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Supplementary Material

Dataset Material Relighting # Envmaps  Shiny Object
NeRF Synthetic [29] X X 0 X
Shiny Blender [43] X X 0
NeRO Synthetic [25] X v 3 v
NeRFactor Synthetic [54] v v 8 X
TensolR Synthetic [15] v v 8 X
Ours v 4 9 v

Table 3. Comparison of the availability of the datasets. We
show the availability of ground truth material, relighting, number
of environment maps for relighting, and availability glossy object.
Ours is the first dataset with ground truth material and relighting
for shiny objects.

6. Implementation Details

Our code is built on the instant-nsr-pl codebase [12]. We use
a 512-resolution progressive hash grid with 16 levels. The
geometry MLP has 2 layers with 128 neurons. The diffuse,
specular, secondary MLP has 4 layers with 128 neurons.
And the roughness and blending MLP has 2 layers with 128
neurons. The resolution of the environment map is 6 X512 x
512 x 3. We start from the 4-th level of the hash grid and
increase by 1 level for every 500 iterations. Regarding the
hyperparameters, we use A, = 10, A¢jx = 0.1, Acyry = 1.
We use Adam optimizer with 8; = 0.9, 5; = 0.999, and
€ = 10712, The first stage of our method is training for
10k iterations and the second stage for 70k iterations. All
experiments are conducted on a single RTX 3090Ti GPU.

7. Shiny Inverse Rendering Synthetic Dataset

We built our own Shiny Inverse Rendering Dataset with an
aligned BRDF model as no dataset with ground truth ma-
terial and relighting results for glossy objects exists. We
provide five scenes including feapot, coffee, muscle car,

toaster, and helmet from the Shiny Blender dataset [43],

with ground truth albedo, roughness, and relighting under

nine different environment maps. Here are the steps to cre-
ate the dataset:

* To align the BRDF during dataset generation and inverse
rendering, we change the shader nodes of the five objects
to the Principled BRDF with default parameters except
for the metallic, roughness, and base color (albedo) in
Blender [1].

* We render the objects under ten different light conditions,
and choose one of them as the training light, and others
for relighting.

* To export accurate ground truth albedo and roughness,
we manually create the blender files using Diffuse BRDF
with the albedo and roughness value in the Principled

BRDF model as the base color and render the diffuse
pass.
In Table 3, we compare our new dataset to existing ones.
To the best of our knowledge, ours is the first glossy dataset
with an aligned BRDF model for forward and inverse ren-
dering with accurate material and relighting ground truth.

8. Discussion on MLP Predictions in Stage 1

Using Eq. 4 and 5 in the main paper, we can divide the per-
sample physically-based rendering equation into the follow-
ing format:

{cati=(1 - mi)ﬁ/ Lgir(%i,w;)cosb;dw;
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Since the geometry is not well reconstructed in the first
stage, the SDF is not converged near the surface. Therefore,
the amount of volume rendering samples is large during the
first stage since it is hard to prune the samples according to
the SDF value. To save computation and to enhance training
stability, we directly use MLPs to predict these two integra-
tion values. A blending weight is predicted to simulate the
effect of metallic parameters. Note that we assume there is
no indirect illumination in this equation.

9. Split-sum Approximation

Given the sample location x;, ray direction d, and the nor-
mal direction n;, we write the rendering equation and the
corresponding Monte Carlo integration:
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This integration can be approximated by the multiplication
of separate sums. If we write the split-sum Monte Carlo



integration back to the continuous form:

e (xi,d) ~
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The first integration is called as BSDF integral, and the sec-
ond integration is called the light integral. The light integra-
tion is approximated by a multi-level mipmap. Consistent
with [31], we use cube maps (with resolution 6 x 512 x 512).
The base level corresponds to the smallest roughness value,
and increases among the mip-levels. For each level, the
mipmap is computed by average pooling the base level fol-
lowed by a convolution using the GGX distribution with the
corresponding roughness as the kernel. The mipmap is im-
plemented as a differentiable function with respect to d; and
roughness p:

| Lilcsop)plesi . phde; = Mipmap(ds,p) (19)
H

In our paper, the BRDF is defined as a simplified version of
the Disney BSDF as in Eq. 5 in the main paper. The fresnel
term F' is defined as:

F=F+(1-F)(-wj -h)? (20)

where Fy = 0.04%(1—m)+m=ais the simplified basic re-
flection ratio, and h is the half-way vector between —d and
w;. Since we have both the diffuse and the specular parts in
the BSDF, we can separate the rendering equation into the
diffuse and specular parts. For the diffuse part, we directly
extract the albedo outside of the integrand, and use the nor-
mal direction and largest roughness to query the mipmap:

lg = Mipmap(nia pmax)
H?2 m

For the specular part of BSDF integration, if we substitute
the Fresnel in the BSDF:
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This leaves two integrations only dependent on p and n;-w;,
then we can precompute the result and store it to a 2D LUT:

e fr(xi,dawj)(ni : wj)dwj
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10. Discussion on Indirect Illumination

To model the indirect illumination, we first assume that the
indirect effect is only apparent for the specular part of the
radiance. Therefore, we only modify the specular part {c; };
to {c.}; in Eq. (16):
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After applying volume rendering to the equation above, we
have:
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Compared with NeRO [25], we use an MLP f;,,4 to directly
predict C;,,4 instead of predicting the indirect illumination
for each volume sample. More specifically, we use the nor-
mal vector N, secondary ray direction d, and the geometry
feature 5 at the expected intersection point. As shown in
Fig. 7, our algorithm only has one secondary color MLP
query. Assume there are [V samples on the primary ray and
M samples on the secondary ray (M << N). For the in-
direct sampling in NeRO [25], since there is one MLP for
opacity prediction and one MLP for indirect color for each
sample on the primary ray, the total number of secondary
MLP queries is 2N. For TensolR [15] and ENVIDR [22],
since they compute the surface intersection first and then
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Figure 7. Indirect sampling method. Each blue arrow represents an MLP query using the secondary ray direction. Each black arrow
represents a ray marching with multiple geometry MLP queries. Each blue dot represents color MLP queries for each sample. (1) For
each sample along the primary ray, NeRO [25] queries an opacity MLP and an indirect color MLP to estimate the per-sample indirect
illumination. (2) TensolR [15] and ENVIDR [22] compute the expected surface intersection X and apply a secondary ray marching. This
is not efficient when there are multiple color MLPs in our case. (3) Our indirect sampling only queries the geometry MLP to compute the
opacity and uses one color MLP only once for the expected surface intersection.

use secondary ray marching to compute the radiance field,
the number of MLP queries is 4 (in our case there is one
density MLP and three color MLPs). In our algorithm, we
only query the geometry MLP for indirect illumination, and
query indirect color once for the expected intersection X,
thus the total query number is M + 1.

11. Derivation of Second Split-sum

We define the illumination as:
L; =1[p > pt|Lair
+1[p < pe]((1 = O) * Lair + O * Lina),
which means we only consider the indirect light when the
roughness is smaller than the threshold. We plug this equa-

tion into the light integral in Eq. (18), and the relighting
light integral for the specular part becomes:

I =(L[p> p] +1p < pe] x (1 = 0)) I

relight
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The light integral 1° in the equation can be computed by vol-
ume rendering the per-sample light integral 17. For the sec-
ond part, with a small enough p;, the GGX distribution can
be approximated as a delta function with an infinity value at
the reflected direction d. So we simplify the equation above
into the following form:

Vetight ®(Lp > pe] + 1p < pe] % (1 = 0)) x1°
+1[p < pi] * O * Lina(x;,d).
12. Relighting Runtime Cost

(28)

In Tab. 4, we show the per-scene relighting runtime (fps)
of NeRO (Blender) [25] and our pipeline. We can find that
both methods cannot achieve interactive frame rates, while
our method achieves higher quality with comparable run-
time.

NeRO Ours*

teapot 0.481 0.461
musclecar 0.292 0.253
coffee 0.203 0.193
toaster 0.199 0.133
helmet 0.282 0.148
Avg. 0.292 0.238

Table 4. Relighting Runtime (fps) of NeRO and our pipeline.

13. Diffuse Synthetic Scene Result

In Tab. 5, we compare the qualitative metrics on TensoIR
dataset [15], which contains diffuse objects. Since shadows
are not explicitly considered in our pipeline, performance
on more diffuse datasets is comparable to TensoIR but does
not achieve state-of-the-art in every metric. One of the po-
tential solutions to improve the quality is to add an MLP or
a spherical harmonic grid to cache the shadow after stage
one as done in GS-IR [23].

