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Abstract

Recent advances in multimodal Large Language Models (LLMs) have shown great success
in understanding multimodal contents. For video understanding tasks, training-based video
LLMs are difficult to build due to the scarcity of high-quality, curated video-text paired
data. In contrast, paired image-text data are much easier to obtain, and there is substan-
tial similarity between images and videos. Consequently, extending image LLMs for video
understanding tasks presents an appealing alternative. Developing effective strategies for
compressing visual tokens from multiple frames is a promising way to leverage the powerful
pre-trained image LLM. In this work, we explore the limitations of the existing compression
strategies for building a training-free video LLM. The findings lead to our method TS-
LLaVA, which constructs visual tokens through a Thumbnail-and-Sampling strategy. Given
a video, we select few equidistant frames from all input frames to construct a Thumbnail
image as a detailed visual cue, complemented by Sampled visual tokens from all input
frames. Our method establishes the new state-of-the-art performance among training-free
video LLMs on various benchmarks. Notably, our 34B model outperforms GPT-4V on
the MVBench benchmark, and achieves performance comparable to the 72B training-based
video LLM, Video-LLaMA2, on the challenging MLVU benchmark. We will release code
upon acceptance.

1 Introduction

Thanks to the breakthroughs in foundation models like CLIP (Radford et all |2021)) and Large Language
Models (LLMs) (Touvron et al., [2023; [Bai et al., [2023aj [Jiang et al., |2024; |Chiang et al.| |2023), image
LLMs (Zhang et al., |2024c; Bai et al.l 2023b; [Liu et al, 2023} 2024a)) have shown great success in compre-
hending visual contents and generating textual responses based on user prompts. Image LLMs are often
trained with paired image-text data to bridge the representation spaces between the vision encoder and
the LLM. Although trained in a similar way, video LLMs (Maaz et all [2024} [Lin et al., [2023; Xu et al.
2024a; |Li et al., [2024c|) require far more resources and a larger volume of paired video-text data due to the
increased complexity of video content. Unfortunately, curated large-scale video-text data is hard to obtain.
Since images are easier to acquire and share similar features with videos, extending image LLMs for video
understanding presents a promising approach.

We illustrate the training-free video LLM in Figure [Il To bypass the high computational cost in training-
based video LLM, several methods have been proposed that use pre-trained image LLMs to build training-free
video LLMs (Wul 2024; [Xu et all |2024b} Kim et al., |2024)). Given an image LLM, the vision tower directly
encodes the spatial information of each frame, while the autoregressive nature of the LLM captures the
temporal information within the input sequence to some extent. However, the number of visual tokens{ﬂ
generated from videos can be much larger than those from images, which is problematic given the limited
context length of the pre-trained image LLMs. Consequently, a key design aspect of training-free video LLM
is the visual token compression strategy, which enables image LLMs to efficiently handle video input.

li.e. elements of the encoded visual features, used as input for the LLM.
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Figure 1: Illustration of training-free video LLM. Vision Tower: vision encoder and projection module in
image LLM.

To better understand the working mechanisms of training-free video LLM, we begin by evaluating the
commonly used compression strategies. Insights gained from examining these visual token compression
strategies led to the development of our method, TS-LLaVA. TS-LLaVA adopts a hybrid manner to compress
visual tokens. Given N input frames, we select Ny (Np < N) frames to construct a Thumbnail image that
serves as a summary of the video. We show that using this thumbnail image alone enables the model to
comprehend certain aspects of the video contents, though it still leaves some nuances unaddressed. To address
this, we complement the thumbnail image by incorporating Sampled visual tokens from all frames, which
leads to a deeper and more complete grasp of the video content. Together, the Thumbnail-and-Sampling
strategy constitutes the core of our TS-LLaVA.

We evaluate our method on various video understanding benchmarks. Experimental results show that
TS-LLaVA outperforms the previous state-of-the-art (SOTA) training-free video LLMs by a large margin.
Notably, our 34B model surpasses GPT-4V (OpenAl, 2023a) on the MVBench benchmark (Li et al., [2024b)),
and achieves performance comparable to the 72B training-based video LLM Video-LLaMA2 (Cheng et al.,
2024)) on the challenging MLVU benchmark (Zhou et al.l [2024). We conduct comprehensive ablation studies
to assess the design choices of TS-LLaVA. Together with the study on compression strategies, we hope to
provide insights for future works. In summary, our main contributions include:

e We conduct a thorough evaluation of various compression strategies for training-free video LLMs,
offering insights to guide future research in developing video LLMs.

e Based on our findings, we propose the Thumbnail-and-Sampling compression strategy, which shows
clear advantages over existing approaches.

e Leveraging the Thumbnail-and-Sampling strategy, we develop TS-LLaVA, establishing a new SOTA

among training-free video LLMs while maintaining high token efficiency.

2 Related Works

Image LLMs aim to bridge the representation space between the vision encoder (Radford et al.,2021) and
LLM (Touvron et all, 2023; Bai et al., [2023a; |Jiang et al.l [2024} |Chiang et al.l 2023)) using image-text data.
The BLIP family, including BLIP-2 (Li et al.,[2023b]) and InstructBLIP (Dai et al.,|2023)), employs a Querying



Under review as submission to TMLR

Transformer (QFormer) to connect vision and language modalities via learnable queries in cross-attention
modules. QFormer is also adopted by follow-up works, such as Qwen-VL (Bai et al., [2023b) and mPLUG-
Owl (Ye et al., [2023). Qwen-VL incorporates interleaved image-text data in a three-stage training pipeline,
while mPLUG-Owl adopts a modularized learning approach. The LLaVA family, in contrast, uses an MLP
for connecting the vision encoder and LLM. LLaVA (Liu et al. [2023)) leverages GPT-4 (OpenAl, 2023b)
generated visual instruction data for fine-tuning. Subsequent versions, LLaVA-v1.5 (Liu et al., |2024a) and
LLaVA-v1.6(NeXT) (Liu et al. 2024b|) further improve LLaVA’s performance through better data, higher
resolution and stronger LLM. As a concurrent work, MiniGPT-4 (Zhu et all 2023 aligns a frozen LLM
with frozen ViT (Dosovitskiy et al., [2021)) and QFormer using a trainable linear layer to enable multimodal
instruction following.

Training-based video LLMs are further trained on massive video data to endow image LLMs or LLMs
with video understanding capabilities. Video-ChatGPT (Maaz et al., [2024) uses LLaVA as its backbone,
applying separate temporal and spatial pooling to visual features. The model further utilizes 100k video
instruction tuning data. VideoChat (Li et al., |2024al) leverages QFormer for video token compression, and
VideoChat2 (Li et al., 2024b)) refines this approach with improved vision-language alignment and instruction
tuning. It also introduces the multitask video understanding benchmark, MVBench. Video-LLaVA (Lin
et al., [2023) learns a shared projector for image and video encoders. Video-LLaMA (Zhang et al., 2023)
and Video-LLaMA2 (Cheng et al., [2024) incorporate video, audio and language modalities to support tasks
oriented toward video and audio. LLaVA-NeXT-Video (Zhang et al) 2024d)) fine-tunes LLaVA-NeXT on
video data, with a variant that applies DPO (Rafailov et al.| |2023|) for improved performance. LITA (Huang
et al.l |2024)) employs a slow-fast design (Feichtenhofer et al., |2019; Xiao et al., |2020) to capture spatial and
temporal information more effectively.

