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Dataset Material Relighting # Envmaps Shiny Object

NeRF Synthetic [29] ✗ ✗ 0 ✗
Shiny Blender [43] ✗ ✗ 0 ✓

NeRO Synthetic [25] ✗ ✓ 3 ✓
NeRFactor Synthetic [54] ✓ ✓ 8 ✗
TensoIR Synthetic [15] ✓ ✓ 8 ✗

Ours ✓ ✓ 9 ✓

Table 3. Comparison of the availability of the datasets. We
show the availability of ground truth material, relighting, number
of environment maps for relighting, and availability glossy object.
Ours is the first dataset with ground truth material and relighting
for shiny objects.

6. Implementation Details
Our code is built on the instant-nsr-pl codebase [12]. We use
a 512-resolution progressive hash grid with 16 levels. The
geometry MLP has 2 layers with 128 neurons. The diffuse,
specular, secondary MLP has 4 layers with 128 neurons.
And the roughness and blending MLP has 2 layers with 128
neurons. The resolution of the environment map is 6×512×
512 × 3. We start from the 4-th level of the hash grid and
increase by 1 level for every 500 iterations. Regarding the
hyperparameters, we use λc = 10, λeik = 0.1, λcurv = 1.
We use Adam optimizer with β1 = 0.9, β1 = 0.999, and
ϵ = 10−12. The first stage of our method is training for
10k iterations and the second stage for 70k iterations. All
experiments are conducted on a single RTX 3090Ti GPU.

7. Shiny Inverse Rendering Synthetic Dataset
We built our own Shiny Inverse Rendering Dataset with an
aligned BRDF model as no dataset with ground truth ma-
terial and relighting results for glossy objects exists. We
provide five scenes including teapot, coffee, muscle car,
toaster, and helmet from the Shiny Blender dataset [43],
with ground truth albedo, roughness, and relighting under
nine different environment maps. Here are the steps to cre-
ate the dataset:
• To align the BRDF during dataset generation and inverse

rendering, we change the shader nodes of the five objects
to the Principled BRDF with default parameters except
for the metallic, roughness, and base color (albedo) in
Blender [1].

• We render the objects under ten different light conditions,
and choose one of them as the training light, and others
for relighting.

• To export accurate ground truth albedo and roughness,
we manually create the blender files using Diffuse BRDF
with the albedo and roughness value in the Principled

BRDF model as the base color and render the diffuse
pass.

In Table 3, we compare our new dataset to existing ones.
To the best of our knowledge, ours is the first glossy dataset
with an aligned BRDF model for forward and inverse ren-
dering with accurate material and relighting ground truth.

8. Discussion on MLP Predictions in Stage 1

Using Eq. 4 and 5 in the main paper, we can divide the per-
sample physically-based rendering equation into the follow-
ing format:

{cd}i = (1−mi)
ai
π

∫
H2

Ldir(xi, ωj)cosθidωj

{cs}i =
∫
H2

D(ρi)F (mi,ai)G

4|d · ni||ωj · ni|
Ldir(xi, ωj)cosθidωj

(16)
Since the geometry is not well reconstructed in the first
stage, the SDF is not converged near the surface. Therefore,
the amount of volume rendering samples is large during the
first stage since it is hard to prune the samples according to
the SDF value. To save computation and to enhance training
stability, we directly use MLPs to predict these two integra-
tion values. A blending weight is predicted to simulate the
effect of metallic parameters. Note that we assume there is
no indirect illumination in this equation.

9. Split-sum Approximation

Given the sample location xi, ray direction d, and the nor-
mal direction ni, we write the rendering equation and the
corresponding Monte Carlo integration:

cpbri (xi,d) =

∫
H2

fr(xi,d, ωj)Li(xi, ωj)(ni · ωj)dωj

≈ 1

Nmc

Nmc∑
j=1

fr(xi,d, ωj)Li(xi, ωj)(ni · ωj)

p(ωj ; d̂i, ρi)

≈(
1

Nmc

Nmc∑
j=1

fr(xi,d, ωj)(ni · ωj)

p(ωj ; d̂i, ρi)
)

· ( 1

Nmc

Nmc∑
j=1

Li(xi, ωj))

(17)
This integration can be approximated by the multiplication
of separate sums. If we write the split-sum Monte Carlo



integration back to the continuous form:

cpbri (xi,d) ≈
∫
H2

fr(xi,d, ωj)(ni · ωj)dωj

·
∫
H2

Li(xi, ωj)p(ωj ; d̂i, ρi)dωj

(18)