14. Discussions on Glossy Real Dataset

We generate ground truth object masks by projecting the
ground truth mesh to the camera planes. We use the gener-
ated masks to train our model in company with mask loss as
in NeuS[44]. Our model gives sub-optimal performance on
this real dataset because it wrongly estimate near-field indi-
rect illumination. The plate holding the objects is masked
out and the indirect illumination MLP f;,4 could not ex-
plain secondary shading effects. Further, we do not consider
explicitly the reflections of the photographer on the object.
For objects with a large part of the reflection of the photog-
rapher, our method would struggle to estimate the correct
geometry, material, and environment light. We believe the
results can be ameliorated by taking objects’ surroundings
into account and modeling explicitly the reflections of the



Normal Albedo Novel View Synthesis Relighting

Scene Method MAE | PSNRT SSIMT LPIPS|  PSNRT SSIMT LPIPS]|  PSNRT SSIMT LPIPS ]
NeRFactor 9767 25444 0937 0.112 26076 0.881  0.151 23246 0865  0.156
Logo InvRender 9.980 21435 0882  0.160 24391 0883  0.151 20117 0832  0.171
TensoIR 5.980 25240 0900  0.145 34700 0968  0.037 27.596 0922 0.095
Ours 9.247 20457 0.890  0.113 31.657 0995  0.009 25599 0980  0.028
NeRFactor 5579 24654 0950  0.142 24498 0940  0.141 22713 0914 0.159
Hotdog TnvRender 3708 27.028 0950  0.094 31832 0952 0.089 27630 0928  0.089
TensolR 4.050 30370 0947  0.093 36.820 0976  0.045 27927 0933 0.115
Ours 4515 22756 0961  0.075 37866 0997  0.007 26.665 0977  0.038
NeRFactor 3.467 28001 0946  0.096 26479 0947  0.095 26887 0944  0.102
Armadillo InvRender 1.723 35573 0959  0.076 31.116 0968  0.057 27814 0949  0.069
TensoIR 1.950 34360 0989  0.059 39.050 098  0.039 34504 0975  0.045
Ours 3.098 42440 0959  0.032 42290 0999  0.001 32150 0992 0.009
NeRFactor 6.442 22402 0928  0.085 21664 0919  0.095 20684 0907  0.107
Fious TnvRender 4.884 25335 0942 0.072 22131 0934  0.057 20330  0.895  0.073
TensolR 4.420 27130 0964  0.044 29780 0973  0.041 24296 0947  0.068
Ours 6.409 31.889 0909  0.147 27794 0965  0.043 24501 0943 0.077
NeRFactor 6.314 25.125 0940  0.109 24679 0922 0.120 23383 0908  0.131
Ave, InvRender 5.074 27341 0933 0.100 27367 0934  0.089 23973 0901  0.101
TensoIR 4.100 29275 0950  0.085 35088 0976  0.040 28580  0.944  0.081
Ours 5.817 2938 0930  0.091 34902 0989  0.015 27229 0973  0.038
Table 5. Per-scene results on the TensolR synthetic datasets.
photographer.

15. Discussion on Limitations

In Fig. 8, we show an example of our limitations. In this
case, since shadows are not well represented in our model,
it causes ambiguity between the shadow and the geometry,
thus generating some artifacts.

16. Per-Scene Results on the Synthetic Dataset

In Tab. 6, we provide the results for individual synthetic
scenes mentioned in Sec. 4 of the main paper. Our method
outperforms both baselines in all four scenes.

17. More Results

More results including relighting, material, normal recon-
struction, information sharing ablation, and real dataset are
shown in Fig. 8-12.
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Figure 8. An example of our Limitations.
Scene Method Normal Roughness Albedo Novel View Synthesis Relighting
MAE | PSNR T PSNRT SSIMT LPIPS| PSNRT SSIMT LPIPS| PSNRT SSIMT LPIPS]