Training-free video LLMs extend image LLMs for video understanding without requiring additional fine-
tuning on video data. As a pioneering approach, IG-VLM (Kim et al.| 2024) constructs a grid-view image
from video frames, which is then fed directly into a frozen image LLM with a specially designed prompt.
While promising, the image grid approach has limitations, such as reduced resolution and the limited number
of frames it can include, which we further discuss in the next section. FreeVA (Wu, [2024]) explores various
temporal aggregation methods, but similarly uses a limited number of frames. The current state-of-the-
art SF-LLaVA (Xu et al., |2024b) adopts the slow-fast design, which is proven to be effective in action
recognition (Feichtenhofer et al., |2019; Xiao et al., [2020), and in LITA, as mentioned earlier. SF-LLaVA
designs a slow pathway compressing fewer frames, and a fast pathway heavily compressing more frames.
While both SF-LLaVA and our method use a two-stream design, our Thumbnail-and-Sampling strategy
leads to significantly better performance on various video understanding benchmarks, while maintaining a
better token efficiency. We extend the discussion in Section [4

3 Method

3.1 Comparing Different Compression Strategies

To equip the baseline image LLM with the video understanding abilities, various visual token compression
strategies are applied. They allow incorporating multiple frames from the videos. Including commonly used
methods, we evaluate five types of compression strategies as follows:

o Concat: Directly concatenating frames (no compression).

e Pooling: Applying spatial average pooling to visual tokensﬂ

e Grid: Creating a single grid-view image composed by Np frames to represent a video.

e Grids: For N = k x Np frames, generating k grid-view images, each composed of Np frames.

e Sampling: Applying uniform sampling to visual tokens.

2Different pooling operations are compared in the Appendix.



Under review as submission to TMLR

N

ST : _1

: Sampling
= ‘B}H}Eii i — D]]:I:‘j
L -
0 o

I
_____________ ! RS

Figure 2: Visual token compression strategies illustrated. Pooling and Sampling operate on encoded tokens,
Grid operates on RGB images. We omit the encoding procedure for simplicity. We extend Grid to Grids by
composing multiple grid view images.

Specifically, Concat is one of the core ideas of the training-free video LLM FreeVA . Pooling is a
widely used token compression method for video LLMs (Li et al., [2024c} [Cheng et al., [2024;
2024; Maaz et al.,|2024; |Xu et al., 2024a; |Zhang et al., |2024Db), including training-free methods
et al.,|2024b)). Grid, as proposed by IG-VLM (Kim et al.,|2024), aims to transform video frames into a grid
image for better interaction with image LLMs. We extend this to Grids by composing multiple grid-view
images. Finally, we also evaluate Sampling as a less explored compression strategy for video LLMs. Figure[2]
illustrates the key components of these strategies.

We evaluate different visual token compression strategies on the Multiple Choice VideoQA task. Unlike Open-
Ended VideoQA, the evaluation of Multiple Choice VideoQA does not require an additional language model.
We adopt Video-MME for evaluation, as it categorizes videos by duration (short, medium,
and long) as well as by task type, providing a more comprehensive assessment of each compression strategy’s
performance. We use LLaVA-v1.6-7B (Liu et al., |2024b) (Vicuna-v1.5 version) as the backbone image LLM,
with a context length of 4096 tokens. Following standard protocol, input frames are uniformly sampled from
each video. To ensure fair comparison, we set the number of visual tokens to 2304 after compression (except
for "Grid", where only one grid-view image is used, totaling 576 tokens). The compression rate, calculated
as the ratio of visual tokens before to after compression, is set to 4.

We present the results in Table [I} The

simplest approach to adapting an image Taple 1: Comparison between different compression strategies
LLM for video understanding is to con- op Video-MME dataset: Results obtained using LLaVA-v1.6-7B.

catenate frames (Concat). While Con- "vis. Tokens": Visual Tokens; "Comp.": Compression.
cat avoids compressing visual tokens, it

is limited by the number of frames it Compre. #. of #.of Vis.  Comp. Video-MME
can process. Concat is considered as the Strategy  Frames (N) Tokens Rate  Short Medium Long Overall
baseline method, which shows how pow- __Concat 4 2304 492 410 369 424
erful is the image LLM for video under-  F°0ling 16 2304 4 496 426 364 429
. . . . Grid 4 576 4 47.0 39.8 36.2 41.0
standing tasks without any modification. Grids 16 2304 4 52.2 420  37.6 439
Sampling 16 2304 4 52.0 43.0 37.3 44.1

Surprisingly, despite being widely used,
Pooling does not demonstrate superior

(a) Overall performance (Accuracy)

performance Compared to other meth- Compre. #. of #.of Vis.  Comp. Video-MME Reasoning Tasks
ods. With 16 frames’ Poolzng Only Strategy ~ Frames (N)  Tokens Rate  Temporal Spatial Action Object
slightly outperforms the baseline Concat __Concat 4 204 328 625 372 405
: Pooling 16 2304 4 31.1 62.5 37.2 39.6
(4 frames) in overa%l.a'ccuracy, but shows i . e, . a1 607 w61 s
worse reasoning abilities than Concat. Grids 16 2304 4 34.5 67.9 379 40.7
Sampling 16 2304 4 33.3 66.1 38.9 40.5

Composing grid-view images (Grid,
Grids) yields promising results.  Grid
can be seen as using a thumbnail image
to represent the video. Even with only
1/4 of the tokens used by other methods, Grid achieves satisfactory performance, allowing for reasonable
video comprehension. However, due to its limited number of frames and visual tokens, Grid is ultimately
outperformed by other compression strategies. By using 16 frames to form 4 grid-view images (Grids), we
significantly improve the performance of the baseline LLaVA-v1.6 (Concat) while maintaining the same

(b) Performance (Accuracy) on reasoning tasks
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Figure 3: Illustration of our TS-LLaVA. The vision tower includes vision encoder and projection module
in image LLM. The dashed lines and solid lines trace the procedures for constructing the thumbnail image
tokens and sampled image tokens, respectively. V denotes the number of visual tokens from the vision tower,
and M is the pre-defined number of visual tokens. We omit text input to LLM for simplicity.

visual token counts. Surprisingly, as a less commonly used compression strategy in video LLM, Sampling
leads to the best overall performance comparing to other methods.

Moreover, as shown in Table composing multiple grid-view images ( Grids) and uniformly sampling visual
tokens (Sampling) shine on different types of tasks. They reach similar performance for object reasoning
tasks. While Grids performs better on temporal and spatial reasoning tasks, but it falls short on action
reasoning tasks. This outcome aligns with the characteristics of these methods. Directly sampling visual
tokens may lead to missing details in some frames, while preserving them in others, potentially disrupting
the temporal or spatial reasoning process. In contrast, composing grid-view images results in low-resolution
frames, which could harm the model’s ability to reason about actions effectively.

We summarize our findings as:

o Despite its popularity, Pooling does not yield satisfactory results for training-free video LLMs.

e Grids and Sampling show promising results, though each has certain limitations.

3.2 TS-LLaVA

In this section, we introduce TS-LLaVA and its core idea, the Thumbnail-and-Sampling strategy.

The experiment in Section [3.I] shows that both Grids and Sampling offer superior video understanding
capabilities compared to other strategies. However, due to their respective designs, Grids is limited to
low-resolution frames; while Sampling risks losing details from unsampled tokens.