The first integration is called as BSDF integral, and the sec-
ond integration is called the light integral. The light integra-
tion is approximated by a multi-level mipmap. Consistent
with [31], we use cube maps (with resolution 6×512×512).
The base level corresponds to the smallest roughness value,
and increases among the mip-levels. For each level, the
mipmap is computed by average pooling the base level fol-
lowed by a convolution using the GGX distribution with the
corresponding roughness as the kernel. The mipmap is im-
plemented as a differentiable function with respect to d̂i and
roughness ρ:∫

H2

Li(xi, ωj)p(ωj ; d̂i, ρ)dωj ≈ Mipmap(d̂i, ρ) (19)

In our paper, the BRDF is defined as a simplified version of
the Disney BSDF as in Eq. 5 in the main paper. The fresnel
term F is defined as:

F = F0 + (1− F0)(1− ωj · h)5, (20)

where F0 = 0.04∗(1−m)+m∗a is the simplified basic re-
flection ratio, and h is the half-way vector between −d and
ωj . Since we have both the diffuse and the specular parts in
the BSDF, we can separate the rendering equation into the
diffuse and specular parts. For the diffuse part, we directly
extract the albedo outside of the integrand, and use the nor-
mal direction and largest roughness to query the mipmap:

ldi = Mipmap(ni, ρmax)

{cpbrd }i = ((1−mi)ai

∫
H2

(ni · ωj)

π
dωj)l

d
i

= (1−mi) ∗ ai ∗ ldi

(21)

For the specular part of BSDF integration, if we substitute
the Fresnel in the BSDF:∫

H2

fr(xi,d, ωj)(ni · ωj)dωj

=F0

∫
H2

fr(xi,d, ωj)

F
(1− (1− ωj · h)5)(ni · ωj)dωj

+

∫
H2

fr(xi,d, ωj)

F
(1− ωj · h)5(ni · ωj)dωj

(22)

This leaves two integrations only dependent on ρ and ni ·ωj ,
then we can precompute the result and store it to a 2D LUT:∫

H2

fr(xi,d, ωj)(ni · ωj)dωj

= F0 ∗ F1(ρ,ni · d),+F2(ρ,ni · d),
lsi = Mipmap(d̂i, ρ),

{cpbrs }i = (F0 ∗ F1 + F2) ∗ lsi .

(23)

10. Discussion on Indirect Illumination
To model the indirect illumination, we first assume that the
indirect effect is only apparent for the specular part of the
radiance. Therefore, we only modify the specular part {cs}i
to {c′s}i in Eq. (16):

fs
r (xi,d, ωj) =

DFG

4|d · ni||ωj · ni|

{c′s}i =
∫
H2

fs
r (xi,d, ωj)(ni · ωj)

((1−O)Ld(xi, ωj) +OLind(xi, ωj))dωj

=(1−O)

∫
H2

fs
r (xi,d, ωj)(ni · ωj)Ld(xi, ωj)dωj

+O

∫
H2

fs
r (xi,d, ωj)(ni · ωj)Lind(xi, ωj)dωj

=(1−O){cs}i

+O

∫
H2

fs
r (xi,d, ωj)(ni · ωj)Lind(xi, ωj)dωj

(24)
After applying volume rendering to the equation above, we
have:

Cind =

N∑
i=1

wi

∫
H2

fs
r (xi,d, ωj)(ni · ωj)Lind(xi, ωj)dωj

C′
s =

N∑
i=1

wi{c′s}i = (1−O)
N∑
i=1

wi{cs}i +OCind

= (1−O)Cs +OCind

(25)
Compared with NeRO [25], we use an MLP find to directly
predict Cind instead of predicting the indirect illumination
for each volume sample. More specifically, we use the nor-
mal vector N, secondary ray direction d̂, and the geometry
feature βx̂ at the expected intersection point. As shown in
Fig. 7, our algorithm only has one secondary color MLP
query. Assume there are N samples on the primary ray and
M samples on the secondary ray (M << N ). For the in-
direct sampling in NeRO [25], since there is one MLP for
opacity prediction and one MLP for indirect color for each
sample on the primary ray, the total number of secondary
MLP queries is 2N . For TensoIR [15] and ENVIDR [22],
since they compute the surface intersection first and then