NDR 5.43 28.32 31.47 0.98 0.02 33.17 0.98 0.02 26.78 0.93 0.03
Teapot NDRMC 4.63 27.69 3055 0.99 0.02 2798 096 0.04 2720 093 0.04
NMF 5.18 26.25 1942 076 0.21 3339 098 0.02 24.41 0.96 0.03
ENVIDR 1.61 - - - - 37.16 098 0.02 2022 097 0.03
GShader 7.24 - - - - 3484 097 0.02 26.41 0.96 0.03
NeRO 1.23 17.50 2942 098 0.02 3599 0.99 0.01 3248 098 0.02
Ours (full model) 0.78 38.86 34.26 0.99 0.01 38.55 0.99 0.01 3255 0.99 0.02
Ours (full model, 5 hrs) 0.76 38.61 34.41 0.99 0.01 39.15 099 0.01 3246 0.99 0.03
NDR 10.44 23.59 2099 091 0.13 2598 090 0.10 2225 0.82 0.15
Coffee NDRMC 8.44 23.60 2243 095 0.08 2393 0.87 0.15 2334 086 0.14
NMF 4.04 23.13 1379 0.80 0.22 2652 091 0.08 2138 0.89 0.10
ENVIDR 7.58 - - - - 2613 0.89 0.13 2472 087 0.12
GShader 7.06 - - - - 2683 091 0.11 2359 0.90 0.10
NeRO 3.13 23.22 19.01 0.92 0.12 27.10 094 0.09 2588 0.92 0.09
Ours (full model) 3.43 29.24 16.91 0.89 0.12 27.04 099 0.02 2503 098 0.03
Ours (full model, 5 hrs) 3.36 29.24 1692 0.89 0.11 2693 0.99 0.02 2549 098 0.03
NDR 5.37 22.02 2019 092 0.11 2973 095 0.04 2246 086 0.09
Car NDRMC 5.12 21.61 2007 092 0.11 2745 093 0.06 2640  0.90 0.06
NMF 2.90 26.09 1436 085 0.13 3131 0.96 0.02 23.31 0.93 0.04
ENVIDR 3.32 - - - - 3155 095 0.05 2643 093 0.06
GShader 5.71 - - - - 31.62 0.95 0.05 25.74 0.93 0.05
NeRO 5.95 23.70 2248 092 0.10 2698 094 0.06 2637 093 0.06
Ours (full model) 2.43 25.65 2514 095 0.16 3206 0.99 0.01 2820  0.99 0.03
Ours (full model, 5 hrs) 2.22 27.74 2539 095 0.04 3265 0.99 0.01 2832 0.99 0.03
NDR 6.05 18.50 1499 087 0.16 2827 093 0.07 1582 071 0.25
Toaster NDRMC 4.47 18.15 1627  0.89 0.12 2529  0.89 0.14 2213 085 0.15
NMF 2.62 14.44 9.59 0.69 0.30 2982 094 0.04 1797 086 0.11
ENVIDR 3.26 - - - - 2864 091 0.10 2250 086 0.12
GShader 4.88 - - - - 2847 092 0.10 2130 088 0.11
NeRO 2.16 14.99 1943 088 0.19 2927 094 0.08 2570 091 0.09
Ours (full model) 2.19 20.48 2096  0.89 0.09 3036 0.99 0.01 2527 098 0.03
Ours (full model, 5 hrs) 2.08 20.48 19.15 090 0.09 30.86  0.99 0.01 2538 0.98 0.03
NDR 2.09 24.83 2407 092 0.09 29.41 0.94 0.08 1798 076 0.20
Helmet NDRMC 1.18 27.95 2370 092 0.09 2677 092 0.12 2668  0.90 0.10
NMF 0.78 20.57 14.03 0.69 0.19 31.54 0.96 0.03 20.88 0.89 0.08
ENVIDR 0.89 - - - - 3402 095 0.06 2475 091 0.07
GShader 6.00 - - - - 2623 091 0.09 2155 088 0.11
NeRO 6.00 21.77 2419 092 0.06 3233 098 0.03 30.14 095 0.06
Ours (full model) 0.52 33.07 3392 097 0.01 3225 0.99 0.01 2943 0.99 0.03
Ours (full model, 5 hrs) 0.48 34.31 3392 098 0.01 3287 0.99 0.01 2943 0.99 0.02

Table 6. Per-scene results on the synthetic datasets.
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Figure 9. Qualitative comparisons on relighted synthetic scenes. From top to bottom: toaster, helmet, car. We can observe that other
methods either have blurry, color-shifted results or aliasing, noisy effect under unseen illumination.
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Figure 10. Qualitative comparisons on material estimation. From top to bottom: toaster, helmet, car. In each figure, we show
albedo on the left and roughness on the right.
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Figure 11. Qualitative comparisons on normal reconstruction. From top to bottom: toaster, coffee, car.
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Figure 12. Ablation studies.We compare our full model with our model without information sharing (physically based rendering only).

bunny coral maneki vase

TOCLD
LV e
Lfyel

Figure 13. Extracted mesh, Novel view synthesis and relighting of the Glossy-Real dataset. Our model is trained for 4 hours with
ground truth object mask. We extract meshes from SDF using marching cubes with a resolution of 512.
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