How to overcome the shortcomings of these two compression strategies? Recall that Grid, a simplified version
of Grids, performs well on reasoning tasks but is constrained by the limited number of frames and visual
tokens it can process. To leverage the strengths of both approaches, we propose an intuitive method to
combine their benefits, as illustrated in Figure 3] We select few equidistant frames from all input frames to
create a grid-view image (Grid), which serves as the thumbnail image for the video. The missing information
from this thumbnail is then complemented by sampling visual tokens from all input frames (Sampling) at
the original resolution. This approach creates a more versatile compression strategy, effectively combining
the strengths of both Grids and Sampling.

Specifically, given an input video, we first uniformly sample N frames from the video. These frames are
further used for video understanding with a given image LLM.

To construct Thumbnail image tokens, we further select Ny equidistant frames from the initially
obtained N frames, where Ny < N and Ny = 0 (mod 2). We create the thumbnail image by arranging
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these frames into a single grid-view image, Iy, that accommodates all selected N frames. Iy is then
processed by the vision encoder and projection module to generate thumbnail image tokens Fr € RY, where
V' denotes the number of visual tokens from the vision tower.

To construct Sampled image tokens, all N frames are used. We first extract visual features frame by
frame, resulting in features ' € RV*V. Given a pre-defined maximum number of visual tokens M, we apply:

F e RVxV Zemple, po c RM-V (1)

where Sample denotes uniform sampling, and V' < M < context length of LLM.

Finally, we obtain the visual tokens by concatenating Fs and Fr as [Fs, Fr], which is further passed to LLM
to interact with encoded textual inputs for video understanding.

3.3 Empirical Validation

To demonstrate the advantages of our Thumbnail-and-Sampling strategy, we conduct experiments on Video-
MME under the same setting as in Section From the 16 input frames, we select 4 (f) or 6 (I) equidistant
frames to compose the thumbnail image, resulting in 576 encoded visual tokens. All 16 input frames are
encoded to extract the sampled visual tokens. We use 2304 visual tokens in total.

The results are presented in Table

where our method achieves the l?est over-  Table 2: Comparison between different compression strate-
all per.formance. Qur compression strat-  ojes on Video-MME dataset using LLaVA-v1.6-7B. "T-and-S":
egy brings notable improvements on both Thumbnail-and-Sampling; "Vis. Tokens": Visual Tokens; t/1:

short and long videos, while maintain- yging grid view (thumbnail) image composed of 4 or 6 frames.
ing the strong performance of Sampling

or Grid/Grids on medium-length videos. — Compre. #. of #.0of Vis.  Comp. Video-MME
Table EH further shows that our com- Strategy ~ Frames (V)  Tokens Rate  Short Medium Long Overall
pression strategy effectively leverages the Grid 4 576 4 47.0 39.8 362 410
: . ] 52.2 420 376 439
strengths of Sampling and Grid. Com- Grids 16 2304 4 °
g Sampling G Cor Sampling 16 2304 4 520 43.0 373 441
pared to Grids, Sampling lags on spatial - 77,057~~~ 36 2304 4777 B40 T 41D T 384 448
reasoning, while it excels on action rea-  T-and-Si 16 2304 4 52.9 42.9 38.2 447
soning. Our strategy improves the per- (a) Overall performance (Accuracy)
formance on these two tasks by a large
PSS . . . Compre. #. of #.of Vis.  Comp. Video-MME Reasoning Tasks
margln,}llndlcciatmg that ?ué St};ateiy;nte Strategy =~ Frames (N)  Tokens Rate  Temporal Spatial Action Object
grates the advantages ol Grid and Sam- Grid 1 576 1 31.1 607 361 385
pling. Grids 16 2304 4 34.5 67.9 37.2 40.7
Sampling 16 2304 4 33.3 66.1 389 405
Moreover, although the overall compres- ~Tond 8t =~ "16 5804 "7 YT 33.0 714 404 416
sion rate remains the same, our method _7-and-5% 16 2304 4 345 696 411 394
uses fewer sampled tokens compared to (b) Performance (Accuracy) on reasoning tasks

Sampling under the same setting (1728

vs 2304 tokens). Replacing 576 sampled

tokens with visual tokens from the thumbnail image clearly improves the accuracy of downstream tasks. The
merits of our method are further discussed in the next section.

4 Experiments

4.1 Experimental Setups

Multiple Choice VideoQA Following Kim et al.| (2024); Xu et al. (2024b), we evaluate our method on
three Multiple Choice VideoQA benchmarks, including NExT-QA (Xiao et al.,[2021)), EgoSchema (Mangalam
et al., [2023)), and IntentQA (Li et al., [2023a)). Following Kim et al.| (2024)), apart from the overall accuracy
on each dataset, we report accuracies on Casual, Temporal and Descriptive tasks from NExT-QA dataset.

Multitask Benchmarks We also evaluate our method on two multitask video understanding benchmarks.
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MVBench (Li et all |2024b) includes 20 sub-tasks, spanning 9 types of reasoning abilities in video under-
standing. For the classified categories included in the benchmark, please refer to the Appendix. The task
types can be seen in Table

MLVU (Zhou et al, 2024) is a multitask long video understanding (LVU) benchmark, which evaluates 3
types of capabilities of Video LLM. We conduct experiments on multiple choice questions, covering Holistic
LVU, Single-Detail LVU and Multi-Detail LVU. For task types, please refer to Table[5] We report the results
from the official evaluation server.

We use VideoMME (Fu et al., [2024) to evaluate the effectiveness of our compression strategy (Section .
This benchmark categorizes videos into three duration-based types: short, medium, and long. We report
results for our full model in this section.

LongVideoBench (Wu et al., 2024} focuses on long video understanding capabilities. It contains 3,763 videos
with 6,678 human-annotated questions across 17 categories. The average duration per video is 473 seconds.
We report results on its validation set.

Notes on Open-Ended VideoQA We also evaluate our method on Open-Ended VideoQA benchmarks
and video-based Text Generation tasks. For Open-Ended VideoQA, we adopt MSVD-QA (Chen & Dolan)
2011), MSRVTT-QA (Xu et al.l|2016), TGIF-QA (Li et al., 2016|) and ActivityNet-QA (Yu et al.,|2019). For
Text Generation, we use VCGBench (Maaz et all |2024). However, the GPT-assisted evaluation for these
tasks is not as reliable as the evaluation protocol for Multiple Choice VideoQA. Although we reach the SOTA
level performance on these benchmarks, we put the results in the Appendix. We urge for the developing of
a better evaluation protocol on these benchmarks. For more discussion, please refer to Section [B.2}

Implementation Details Following Kim et al.| (2024)); Xu et al.| (2024b]), we use LLaVA-v1.6 (Liu et al.,
2024b)) (7B and 34B) as our backbone image LLM. The 7B model adopts Vicuna-v1.5 (Chiang et al[2023) as
LLM, and 34B model uses Nous-Hermes-2-Yi-34B (NousResearch, 2023|) as LLM. We conduct experiments
on NVIDIA A100 80G GPUs. Following Xu et al.| (2024b)), we resize the input frames to 336x336. We use
maximum 50 uniformly sampled frames per video, among which we select 6 equidistant frames to compose
the thumbnail image. The encoded thumbnail image corresponds to 576 visual tokens. Then for the 50 input
frames, we uniformly sample 2880 tokens from 50x576=28800 tokens. Together, we use 576+2880=3456
visual tokens, which is slightly lower than 3680 tokens used by SF-LLaVA (Xu et al., [2024b)).