Figure 7. Indirect sampling method. Each blue arrow represents an MLP query using the secondary ray direction. Each black arrow
represents a ray marching with multiple geometry MLP queries. Each blue dot represents color MLP queries for each sample. (1) For
each sample along the primary ray, NeRO [25] queries an opacity MLP and an indirect color MLP to estimate the per-sample indirect
illumination. (2) TensoIR [15] and ENVIDR [22] compute the expected surface intersection x̂ and apply a secondary ray marching. This
is not efficient when there are multiple color MLPs in our case. (3) Our indirect sampling only queries the geometry MLP to compute the
opacity and uses one color MLP only once for the expected surface intersection.

use secondary ray marching to compute the radiance field,
the number of MLP queries is 4M (in our case there is one
density MLP and three color MLPs). In our algorithm, we
only query the geometry MLP for indirect illumination, and
query indirect color once for the expected intersection x̂,
thus the total query number is M + 1.

11. Derivation of Second Split-sum
We define the illumination as:

Li =1[ρ > ρt]Ldir

+ 1[ρ ≤ ρt]((1−O) ∗ Ldir +O ∗ Lind),
(26)

which means we only consider the indirect light when the
roughness is smaller than the threshold. We plug this equa-
tion into the light integral in Eq. (18), and the relighting
light integral for the specular part becomes:

lsrelight =(1[ρ > ρt] + 1[ρ ≤ ρt] ∗ (1−O)) ∗ ls

+ 1[ρ ≤ ρt] ∗O ∗
∫
H2

Lind(x̂, ωj)p(ωj ; d̂, ρ)dωj

(27)
The light integral ls in the equation can be computed by vol-
ume rendering the per-sample light integral lsi . For the sec-
ond part, with a small enough ρt, the GGX distribution can
be approximated as a delta function with an infinity value at
the reflected direction d̂. So we simplify the equation above
into the following form:

lsrelight ≈(1[ρ > ρt] + 1[ρ ≤ ρt] ∗ (1−O)) ∗ ls

+ 1[ρ ≤ ρt] ∗O ∗ Lind(xi, d̂).
(28)

12. Relighting Runtime Cost
In Tab. 4, we show the per-scene relighting runtime (fps)
of NeRO (Blender) [25] and our pipeline. We can find that
both methods cannot achieve interactive frame rates, while
our method achieves higher quality with comparable run-
time.

NeRO Ours∗

teapot 0.481 0.461
musclecar 0.292 0.253

coffee 0.203 0.193
toaster 0.199 0.133
helmet 0.282 0.148
Avg. 0.292 0.238

Table 4. Relighting Runtime (fps) of NeRO and our pipeline.

13. Diffuse Synthetic Scene Result

In Tab. 5, we compare the qualitative metrics on TensoIR
dataset [15], which contains diffuse objects. Since shadows
are not explicitly considered in our pipeline, performance
on more diffuse datasets is comparable to TensoIR but does
not achieve state-of-the-art in every metric. One of the po-
tential solutions to improve the quality is to add an MLP or
a spherical harmonic grid to cache the shadow after stage
one as done in GS-IR [23].

14. Discussions on Glossy Real Dataset

We generate ground truth object masks by projecting the
ground truth mesh to the camera planes. We use the gener-
ated masks to train our model in company with mask loss as
in NeuS[44]. Our model gives sub-optimal performance on
this real dataset because it wrongly estimate near-field indi-
rect illumination. The plate holding the objects is masked
out and the indirect illumination MLP find could not ex-
plain secondary shading effects. Further, we do not consider
explicitly the reflections of the photographer on the object.
For objects with a large part of the reflection of the photog-
rapher, our method would struggle to estimate the correct
geometry, material, and environment light. We believe the
results can be ameliorated by taking objects’ surroundings
into account and modeling explicitly the reflections of the



Scene Method Normal Albedo Novel View Synthesis Relighting
MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Lego

NeRFactor 9.767 25.444 0.937 0.112 26.076 0.881 0.151 23.246 0.865 0.156
InvRender 9.980 21.435 0.882 0.160 24.391 0.883 0.151 20.117 0.832 0.171
TensoIR 5.980 25.240 0.900 0.145 34.700 0.968 0.037 27.596 0.922 0.095

