raghunathan et al. (2018) used this interval representation for ReLU’s derivative.

Maximum over hypercube. Now we want to show that the optimization problems over hypercubes
considered in this work attain the maximum at the vertices. Without of loss of generality, let us
assume the hypercube is [−1, 1]n. Otherwise, we can transform the hypercube to [−1, 1]n. Let
A ∈ Rm×n, x ∈ Rn, y ∈ Rm, and z ∈ Rn.

We will use the following facts

1. ||x||1 = maxz∈{−1,1}n⟨x, z⟩;

2. ℓ∞ is the dual of ℓ1;

3. Let U ⊆ Rn. When maxx,z∈U ⟨Ax,Az⟩ is well-defined, we have maxx∈U ⟨Ax,Ax⟩ =
maxx,z∈U ⟨Ax,Az⟩.

The first fact is from ||x||1 = |x1| + . . . + |xn| = maxz∈{−1,1}n⟨x, z⟩. The second fact is from
Hölder’s inequality for finite-dimensional vector space. For the third one, ⟨Ax,Az⟩ is maximized
only when Ax = Az. Now we can show that the maximization problems considered in this paper
attain the maximum at the hypercube vertices.

max
||x||∞=1

||Ax||1 = max
||x||∞=1,y∈{−1,1}m

⟨Ax, y⟩ (From fact (1))

= max
||x||∞=1,y∈{−1,1}m

⟨x,AT y⟩

= max
y∈{−1,1}m

||AT y||1 (From fact (2))

= max
x∈{−1,1}n,y∈{−1,1}m

⟨x,AT y⟩

= max
x∈{−1,1}n,y∈{−1,1}m

⟨Ax, y⟩.

(14)

max
||x||∞=1

||Ax||22 = max
||x||∞=1

⟨Ax,Ax⟩

= max
||x||∞=1,||z||∞=1

⟨Ax,Az⟩ (From fact (3))

= max
||x||∞=1,||z||∞=1

⟨ATAx, z⟩.

Using the similar idea in Equation (14), we have

max
||x||∞=1

||Ax||22 = max
x∈{−1,1}n,z∈{−1,1}n

⟨Ax,Az⟩ = max
x∈{−1,1}n

⟨Ax,Ax⟩.

More generally, in the bilinear forms considered above, if x = x1 ⊗ · · · ⊗ xd is generated by the
tensor product of variables over cubes, we can fix one variable and write x as a matrix product,
and then move the fixed variable to the hypercube vertices. We can repeat this process to move all
variables to the vertices.
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A.2 Additional definitions

For any neural network f , let OPT (f) be the optimal value of Equation (3). We say an algorithm
A is an approximation algorithm for Equation (3) with approximation ratio α > 1, if OPT (f) ≤
A(f) ≤ αOPT (f).

A.3 SDP for the ∞ → 1 mixed-norm problem

Recall that for v ∈ Rm, ||v||1 = max||u||∞=1⟨u, v⟩. We can reformulate the mixed-norm problem as
follows:

max
x∈{−1,1}n

||Ax||1 = max
(x,y)∈{−1,1}n+m

⟨Ax, y⟩.

If we let z =
(
xT yT

)
, we can have

max
(x,y)∈{−1,1}n+m

⟨Ax, y⟩ = max
z∈{−1,1}n+m

z ·B · zT ,

where B is a (m+ n)× (m+ n) matrix. The last m rows and first n columns of B is A, and the rest

are 0: B =

(
0 0
A 0

)
.

The natural SDP relaxation of the ∞ → 1 mixed-norm problem is:

max tr(BX)

s.t. X ⪰ 0, Xii = 1,i ∈ [n+m].

In other words, we treat X as the SDP matrix relaxed from the rank-1 matrix zT · z.

A.4 SDP relaxation and Grothendieck inequalities

In this work, we used the Grothendieck inequality as in Theorem 3.1:

max
ui,vj∈B(H)

∑
i,j

Aij⟨ui, vj⟩H ≤ KG||A||∞→1, (15)

for any A ∈ Rn×m; and the little Grothendieck inequality:

max
ui,vj∈B(H)

∑
i,j

(ATA)ij⟨ui, vj⟩H ≤ π

2
||A||2∞→2. (16)

Notice that ATA is a PSD matrix.

As discussed in Appendix A.3,

||A||∞→1 = max
z∈{−1,1}n+m

z ·B · zT .