4.2 Main Results

4.2.1 Multiple Choice VideoQA

We first report the overall accuracy on Multiple Choice VideoQA tasks in Table 3l Among the training-free
methods built on top of an open-source LLM, both our 7B and 34B models achieve SOTA performance
across all three benchmarks. Notably, on the challenging EgoSchema dataset, which emphasizes long-form
temporal reasoning in video LLMs, T'S-LLaVA surpasses the previous SOTA SF-LLaVA by 3.0 and 2.0 per-
centage points for the 7B and 34B configurations, respectively. Furthermore, SF-LLaVA fails to outperform
VideoTree in any of the three benchmarks, while our TS-LLaVA outperforms VideoTree on NExT-QA and
IntentQA. Unlike VideoTree, which utilizes GPT-4, our model leverages an LLM with only 34B parameters.
This shows that our Thumbnail-and-Sampling strategy effectively organizes visual tokens to enhance image
LLM’s video understanding capabilities.

Following IG-VLM (Kim et al, 2024)), Table 4: Performance (Accuracy) on NExT-QA sub-tasks. We
we also report results on the sub-tasks use the same image LLM backbone (LLaVA-v1.6) as IG-VLM.
of NExT-QA in Table[dl Using only the
grid-view image, IG-VLM performs rea- Method NExT-QA sub-tasks

sonably well on these tasks. However, our Casual Temporal Descriptive Average

K IG-VLM (Kim et al.|[2024) (7B) 63.1 57.3 74.9 63.1
TS-LLaVA shows better understanding TS-LLaVA (Ours, 7B’)( 66.4  62.0 75.8 66.5
of the video contents across all aspects, ~IG-VLM (Kim et al.[[2024) (34B)  72.2 65.7 77.3 70.9
especially in causal and temporal tasks TS-LLaVA (Ours, 34B) 74.6 68.2 81.5 73.6

that require more sophisticated temporal
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Table 3: Overall performance (Accuracy) obtained on Multiple Choice VideoQA. We highlight the top-
performing training-free methods and underline the best-performing video LLMs overall. Methods below
the dashed line (- -) are training-free, while those above it have been trained on extensive video data.

LLM Vision

Method Size Encoder NExT-QA EgoSchema IntentQA
Video-LLaVA (Lin et al.| [2023) 7B ViT-L 60.5 37.0 -
Video-LLaMA2 (Cheng et al.| [2024) B CLIP-L - 51.7 -
MovieChat+ (Song et al.||2024b) 7B CLIP-G 54.8 56.4 -
Vista-LLaMA (Ma et al.|[2024) B CLIP-G 60.7 - -
~ DeepStack-L (Meng et al.[[2024) 7B CLIP-L. ~ 61.0 384 -
M?3 (Cai et al.[|2024) B CLIP-L 63.1 36.8 58.8
IG-VLM (Kim et al.|[2024) B CLIP-L 63.1 35.8 60.3
SF-LLaVA (Xu et al.||2024b) B CLIP-L 64.2 47.2 60.1
TS-LLaVA (Ours) 7B CLIP-L  66.5 50.2 61.7

(a) All models use 7B or comparable LLMs.

LLM Vision

Method Size Encoder NExT-QA EgoSchema IntentQA
Video-LLAMA2 (Cheng et al.|[2024) 46.7B CLIP-L - 53.3 -

"~ LLoVi (Zhang et al.[[2024a)  GPT-3.5 Unknown  67.7 503 64.0
VideoAgent (Wang et al.||2024a) GPT-4  Unknown 71.3 60.2 -
VideoTree (Wang et al.|[2024b) GPT-4  Unknown 73.5 66.2 66.9

IG-VLM (Kim et al.||2024) 34B CLIP-L 70.9 53.6 65.3
SF-LLAVA (Xu et al.|[2024b) 34B CLIP-L 72.0 55.8 66.5
TS-LLaVA (Ours) 34B CLIP-L 73.6 57.8 67.9

(b) All models use 34B or stronger LLMs.

reasoning. Complementing thumbnail image tokens with sampled tokens provides the image LLM with more
effective visual cues.

4.2.2 Multitask Benchmarks

To comprehensively evaluate our TS-LLaVA, we conduct experiments on two challenging multitask video
understanding benchmarks: MVBench and MLVU. Aiming at testing the limit of our method, we mainly
compare our T'S-LLaVA to training-based methods on these two challenging benchmarks.

MYVBench We present the results in Table[fal Among the training-free methods, our 34B model outperforms
the proprietary model GPT-4V by a large margin, in both average accuracy and across most sub-tasks.
Even our 7B model surpasses GPT-4V in average accuracy, showing the strong understanding capability and
potential of our method.

When comparing to the training-based video LLM, we focus on PLLaVA (Xu et al., 2024al). PLLaVA uses
the same image LLM backbone as our model but is further trained on video data. In over half of the sub-
tasks, our TS-LLaVA manages to obtain comparable or better performance than PLLaVA. However, there
are still tasks where performance can be improved: (1) On some action centric tasks, TS-LLaVA delivers
satisfactory results (AC and AP). However, it struggles with other action-centric tasks (e.g., AA, AL, and
AS). (2) TS-LLaVA performs less effectively on tasks that require reasoning over moving objects (MA, MC
and MD). (3) TS-LLaVA also shows lower performance on CI and OE tasks.

Given the nature of these task types, TS-LLaVA’s lower performance is unsurprising. All of these tasks
involve data types not seen during image LLM training, such as actions and moving objects. Without

3AA: Action Antonym; AC: Action Count; AL: Action Localization; AP: Action Prediction; AS: Action Sequence; CO:
Character Order; CI: Counterfactual Inference; EN: Egocentric Navigation; ER: Episodic Reasoning; FA: Fine-grained Action;
FP: Fine-grained Pose; MA: Moving Attribute; MC: Moving Count; MD: Moving Direction; OE: Object Existence; OI: Object
Interaction; OS: Object Shuffle; ST: Scene Transition; SC: State Change; UA: Unexpected Action.
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Table 5: Results obtained on Multitask Benchmarks. We highlight the top-performing training-free methods
and underline the best-performing video LLMs overall. Methods below the dashed line (- -) are training-
free, while those above it have been trained on extensive video data. We denote performance better than
or comparable to (") or lags behind (#) the main competing training-based video LLM (on MVBench:
PLLaVA-34B, which uses the same backbones as TS-LLaVA; on MLVU: Video-LLaMA2-72B).

Vision

Method Size Encoder AA AC AL AP AS CcO C1 FP MA MC MD OE o1 0s ST sC UA Avg.
Video-ChatGPT (Maaz et al. | B CLIP-L 2. 5 20.0  26.0 23.5 33.0 35.5 29.0 39.5 25.5 23.0 54.0 28.0 40.0 31.0 48.5 26.5 32.7
Video-LLaMA | B CLIP-G 22.5  25.5 27.5 40.0 37.0 32.5 32.5 22.5 22,5 480 40.5 38.0 43.0 45.5 39.0 34.1

VideoChat B CLIP-G 27.0  26.5 33.5 41.0 36.0 26.5 425 20.5 25.5 53.0 40.5 30.0 48.5 46.0 40.5 35.5
VideoChat2 7l UMT-L 23.0 475 66.0 36.5 65.5 49.0 58.5 42.0 23.0 58.0 715 42,5 88.5 44.0 60.0 51.1
VideoChat2 B UMT-L 44.0  58.0 75.5 47.0 725 66.5  87.5 64.5 475 875 745 45.0 82.5 51.0 60.5 60.4