Ours 9.247 20.457 0.890 0.113 31.657 0.995 0.009 25.599 0.980 0.028

Hotdog

NeRFactor 5.579 24.654 0.950 0.142 24.498 0.940 0.141 22.713 0.914 0.159
InvRender 3.708 27.028 0.950 0.094 31.832 0.952 0.089 27.630 0.928 0.089
TensoIR 4.050 30.370 0.947 0.093 36.820 0.976 0.045 27.927 0.933 0.115

Ours 4.515 22.756 0.961 0.075 37.866 0.997 0.007 26.665 0.977 0.038

Armadillo

NeRFactor 3.467 28.001 0.946 0.096 26.479 0.947 0.095 26.887 0.944 0.102
InvRender 1.723 35.573 0.959 0.076 31.116 0.968 0.057 27.814 0.949 0.069
TensoIR 1.950 34.360 0.989 0.059 39.050 0.986 0.039 34.504 0.975 0.045

Ours 3.098 42.440 0.959 0.032 42.290 0.999 0.001 32.150 0.992 0.009

Ficus

NeRFactor 6.442 22.402 0.928 0.085 21.664 0.919 0.095 20.684 0.907 0.107
InvRender 4.884 25.335 0.942 0.072 22.131 0.934 0.057 20.330 0.895 0.073
TensoIR 4.420 27.130 0.964 0.044 29.780 0.973 0.041 24.296 0.947 0.068

Ours 6.409 31.889 0.909 0.147 27.794 0.965 0.043 24.501 0.943 0.077

Avg.

NeRFactor 6.314 25.125 0.940 0.109 24.679 0.922 0.120 23.383 0.908 0.131
InvRender 5.074 27.341 0.933 0.100 27.367 0.934 0.089 23.973 0.901 0.101
TensoIR 4.100 29.275 0.950 0.085 35.088 0.976 0.040 28.580 0.944 0.081

Ours 5.817 29.386 0.930 0.091 34.902 0.989 0.015 27.229 0.973 0.038

Table 5. Per-scene results on the TensoIR synthetic datasets.

photographer.

15. Discussion on Limitations
In Fig. 8, we show an example of our limitations. In this
case, since shadows are not well represented in our model,
it causes ambiguity between the shadow and the geometry,
thus generating some artifacts.

16. Per-Scene Results on the Synthetic Dataset
In Tab. 6, we provide the results for individual synthetic
scenes mentioned in Sec. 4 of the main paper. Our method
outperforms both baselines in all four scenes.

17. More Results
More results including relighting, material, normal recon-
struction, information sharing ablation, and real dataset are
shown in Fig. 8-12.



Figure 8. An example of our Limitations.

Scene Method Normal Roughness Albedo Novel View Synthesis Relighting
MAE ↓ PSNR ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Teapot

NDR 5.43 28.32 31.47 0.98 0.02 33.17 0.98 0.02 26.78 0.93 0.03
NDRMC 4.63 27.69 30.55 0.99 0.02 27.98 0.96 0.04 27.20 0.93 0.04

NMF 5.18 26.25 19.42 0.76 0.21 33.39 0.98 0.02 24.41 0.96 0.03
ENVIDR 1.61 - - - - 37.16 0.98 0.02 29.22 0.97 0.03
GShader 7.24 - - - - 34.84 0.97 0.02 26.41 0.96 0.03
NeRO 1.23 17.50 29.42 0.98 0.02 35.99 0.99 0.01 32.48 0.98 0.02

Ours (full model) 0.78 38.86 34.26 0.99 0.01 38.55 0.99 0.01 32.55 0.99 0.02
Ours (full model, 5 hrs) 0.76 38.61 34.41 0.99 0.01 39.15 0.99 0.01 32.46 0.99 0.03

Coffee

NDR 10.44 23.59 20.99 0.91 0.13 25.98 0.90 0.10 22.25 0.82 0.15
NDRMC 8.44 23.60 22.43 0.95 0.08 23.93 0.87 0.15 23.34 0.86 0.14

NMF 4.04 23.13 13.79 0.80 0.22 26.52 0.91 0.08 21.38 0.89 0.10
ENVIDR 7.58 - - - - 26.13 0.89 0.13 24.72 0.87 0.12
GShader 7.06 - - - - 26.83 0.91 0.11 23.59 0.90 0.10
NeRO 3.13 23.22 19.01 0.92 0.12 27.10 0.94 0.09 25.88 0.92 0.09