The natural SDP relaxation is

max tr(BX)

s.t. X ⪰ 0, Xii = 1,i ∈ [n+m].

Because X ⪰ 0, X = MMT for some M ∈ R(m+n)×d, where d ≥ 1. Let Mi be the i-th row vector
of M . Xij = ⟨Mi,Mj⟩, and Xii = 1 means ⟨Mi,Mi⟩ = 1. As a result, tr(BX) =

∑
i,j AijXij =∑

i,j Aij⟨Mi,Mj⟩H , where H is the Hilbert space of Rd equipped with the canonical inner product.
Thus, Equation (15) implies that KG is the approximation ratio in the SDP relaxation for the mixed-
norm problem.

In contrast, in the mixed-norm problem, the variable to Bij is zizj , the product of two scalars. If
d = 1 in the SDP relaxation, M is a column vector, and X is a rank-1 matrix. In this case, the SDP
coincides with the combinatorial problem, because the inner product degenerates to the multiplication
of two scalars. Hence, the SDP relaxation can be viewed as a continuous relaxation of a discrete
problem, and Equation (15) quantifies this geometric transformation. Another interpretation for the
SDP relaxation is that SDP drops the rank-1 constraint in the quadratic formulation of the mixed-norm
problem.
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A.5 Rescaling from 0-1 cube to norm-1 cube

Now let us show how we transform the 0-1 cube in Equation (4) to a norm-1 cube, and formulate
an equivalent optimization problem. As a result, we can apply the SDP program in Equation (5) to
compute an upper bound of the ℓ∞-FGL.

Let xi = (ti + 1)/2, where ti ∈ {−1, 1}. We have
max

x∈{0,1}n
||Ax||1

= max
x∈{0,1}n,y∈{−1,1}m

yTAx

= max
t∈{−1,1}n,y∈{−1,1}m

1

2
yTA(t+ en).

(17)

Let OPT1 be the optimal value of
max

(t,y)∈{−1,1}n+m
yTA(t+ en).

Introduce another variable τ ∈ {−1, 1}, and let OPT2 be the optimal value of

max
(t,y,τ)∈{−1,1}n+m+1

yTA(t+ τen). (18)

Lemma A.1. OPT1 = OPT2.

Proof. Clearly OPT2 ≥ OPT1.

Now if (t̂, ŷ, τ = −1) is an optimal solution to Equation (18), then (−t̂,−ŷ, τ = 1) is also an optimal
solution, so OPT2 ≤ OPT1.

Now let z = (t, τ), and we can verify that yTA(t+ τen) = yTBz, where B = (A Aen).

As a result, the semidefinite program to the ℓ∞-FGL constant is

max
1

2
tr(BX)

s.t. X ⪰ 0, Xii = 1, i ∈ [n+m+ 1],

where B is a (n+ 1 +m)× (n+ 1 +m) matrix, and B =

(
0 0 0
A Aen 0

)
.

A.6 Proof of Theorem 3.2

Proof. We will use the cube rescaling techniques introduced in Appendix A.5. Alon and Naor
(2004) showed that matrix cut-norm is MAXSNP-hard. We will show that if one can solve the FGL
estimation problem, then one can find the cut norm of a matrix.

Given a matrix A, the cut norm of a matrix A ∈ Rm×n is defined as
CN(A) = max

x∈{0,1}n,y∈{0,1}m
⟨Ax, y⟩.

We need to transform y from 0-1 cube to norm-1 cube, so similarly let yi = (ti + 1)/2, where
ti ∈ {−1, 1}. The we will have

CN(A) = max
x∈{0,1}n,y∈{0,1}m

⟨Ax, y⟩ = 1

2
max

x∈{0,1}n,t∈{−1,1}m
⟨Ax, (t+ em)⟩.

Let B =

(
A

eTmA

)
. From above we know that

max
x∈{0,1}n,t∈{−1,1}m

⟨Ax, (t+ em)⟩ = max
x∈{0,1}n,(t,τ)∈{−1,1}m+1

⟨Bx, (t, τ)⟩.