ST-LLM ( B ViT-G 314 X 66.0 46.5 58.5 44.5 78.5 56.5 42.5 80.5 73.5 38.5 ; 43.1 58.5 54.9

PLLaVA B CLIP-L 58.0 31.0 42.0 52.0 23.5 56.0 61.0 36.0 61.0 46.6

___ PLLaVA QRu et al|202da]* ___ 4B CLIP-L__8 _ __590 395 635 47.0 500 700 430 375 685 67.5 365 9LO > _ 790 581
- GPT4  Unknown 52.0 11.0 47.5 22.5 12.0 12.0 18.5 59.0 29.5 3.5 3.5 43.5
TS-LLaVA (Ours) B CLIP-L 53.0 54.0 53.0 32.0 38.0 49.0  30.0 23.5 58.5 59.5 32.0 X 58.0 45.5
TS-LLaVA (Ours) 34B CLIP-L 46.5 390 475 61.0 66.5 39.0 475 51.5 30.0 24.0 525 655 37.5 89.5 455 80.5 52.6
(a) MVBench results®. 1: Vicuna as LLM; i: Mistral as LLM. The other 7B/34B models use Vicuna as LLM. *:
results reported in (Xu et al., [2024a)), the rest are from the official repository/paper (Li et al.,|2024b).
Method LLM  Vision Holistic LVU Single-Detail LVU Multi-Detail LVU Ave
Size  Encoder Topic Rea. Anomaly Rec. Needle QA Ego Rea. Plot QA Sports QA Act. Order Act. Count Tutorial QA )
VideoChat Li et al.|[202da 7B CLIP-G 264 12.8 183 17.0 220 T 5.7 .7 14.0 16.6
Video-ChatGPT (Maaz et al.[|2024] B CLIP-L 17.6 17.9 28.3 32.1 22.0 27.8 17.1 13.3 11.6 20.9
Video-LLaMA2 (Cheng et al.|[2024 13B CLIP-L 52.7 12.8 13.3 17.0 12.0 19.4 15.7 8.3 18.6 18.9
VideoChat2 (Li et al.||2 b B UMT-L 72.5 30.8 18.3 28.3 26.0 36.1 17.1 23.3 18.6 30.1
Video-LLaVA {Lin ot al.[[202: 7B ViT-L 70.3 385 13.3 26.4 2.0 38.9 200 21.7 209 30.7
LLaMA-VID (Li et al.| 2024c 7B CLIP-G 209 23.1 2.7 11.3 16.0 16.7 186 15.0 11.6 17.2
MovieChat (Song et al.|[2024a 7B CLIP-G 18.7 10.3 23.3 15.1 16.0 30.6 17.1 15.0 16.3 18.0
Video-LLaMA: “heng et rﬂ_—r 24 13B  CLIP-L 52.7 12.8 13.3 17.0 12.0 19.4 15.7 8.3 18.6 18.9
MA2 qpheng et al.||2024 ) . 53.8 7 54.0 38.9 42.9 16.7 32.6
nage (Zhang et al.| |20z 4d| . 3. 22.2 21.4 16.7 16.3
TS—LLaVl_(mH 7B CLIP-L 769 28.3 34.0 30.6 25.7 20.0 18.6 33.6
TS-LLaVA (Ours) 34B  CLIP-L 83.5 55.0 32.1 46.0 55.6 28.6 10.0 32.6 43.0
(b) Performance on multiple choice questions in MLVU-Test. Rea.: Reasoning; Rec.: Recognition; QA: Question

Answering; Act.: Action.

specific training on these data types, bridging the gap between our training-free approach and training-
based methods remains challenging.

MLVU The results are presented in Table Our method significantly outperforms the training-free
counterpart, establishing the SOTA results across all sub-tasks.

In comparison with training-based video LLM, we take a challenging opponent, namely a 72B Video-
LLaMA2. Remarkably, TS-LLaVA-34B achieves comparable or even superior performance to Video-
LLaMA2-72B on more than half of the sub-tasks, despite using a much smaller LLM.

For tasks where T'S-LLaVA lags behind, we observe a pattern similar to MVBench. Tasks involving less
familiar data types for image LLMs, such as action order, pose greater challenges for our training-free
approach.

Overall Our TS-LLaVA shows promising results on two challenging multitask benchmarks, but inherent
limitations of image LLMs make some tasks difficult. Despite being a training-free method, our TS-LLaVA
significantly outperforms several training-based approaches on certain tasks. This demonstrates that, by
thoroughly investigating effective compression strategies, we can build video LLMs without relying on large-
scale video-text paired datasets, such as the 783k pairs used in PLLaVA or the over 10 million pairs required
by VideoLLaMA2.

4.2.3 Strong Potential in Long Video Understanding

On MLVU-test, TS-LLaVA has demonstrated exceptional performance in long video understanding tasks,
even when compared to training-based video LLMs. In this section, we present additional results on long
video understanding benchmarks, comparing TS-LLaVA with previous training-free video LLMs, specifically
IG-VLM and SF-LLaVA.

As shown in Table [f] thanks to the advanced compression strategy, our TS-LLaVA achieves superior per-
formance across all three long video understanding benchmarks compared to previous training-free video
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Table 6: Accuracy on EgoSchema, VideoMME and LongVideoBench.

adopted for three models, namely LLaVA-v1.6.

The same image LLM backbone is

Model Size EgoSchema VideoMME LongVideoBench | Size EgoSchema VideoMME LongVideoBench
IG-VLM (Kim et al. B 35.8 39.8 38.1 34B 53.6 50.9 49.8
SF-LLaVA (Xu et al. 7B 47.2 41.2 41.3 34B 55.8 52.9 53.9
TS-LLaVA (Ours 7B 50.2 44.8 43.1 34B 57.8 55.1 56.2
Accuracy for different number of frames Accuracy for different number of frames per thumbnail image
L 732 I 734 _J36 733 736 - _ _732
70 70
66.6 66.2 6.1 66.6 66.5 6§:5 66.4
65 65
> —— NEXT-QA (78B) > —e— NEXT-QA (78B)
© --- NEXT-QA (34B) © -®- NEXT-QA (34B)
3 EgoSchema (7B) 3 60 EgoSchema (78)
£ 60 EgoSchema (34B) £ EgoSchema (34B)
528 B __...518
I 562 _ooo----286 - %8 ) -538
55 55
49.8 — | ¥ S
501 494 ,,,,,7—777**”’5&2’ a4 242 0 ) T 486
20 30 40 50 4 8

Number of frames in total

6
Number of frames per thumbnail image

(a) Performance of TS-LLaVA with different number of (b) Performance of TS-LLaVA with different number of

frames in total. The total number of visual tokens is the frames per thumbnail image.

same (3456).

Accuracy for different number of thumbnail images (50 frames)

75
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o
o

Accuracy
o
3

55

50
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56.6
50.2 a6

—e— NEXT-QA (7B)

-®- NEXT-QA (34B)
EgoSchema (7B)
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We use 50 frames with

3456 tokens in total.

Accuracy

o
v
=)

o
N
o

o
o
o

o
N
n

o
o
o

Token Efficiency Comparision between TS-LLaVA (Ours) and SF-LLaVA

66.3 66.4 66.5
64.2
v
614 61.7 61.7
60.1
L 4
—e— NEXT-QA (Ours)
EgoSchema (Ours)
—e— IntentQA (Ours)
v NEXT-QA (SF-LLaVA)
v EgoSchema (SF-LLaVA)
v IntentQA (SF-LLaVA)
592
48.8 40 —
47.2

2
Number of thumbnail images

2304

2880 3456 3680

Number of visual tokens

(c¢) Performance of TS-LLaVA with different number of (d) Token efficiency comparison between the previous
thumbnail images used. The total number of visual to- SOTA training-free video LLM SF-LLaVA. We compare
kens is the same (3456).