Ours (full model) 3.43 29.24 16.91 0.89 0.12 27.04 0.99 0.02 25.03 0.98 0.03
Ours (full model, 5 hrs) 3.36 29.24 16.92 0.89 0.11 26.93 0.99 0.02 25.49 0.98 0.03

Car

NDR 5.37 22.02 20.19 0.92 0.11 29.73 0.95 0.04 22.46 0.86 0.09
NDRMC 5.12 21.61 20.07 0.92 0.11 27.45 0.93 0.06 26.40 0.90 0.06

NMF 2.90 26.09 14.36 0.85 0.13 31.31 0.96 0.02 23.31 0.93 0.04
ENVIDR 3.32 - - - - 31.55 0.95 0.05 26.43 0.93 0.06
GShader 5.71 - - - - 31.62 0.95 0.05 25.74 0.93 0.05
NeRO 5.95 23.70 22.48 0.92 0.10 26.98 0.94 0.06 26.37 0.93 0.06

Ours (full model) 2.43 25.65 25.14 0.95 0.16 32.06 0.99 0.01 28.20 0.99 0.03
Ours (full model, 5 hrs) 2.22 27.74 25.39 0.95 0.04 32.65 0.99 0.01 28.32 0.99 0.03

Toaster

NDR 6.05 18.50 14.99 0.87 0.16 28.27 0.93 0.07 15.82 0.71 0.25
NDRMC 4.47 18.15 16.27 0.89 0.12 25.29 0.89 0.14 22.13 0.85 0.15

NMF 2.62 14.44 9.59 0.69 0.30 29.82 0.94 0.04 17.97 0.86 0.11
ENVIDR 3.26 - - - - 28.64 0.91 0.10 22.50 0.86 0.12
GShader 4.88 - - - - 28.47 0.92 0.10 21.30 0.88 0.11
NeRO 2.16 14.99 19.43 0.88 0.19 29.27 0.94 0.08 25.70 0.91 0.09

Ours (full model) 2.19 20.48 20.96 0.89 0.09 30.36 0.99 0.01 25.27 0.98 0.03
Ours (full model, 5 hrs) 2.08 20.48 19.15 0.90 0.09 30.86 0.99 0.01 25.38 0.98 0.03

Helmet

NDR 2.09 24.83 24.07 0.92 0.09 29.41 0.94 0.08 17.98 0.76 0.20
NDRMC 1.18 27.95 23.70 0.92 0.09 26.77 0.92 0.12 26.68 0.90 0.10

NMF 0.78 20.57 14.03 0.69 0.19 31.54 0.96 0.03 20.88 0.89 0.08
ENVIDR 0.89 - - - - 34.02 0.95 0.06 24.75 0.91 0.07
GShader 6.00 - - - - 26.23 0.91 0.09 21.55 0.88 0.11
NeRO 6.00 21.77 24.19 0.92 0.06 32.33 0.98 0.03 30.14 0.95 0.06

Ours (full model) 0.52 33.07 33.92 0.97 0.01 32.25 0.99 0.01 29.43 0.99 0.03
Ours (full model, 5 hrs) 0.48 34.31 33.92 0.98 0.01 32.87 0.99 0.01 29.43 0.99 0.02

Table 6. Per-scene results on the synthetic datasets.



GT Ours NDRMC GShader NMF ENVIDR NeRO

Figure 9. Qualitative comparisons on relighted synthetic scenes. From top to bottom: toaster, helmet, car. We can observe that other
methods either have blurry, color-shifted results or aliasing, noisy effect under unseen illumination.

GT Ours NDR NDRMC NMF NeRO

Figure 10. Qualitative comparisons on material estimation. From top to bottom: toaster, helmet, car. In each figure, we show
albedo on the left and roughness on the right.



GT Ours NDRMC GShader NMF ENVIDR NeRO

Figure 11. Qualitative comparisons on normal reconstruction. From top to bottom: toaster, coffee, car.

gt ours (15k) w.o. info (5k) w.o. info (15k)

Figure 12. Ablation studies.We compare our full model with our model without information sharing (physically based rendering only).

bear bunny coral maneki vase

Figure 13. Extracted mesh, Novel view synthesis and relighting of the Glossy-Real dataset. Our model is trained for 4 hours with
ground truth object mask. We extract meshes from SDF using marching cubes with a resolution of 512.
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