One can then construct a two layer neural network, where the first weight matrix is BT , and the
second weight matrix is (1, . . . , 1) ∈ Rn. Because the network we consider has only one output, the
second weight matrix is only a vector. The FGL of this network is exactly twice of the cut norm of
A.
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A.7 Proof of Theorem 3.3

Proof. Let B =

(
0 0 0
A Aen 0

)
. Combing Equations (5), (17) and (18), the approximation algo-

rithm for Equation (4) where q = 1 is induced by the following SDP program:

max
1

2
tr(BX)

s.t. X ⪰ 0, Xii = 1, i ∈ [n+m+ 1].

A.8 Natural SDP relaxation of ℓ2-FGL estimation

Now let q = 2 in Equation (4), we will have:

max
y∈{0,1}n

||Ay||2.

In other words, we only need to solve the following program:

max
z∈{0,1}n

zT (ATA)z. (19)

Let M = ATA, then M is a PSD matrix. We have demonstrated the scaling techniques in Ap-
pendix A.5. Let x ∈ {−1, 1}n+1, one can verify that

max
z∈{0,1}n

zTMz =
1

4
max

x∈{−1,1}n+1
xT M̂x, (20)

where M̂ =

(
M Men

eTnM eTnMen

)
.

It is easy to verify that if M is PSD, M̂ is also PSD. Because M = ATA, M̂ = (A,Aen)
T ·(A,Aen).

Now we can consider the following natural SDP relaxation to maxx∈{−1,1}n+1 xT M̂x:

max tr(M̂X)

s.t. X ⪰ 0, Xii = 1, i ∈[n+ 1].
(21)

This SDP relaxation admits a π
2 -approximation factor from Equation (16) (Rietz, 1974; Nesterov,

1998).

A.9 Proof of Theorem 3.4

Proof. Let M̂ =

(
M Men

eTnM eTnMen

)
, where M = ATA. Combining Equations (19) to (21), the

approximation algorithm for Equation (4) where q = 2 is induced by the following SDP program:

max
1

2

√
tr(M̂X)

s.t. X ⪰ 0, Xii = 1, i ∈[n+ 1].
(22)

A.10 Comparison with Raghunathan et al. (2018)

Raghunathan et al. (2018) formulated the following SDP to upper bound the ℓ∞-FGL on two-layer
neural networks:

max
1

4
tr(CX)

s.t. X ⪰ 0, Xii = 1, i ∈[n+m+ 1],
(23)
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where C is a (m+ n+ 1)× (m+ n+ 1) matrix, and C =

0 0 AT

0 0 eTnA
T

A Aen 0

.

If we compare Equations (6) and (23), C = B +BT . Because X is symmetric, tr(CX) = 2tr(BX).
Therefore, Equations (6) and (23) produce the same result.

A.11 Equivalence between the new optimization program and Equation (19)

Notice that because u ∈ R1×n, u∆σ(x) is a scalar. We can view each zi in Equation (19) as ∆σ(x)i
∆yi

,
the derivative of σ(x)i without the limit. Therefore, ∆σ(x)i = zi∆yi. Recall that from Section 4,
∆yi = wi∆x, so ∆σ(x)i = wizi∆x, then u∆σ(x) = ∆x

∑n
i uiziwi = ∆x(Az), where A =

WT diag(u) as defined in Equation (4).

As a result, from Cauchy–Schwarz inequality, the above objective is

max
∆x,∆σ(x)

(u∆σ(x))2

(∆x)2
= max

z
(Az)2,

s.t. z ∈[a, b]n.

This demonstrates the equivalence between the new optimization program and Equation (19) when
[a, b] = [0, 1] for σ = ReLU.

B Polynomial optimization approach to the FGL estimation

We briefly discuss the gradient approach to estimate the FGL. Let us use a three layer network as an
example:

f(x) = uσ(V σ(Wx+ b1) + b2),

where x ∈ Rl×1, W ∈ Rn×l, b1 ∈ Rn, V ∈ Rm×n, b2 ∈ Rm and u ∈ R1×m .

The formal gradient vector of this network is

WT diag(y)V T diag(z)uT ,

where diag(y) ∈ Rn×n and diag(z) ∈ Rm×m. The i-th component of this vector is then

m∑
k=1

n∑
j=1

(ukVkjWji) · (yjzk).

Therefore, the ℓp-norm estimation of the formal gradient ends up being a polynomial optimization
problem over a cube. For example, the ℓ1-norm (corresponding to ℓ∞-perturbations) of the gradient
is

max
xi∈{−1,1},yj∈{0,1},zk∈{0,1}

l,n,m∑
i,j,k=1

Tijk · xiyjzk, (24)

where Tijk = WjiVkjuk.