7B models here.

Figure 4: Design choices of TS-LLaVA. In (a), (b) (c), IntentQA shows similar pattern as NExT-QA, please
refer to the Appendix.

LLMs. Notably, despite using fewer visual tokens than SF-LLaVA (3,456 vs. 3,680), TS-LLaVA still out-
performs SF-LLaVA by a significant margin. This highlights the effectiveness of our compression strategy
in efficiently compressing visual information from long video sequences. We further discuss the comparison
with SF-LLaVA in Section [4.4l

10



Under review as submission to TMLR

4.3 Design Choices of TS-LLaVA

We dive deeper into the design choices of TS-LLaVA in this section. More results can be found in Section [B.3]
in the Appendix

Number of frames We vary the maximum number of input frames used in TS-LLaVA, and present the
results in Figure [fa] Since the total number of visual tokens remains constant at 3456, using fewer frames
results in a lower compression rate. For datasets like NExT-QA, which do not emphasize long-term video
understanding, the reduced compression rate effectively compensates for any missing information from fewer
frames. In contrast, for EgoSchema, which specifically targets long-term understanding, using more frames
proves beneficial. One interesting observation is that the 7B and 34B models behave differently to reduced
frame counts. The performance of the 34B model keeps increasing as we increase the number of frames,
indicating it can handle more information as we increase frame numbers.

How many frames per thumbnail image? We conduct experiments with varying numbers of frames
per thumbnail image. The results are presented in Figure [Ib] Since the resolution of each image is fixed
at 336x336 for the image encoder, including more frames in the thumbnail image means lower resolution
for each frame. The results show that changing the number of frames does not affect the performance on
NExT-QA and IntentQA significantly. While for EgoSchema, which requires better temporal understanding
and involves longer videos, is more sensitive to the number of frames per thumbnail image. Using 6 frames
per thumbnail image shows clear benefit over the counterparts, by providing enough temporal cues and not
losing too much details due to reduced resolution.

How many thumbnail images? To study the impact of the number of thumbnail images on performance,
we report results for 1, 2, and 3 thumbnails in Figure Each thumbnail corresponds to 576 visual tokens,
and increasing the number of thumbnails raises the compression rate for sampled visual tokens. With 50
input frames, the compression rate is %, where k is the number of thumbnails. Higher compression
significantly degrades performance on EgoSchema, which cannot be offset by additional thumbnail tokens.

This suggests that tasks requiring temporal understanding benefit from less compressed visual tokens.

Token efficiency Image LLMs are not trained on videos involving multiple frames, making token efficiency
a critical factor for training-free video LLMs. Compared to the previous SOTA training-free video LLM
SF-LLaVA, we gradually decrease the number of visual tokens in TS-LLaVA, and present the results in
Figure Our TS-LLaVA consistently outperforms SF-LLaVA, even with roughly 60% of the number of
visual tokens used by SF-LLaVA (2304 vs 3680). Our Thumbnail-and-Sampling strategy can better compress
the visual tokens than the slow-fast operation used by SF-LLaVA. We extend the discussion in Section [£:4]

4.4 Discussion

Contributions We propose a simple yet effective compression strategy for video LLMs, achieving strong
performance across multiple benchmarks. This shows that high performance can be achieved without train-
ing, challenging the necessity of compute-intensive training-based methods and setting a strong baseline for
future research.

Designing proper compression strategy for video LLMs is a challenging and non-trivial task. i) IG-VLM’s
Grid layout struggles with long-term relationships due to limited frames. We extend it to Grids, which still
hampers fine-grained action recognition from reduced resolution. In contrast, TS-LLaVA, leveraging sampled
tokens, handles these tasks far more effectively. ii) Our Thumbnail-and-Sampling strategy is similar to the
widely used slow-fast operations in video understanding (Feichtenhofer et al.l |2019: [Xiao et al.l [2020; Huang
et al.l 2024 Xu et al., |2024b), including the previous SOTA training-free video LLM, SF-LLaVA. Both use
a two-stream design for processing video frames, but the key difference lies in how frames are handled.

e SF-LLaVA : The slow pathway retains fewer frames at a lower frame rate but with a lower com-
pression rate. The fast pathway includes more frames at a higher frame rate but applies a higher
compression rate.

11
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e TS-LLaVA : The Thumbnail pathway uses fewer frames at a lower resolution. The Sampling pathway
incorporates more frames at a higher resolution, retaining only sampled token information.

In SF-LLaVA, most of the token budget (2880 out of 3680 tokens) is allocated to the slow pathway, resulting
in a high compression rate of 36 in the fast pathway with 50 frames. In contrast, our method preserves more
information in the Sampling pathway by allocating 2880 tokens to 50 frames, achieving a lower compression
rate of 10. This allows us to capture long-term dependencies more effectively while maintaining better token
efficiency, as shown in Figure [Ad] Consequently, our method enhances token efficiency in representing video
content, offering a significant advantage.

Limitations Our focus is on visual token compression rather than prompt design. While prior works
highlight prompt effects (Kim et al., |2024)), our preliminary experiments show limited impact. Reduced
resolution from Thumbnail images can be addressed by high-resolution operations in image LLMs (Liu
et al., 2024a), which use image patch features. Combining vision encoders via feature routing (Qu et al.,
2025)) also holds promise. We leave these explorations for future work.

5 Conclusion

In this work, we thoroughly evaluate the advantages and limitations of various visual token compression
strategies for training-free video LLMs. Our findings lead to T'S-LLaVA, a training-free video LLM leveraging
the novel Thumbnail-and-Sampling compression strategy. This approach provides both a summarized view of
the video (Thumbnail) and a detailed representation of long-term temporal relations (Sampling). As a simple
yet strong baseline, TS-LLaVA achieves state-of-the-art performance among training-free video LLMs and
outperforms several competitive training-based models. Our extensive experiments provide valuable insights
for future video LLMs.
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A Additional Implementation Details

To construct the thumbnail image, we arrange the selected frames in a 2-column by 3-row grid. Each frame
is resized accordingly to fit within the resulting 336 x336 thumbnail image.

MYVBench Details We report the detailed classification of each sub-task included in MV Bench:

o Action: Action Sequence (AS), Action Antonym (AA), Action Prediction (AP), Unexpected Action
(UA) and Fine-grained Action (FA)

e Object: Object Shuffle (OS), Object Existence (OE) and Object Interaction (OI)
e Position: Moving Direction (MD) and Action Localization (AL)

o Count: Action Count (AC) and Moving Count (MC)

o Scene: Scene Transition (ST)

o Pose: Fine-grained Pose (FP)

o Attribute: State Change (SC) and Moving Attribute (MA)

o Character: Character Order (CO)

o Cognition: Episodic Reasoning (ER), Egocentric Navigation (EN) and Counterfactual Inference (CI)

B Additional Results

We report additional experimental results in this section. We start with additional experiments conducted for
the study on compression strategies. Then we report the results on Open-Ended VideoQA and video-based
Text Generation. Finally, we conclude this section with more results on design choices of TS-LLaVA.
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B.1 Compression Strategies

Max. pooling or Average Pooling Here we present comparison between performance of LLaVA-v1.6-7B
equipped with max. pooling and average pooling on Video-MME in Table For the most cases, average
pooling shows superior performance than max. pooling.

Table 7: Comparison between different pooling schemes on Video-MME dataset using LLaVA-v1.6-
7B."Comp. Rate": Compression Rate. Here we use a 2 x 2 kernel with stride=2 and a 3 x 3 kernel with
stride=3 for compression rate=2 and 3, respectively.

Pooling #. of #. of Vis. Comp. Video-MME (Accuracy)
Scheme Frames (N)  Tokens Rate  Short Medium Long Overall
Mazx. 4 768 3 44.6 37.9 34.0 38.8
Average 4 768 3 46.4 40.8 36.4 41.2
- Maz. 4 1152 2 464 397 362 408
Average 4 1152 2 47.9 41.2 36.3 41.8
- Maz. § 1536 3 473 398 356 409
Average 8 1536 3 48.6 42.9 35.8 42.4
- Maz. 8 2304 2 491 417 356 @ 421
Average 8 2304 2 48.7 41.9 36.4 42.3

B.2 Open-Ended VideoQA and Text Generation

In this section, we first report the results on Open-Ended VideoQA and Text Generation tasks. Then we
point out the problem of existing evaluation protocol.

Open-Ended VideoQA benchmarks We evaluate our method on MSVD-QA (Chen & Dolan, 2011]),
MSRVTT-QA (Xu et al.l 2016, TGIF-QA (Li et al., |2016)) and ActivityNet-QA (Yu et al., 2019).

Text Generation benchmark VCGBench (Maaz et al.,[2024) in terms of Correctness of Information (CI),
Detail Orientation (DO), Contextual Understanding (CU), Temporal Understanding (TU), and Consistency
(CO).

Evaluation protocol Following the common practice, we use GPT-assisted evaluation for Open-Ended
VideoQA and Text Generation benchmarks. The evaluation assesses the accuracy of the response (in terms
of true or false) and the quality of the generated text (score ranging from 0 to 5). As pointed by |Wu| (2024));
Xu et al.|(2024b)), different GPT versions have significant impacts on the evaluation results. To keep a fair
comparison, we adopt GPT-3.5-Turbo-0125 as in (Wu, [2024; Xu et al.| [2024b)).

Performance We report the results on the two tasks in Table Our method outperforms the previous
SOTA SF-LLaVA on majority of the tasks evaluated. We consider the evaluation protocol for Open-Ended
VideoQA and video-based Text Generation not as reliable as Multiple Choice VideoQA. Hence, we do not
discuss too much on the results. Next, we provide case studies on the evaluation protocol.

Unreliable evaluation with GPT Both Open-Ended VideoQA and Text Generation tasks require GPT-
assisted evaluation. We take Open-Ended VideoQA'’s evaluation pipeline to showcase the problem. We follow
the standard evaluation protocol as adopted by |Xu et al| (2024b). The standard prompt for Open-Ended
VideoQA evaluation has two parts as:

e "role": "system",

"content”: "You are an intelligent chatbot designed for evaluating the correctness of generative
outputs for question-answer pairs. " "Your task is to compare the predicted answer with the correct
answer and determine if they match meaningfully. Here’s how you can accomplish the task:" "—
—" "#H#INSTRUCTIONS: " "- Focus on the meaningful match between the predicted answer and
the correct answer.\n" "- Consider synonyms or paraphrases as valid matches.\n" "- Evaluate the
correctness of the prediction compared to the answer."
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Table 8: Open-Ended VideoQA and Text Generation results. We highlight the top-performing training-free
methods and underline the best-performing video LLMs overall. Methods below the dashed line (- -) are
training-free, while those above it have been trained on extensive video data. : performance better than
SF-LLaVA; : performance comparable to SF-LLaVA

Method LLM  Vision Open-Ended VideoQA (Accuracy/Score) Text Generation (Score)

Size  Encoder MSVD-QA MSRVTT-QA TGIF-QA ANet-QA CI DO CcU TU CO  Avg.
Video-LLaMA Zhan . 7B CLIP-G 51.6/2.5 29.6/1.8 - 12.4/1.1 1.96 218 216 1.82 179 1.98
Video-LLaMA2 (Cheng et al.||2024] B CLIP-L 70.9/3.8 - - 50.2/3.3 3.16  3.08 3.69 256 3.14 313
Video-ChatGPT (Maaz et al.|[2024) 7B CLIP-L  64.9/3.3 49.3/2.8 51.4/3.0  352/27 | 250 257 269 216 220 242
VideoGPT+ (M 3.8B CLIP-L 72.4/3.9 60.6/3.6 74.6/4.1 50.6/3.6 327 318 374 283 339 3.28

Video-LLaVA (Lin et al.| [2023| 7B ViT-L  70.7/3.9 59.2/3.5 70.0/4.0  45.3/3.3 - - - - - -
MovieChat ( B CLIP-G 75.2/3.8 52.7/2.6 - 45.7/3.4 2.76 293  3.01 2.24 2.42 2.67

MovieChat+ (Song et al. 7B CLIP-G  76.5/3.9 53.9/2.7 - 48.1/3.4 - - - - - -
VideoChat {'mml 12024a] 7B CLIP-G 56.3/2.8 45.0/2.5 34.4/2.3 26.5/2.2 2.23 2.50  2.53 1.94 2.24 2.29
VideoChat2 lmlmﬂ B UMT-L 70.0/3.9 54.1/3.3 - 49.1/3.3 3.02 288 351 266 281 298
Vista-LLaMA (Ma et al|2024] 7B CLIP-G  65.3/3.6 60.5/3.3 , 48.3/33 | 244 264 318 226 231 257
LLaMA-VID (i et al.| p024c] 13B CLIP-G  69.7/3.7 57.7/3.2 - 47.4/33 | 2.96  3.00 353 246 251 289

PLLaVA (Xu et al.| [2024a) 7B CLIP-L  76.6/4.1 62.0/3.5 77.5/41  56.3/3.5 - - - - - -
LLaVA-NeXT-Video @m,l 7B CLIP-L - - - 535/3.2 | 339 329 392 260 312 3.26
LLaVA-NeXT-Video-DPO 1 7B CLIP-L - - 60.2/3.5 3.64 345 417 295 408 3.66

T FreeVA (Wu/ [2024) 77778777CE17PfL777773787471777760707375777777?7777517.275577775777-7777f7777-7777-7777fh
DeepStack-L |W 7B CLIP-L  76.0/4.0 - 49.3/3.1

LLaVA-NeXT-Image { al.||2 7B CLIP-L - - - 53.8/3.2 | 3.05 3.12 3.68 237 316 3.07
IG-VLM ( 7B CLIP-L 78.8/4.1 63.7/3.5 73.0/4.0 54.3/3.4 311 278 351 244 329 3.03
SF-LLaVA { 7B CLIP-L 79.1/4.1 65.8/3.6 78.7/4.2 55.5/3.4 3.09 270 357 252 3.35 3.04
TS-LLaVA 5 B CLIP-L 79.0/4.1 65.1/3.6 77.7/4.1 56.7/3.4 | 3.18 282 358 2.53 334 3.09

(a) All models use 7B or comparable LLMs.

LLM  Vision Open-Ended VideoQA (Accuracy /Score) Text Generation (Score)

Size  Encoder MSVD-QA MSRVTT-QA TGIF-QA ANet-QA CI DO CU TU CO Avg.