This is essentially a tensor cut-norm problem, and it is an open problem whether there exists an
approximation algorithm within a constant factor to the general tensor cut-norm problem (Kannan,
2010). Notice that Equation (24) is not a general tensor-cut-norm problem, because the tensor is
generated from the weight matrices. For example, if we fix j, the projected matrices of T are of
rank-1. Each vector in T:,j,: is the product of Vkjuk with the vector Wj::

∀k : T:,j,k = Wj:Vkjuk.

However, we do not have the theoretical technique to exploit the low-rank structure of these special
polynomial optimization problems. The perturbation analysis in Sections 4 and 5 can be viewed as
exploiting this structure in practice.
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Table 3: ℓ∞-FGL estimations of different methods for two-layer networks: DGeoLIP and NGeoLIP
induce the same estimations, and they are also close to the sampled lower bounds. In the meantime,
the result from GeoLIP is tighter than LiPopt’s result.

#UNITS DGEOLIP NGEOLIP LIPOPT-2 MP SAMPLE BRUF

8 142.19 142.19 180.38 411.90 134.76 134.76
16 185.18 185.18 259.44 578.54 175.24 175.24
64 287.60 287.60 510.00 1207.70 253.89 N/A
128 346.27 346.27 780.46 2004.34 266.22 N/A
256 425.04 425.04 1011.65 2697.38 306.98 N/A

Table 4: Average running time (in seconds) of different methods for two-layer-network ℓ∞-FGL
estimations: GeoLIPs are faster than LiPopt.

# HIDDEN UNITS DGEOLIP NGEOLIP LIPOPT-2 BRUF

8 23.1 21.5 1533 < 0.1
16 28.1 22.3 1572 4.8
64 93.4 31.7 1831 N/A
128 292.5 42.2 2055 N/A
256 976.0 70.9 2690 N/A

C Complete experimental specifications and results

GeoLIP is available at https://github.com/z1w/GeoLIP. To accommodate users who do not
have access to MATLAB, we also implement a version based on CVXPY (Diamond and Boyd,
2016). However, the MATLAB implementation works more efficiently in terms of memory and
speed, and we encourage users to work with the MATLAB version when possible. We conducted all
the GeoLIP-related experiments with the MATLAB version.

C.1 Experimental specifications

Tools. We obtain the LiPopt implementation from https://github.com/latorrefabian/
lipopt, under the MIT License.

Server specification. All the experiments are run on a workstation with forty-eight Intel® Xeon®

Silver 4214 CPUs running at 2.20GHz, and 258 GB of memory, and eight Nvidia GeForce RTX 2080
Ti GPUs. Each GPU has 4352 CUDA cores and 11 GB of GDDR6 memory.

Dataset and split. We used the standard MNIST dataset from the PyTorch package (Paszke et al.,
2019). We used the “train” parameter in the MNIST function to split training and testing data.

C.2 Experimental results

Single hidden layer. We consider the ℓ∞-FGL estimation on two layer neural networks with
different numbers of hidden units. The results are summarized in Tables 3 and 4.

Multiple hidden layers. We consider the ℓ∞-FGL estimation on 3, 7, 8-layer neural networks.
Each hidden layer in the network has 64 ReLU units. The results are summarized in Tables 5 and 6.

ℓ2-FGL estimation. We measure the ℓ2-FGL on two-layer networks mainly to compare
whether Equation (7) and LipSDP produce the same result. Additionally, we also want to em-
pirically examine the approximation guarantee from Theorem 3.4. Still, we consider networks with 8,
16, 64, 128, 256 hidden nodes. The results are summarized in Tables 7 and 8.
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Table 5: ℓ∞-FGL estimations of different methods for multi-layer networks: GeoLIP’s result is much
tighter than the matrix-product method, and LiPopt is unable to handle these networks.

# LAYERS GEOLIP MATRIX PRODUCT SAMPLE LIPTOPT

3 529.42 9023.65 311.88 N/A
7 5156.5 1.423 ∗ 107 1168.8 N/A
8 8327.2 8.237 ∗ 107 1130.6 N/A

Table 6: Average running time (in seconds) of GeoLIP for multi-layer-network ℓ∞-FGL estimations.