46.7B  CLIP-L 70.5/3.8 - 50.3/3.4 - 3.08 311 3.64 2.67 3.26 3.15
34B  CLIP-L  79.9/4.2 68.7/3.8 80.6/4.3  60.9/3.7 | - - - - - -
34B CLIP-L - - - 58.8/3.4 348 337 395 2.64 3.28 3.34
34B CLIP-L - - - 64.4/3.6 381 355 4.24 3.14 412 3.77

~ 34 CLlp-L - P T 55.6/3.3 | 3.29 3.23 383 251 347 327

34B CLIP-L 79.6/4.1 62.4/3.5 79.1/4.2 58.4/3.5 3.21 2.87 3.54 2.51 3.34 3.09
34B CLIP-L 79.9/4.1 67.4/3.7 80.6/4.3 59.2/3.5 348 296 3.84 2.77 3.57 3.32
34B  CLIP-L [794/41 66.2/3.6 81.0/42 | 58.9/35 | 3.55 303 3.86 2.77 3.69 3.38

(b) All models use 34B or stronger LLMs.
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e 'role": "user',

"content": "Please evaluate the following video-based question-answer pair:\n\n" "Question: Ques-
tion\n" "Correct Answer: Answer\n" "Predicted Answer: Prediction\n\n" "Provide your evaluation
only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating
the highest meaningful match. " "Please generate the response in the form of a Python dictionary
string with keys 'pred’ and ’score’, where value of 'pred’ is a string of ’yes’ or 'no’ and value of
‘score’ is in INTEGER, not STRING." "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR
EXPLANATION. Only provide the Python dictionary string. " "For example, your response should
look like this: 'pred’: ’yes’, ’score’: 4.8."

where Question, Answer and Prediction are the place holder for question, ground truth answer and model
prediction, respectively.

We present two randomly selected cases from the Open-Ended VideoQA evaluation pipeline. For each
case, we run the evaluation code for 50 times. The recorded evaluation result is also presented as

Case 1 (from TGIF-QA):
Question: what is the very fit male?
Answer: underwear

Prediction: there is a sequence of frames showing a very fit male. The sequence includes the man standing
in various poses, showcasing his muscular physique. The man is shirtless, wearing boxer shorts, and has
tattoos on his torso. The sequence captures the man’s fitness and athleticism.

Case 2 (from MSVD-QA):
Question: what is getting kicked into the goal?
Answer: ball

Prediction: there is a sequence of key frames showing a soccer match. The goal is being kicked into it by a
player wearing a blue jersey. The sequence captures the progression of the kick, with the ball moving closer
to the goal with each frame. The goalkeeper is positioned to react to the shot, and the other players are
in various defensive positions. The sequence highlights the action of the player kicking the ball towards the
goal, which is a significant event in the context of the soccer match.

Results discussion

The results of two case studies are pre-

sented in Table [f] For Case 1, the Table 9: Prediction statistics of the case study for Open-Ended
recorded response is "yes/5", which can VideoQA evaluation. "Prediction Count" records the number of
be interpreted as clearly correct. While 'yes" (correct prediction) and "no" (incorrect prediction) among
as shown in the table, less than half of the  the 50 runs. We also present the average evaluation score, and

runs (24/50) return the same response. pow many times each score appear. The marks the
There are even 20% of the runs (10/50) recorded evaluation.

result in "no/2". For Case 2, the recorded
response 1s 'yes/3", which shows that the Prediction Count Average  Score Appearance
model is not very sure about the assess-  Case

: Yes No Score 1 2 3 4 5
ment. When we run the evaluation for
50 times, the majority of the runs return L 12 4.02 0 103 13
mo)2". Jonty 2 42 218 2 40 30

19



Under review as submission to TMLR

The case study shows that the random-

ness in GPT assisted evaluation is not as reliable as we hope for. We urge for alternative evaluation methods
for Open-Ended VideoQA.

B.3 Design Choices

In this section, we report the additional results supporting the design choices of our T'S-LLaVA, as discussed
in Section [£.3] We first report results from changing positioning of visual tokens, then we report full results
of the experiments conducted in Section [£.3]

Thumbnail first or sampling first? We study the effect of whether to prepend or append thumbnail
image tokens to sampled visual tokens. We present the result in Figure We do not observe a clear
difference between this two ways of positioning visual tokens. It also indicates that the backbone image
LLM is capable of handling varying visual token patterns, which offers potentials to future research.

Accuracy for different grid view image positioning (50 frames)
73.1 73.6 Grid First, 7B
Grid Last, 7B
wmm Grid First, 34B
mmm Grid Last, 34B

57.6 57.8

704
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Figure 5: Results from different ways of positioning visual tokens. Grid First: the thumbnail image tokens
are prepended to sampled visual tokens.

More results on design choices of TS-LLaVA We report the additional results on design choices of
TS-LLaVA.

Table 10: Performance of T'S-LLaVA with different

number of frames in total. The total number of Table 11: Performance of TS-LLaVA with different
visual tokens is the same (3456). number of thumbnail images. The total number of
visual tokens is the same (3456).

Model Size #. of Frames NExT-QA EgoSchema IntentQA

7B 20 66.6 49.4 62.8 Model Size  #. of Thumbnail Img. NExT-QA EgoSchema IntentQA
B 30 66.2 50.2 62.6 7B 1 66.5 50.2 61.7
7B 40 66.1 49.4 62.3 7B 2 66.0 49.6 61.9
7B 50 66.6 50.2 61.7 7B 3 64.9 47.2 62.0
34B 20 73.5 56.0 68.1 34B 1 73.6 57.8 67.9
34B 30 73.2 56.2 68.0 34B 2 73.1 56.6 68.7
34B 40 73.4 56.6 67.7 34B 3 73.7 55.8 08.6
34B 50 73.6 57.8 67.9

The performance of our TS-LLaVA on all three Multiple Choice VideoQA datasets with different number
of input frames can be found in Table [I0] It can be seen that for EgoSchema, the impact of varying frame
numbers is bigger than the other two datasets.
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We present the results of our TS-LLaVA on all three Multiple Choice VideoQA datasets with varying
number of thumbnail images in Table Since the total number of visual tokens is the same, increasing the
number of thumbnail images leads to increased compression rate on sampled visual tokens. For EgoSchema,
which focuses on the long term temporal dependency in the video, less sampled tokens leads to degraded
performance. While for NExT-QA and IntentQA, the details brought by the increased thumbnail images can
well mitigate the loss of information from the reduced sampled tokens. Hence, the performance on NExT-QA
and IntentQA remains at a relatively high level.

Table 12: Performance of TS-LLaVA on downstream  Taple 13: Performance of TS-LLaVA with different

tasks in terms of accuracy varying the number of pymber of visual tokens. We use the standard set-
frames in the thumbnail image. We use the standard ting with 50 input frames in total and 1 thumbnail

setting where only 1 thumbnail image is constructed. image constructed.

Model Size  #. of images NExT-QA EgoSchema IntentQA Model Size  #. of visual tokens NExT-QA EgoSchema IntentQA
7B 4 66.5 49.8 62.0 7B 2304 66.3 4838 61.4
B 6 66.5 50.2 61.7 7B 2880 66.4 49.0 61.7
B 8 66.4 48.6 61.8 7B 3456 66.5 50.2 61.7
34B 4 73.5 56.6 68.0 34B 2304 73.7 56.4 68.2
34B 6 73.6 57.8 67.9 34B 2880 73.2 58.0 68.7
34B 8 73.2 55.8 68.6 34B 3456 73.6 57.8 67.9

We also report the results on different number of frames used for composing the thumbnail image in Table[I2]

Using 6 images per thumbnail image leads to overall the best performance. This finding also aligns with [Kim
et al.| (2024]).

Finally, the results of using different numbers of visual tokens are presented in Table [I3] Since the number
of visual tokens resulting from the thumbnail image is constant, varying the total number of visual tokens

affects the sampling pathway only. The results show that this change affects EgoSchema more, as it relies
on long-term temporal understanding.
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