3-LAYER NET 7-LAYER NET 8-LAYER NET

120.9 284.3 329.5

C.3 Additional discussions

Duality. The results in Table 7 show that the results of LipSDP and GeoLIP on two-layer-network
ℓ2-FGL estimation are exactly the same, which empirically demonstrates the duality between LipSDP
and GeoLIP, as discussed in Section 4. Though Pauli et al. (2022) showed that the most precise
version of LipSDP is invalid for estimating an upper bound of ℓ2-FGL, our dual-program argument
shows that the less precise version of LipSDP is correct.

Precision. We showed that GeoLIP’s approximation factor for the ℓ2-FGL estimation on two layer
networks is

√
π
2 ≈ 1.253 in Theorem 3.4. The ℓ2-FGL from GeoLIP is very close to the sampled

lower bound of true Lipschitz constant in Table 7. On the other hand, because the result from GeoLIP
is an upper bound of FGL, and this result is not much greater than the sampled lower bound of true
Lipschitz constant, this empirically demonstrates that the true Lipschitz constant is not very different
from the FGL on two-layer networks.

Running time. If we compare the running time in Tables 4 and 8, the dual program takes more time
to solve than the natural relaxation. This is particularly true when the number of hidden neurons
increases. From the reported numbers of variables and equality constraints by CVX, the dual program
and natural relaxation have similar numbers. It is also observed that the CPU usage is higher when
the natural relaxation is being solved. We want to point out that the running time and optimization
algorithm are solver-dependent, and efficiently solving SDP is beyond the scope of this work. It is an
interesting future direction to exploit the block structure of the dual programs, and develop algorithms
that are compatible with those programs, because training smooth networks is a critical task, and it is
promising to incorporate the SDP programs.

ℓ2 versus ℓ∞ FGLs. If we compare results from Tables 3 and 7, we can also find that the discrepancy
between matrix product method and sampled lower bound is much smaller in the ℓ2 case. This could
also explain why Gloro works for ℓ2-perturbations but not the ℓ∞ case in practice, where Leino et al.
(2021) used matrix-norm product to upper bound the Lipschitz constant of the network in Gloro.

Sampling. Sampling can only give a lower bound of the true Lipschitz constant, while we are
trying to estimate an upper bound. We use sampling as a sanity check to ensure that the SDP method
is at least sound and indeed provides an upper bound of the FGL. It is interesting to see that in
networks where we can brute-force enumerate all the activation patterns, sampling provides very
close results to the ground-truth ones. Notice that for those networks, there are only a few hidden
units (8 or 16), while we sample many (200,000) inputs, which might activate all or most of the
patterns. However, for networks with many activation nodes, it is infeasible to have a brute-force
enumeration of all the activation patterns, so we do not have the ground-truth information. Sampling
has no guarantee whether it can activate all patterns unless we have sampled all possible inputs, which
is also impractical.

Multi-layer network guarantees. The discrepancy between the results from sampling and GeoLIP
is relatively large for multi-layer networks. The approximation guarantee of GeoLIP is in terms of
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Table 7: ℓ2-FGL estimations of different methods for two-layer networks: LipSDP and NGeoLIP
induce the same estimations, and these results are also close to the sampled lower bounds.

#UNITS NGEOLIP LIPSDP MP SAMPLE BRUF

8 6.531 6.531 11.035 6.527 6.527
16 8.801 8.801 13.936 8.795 8.799
64 12.573 12.573 22.501 11.901 N/A
128 15.205 15.205 30.972 13.030 N/A
256 18.590 18.590 35.716 14.610 N/A

Table 8: Average running time (in seconds) of LipSDP and NGeoLIP for two-layer-network ℓ2-FGL
estimations.

# HIDDEN UNITS LIPSDP NGEOLIP BRUF

8 11.5 1.2 < 0.1
16 15.7 1.2 5.1
64 64.2 1.3 N/A
128 216.1 1.7 N/A
256 758.1 4.1 N/A

the FGL, rather than true Lipschitz constant. It is unclear how large the gap between true Lipschitz
constant and the FGL is for multi-layer networks. Narrowing this gap is an interesting research
direction and beyond the scope of this work. We do not know whether for multi-layer networks,
GeoLIP has an approximation guarantee that is independent of the network. We leave this as an open
problem.

D Negative societal impacts

Our work is mainly theoretical and to measure an intrinsic mathematical property of neural networks,
and can benefit the verification of deep-learning systems. A misuse of our work can give a false sense
of safety, so the practical use of our work should be careful.
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