
WFCRL: A Multi-Agent Reinforcement Learning
Benchmark for Wind Farm Control

Claire Bizon Monroc
Inria and DI ENS, École Normale Supérieure, PSL Research University, Paris, France

IFP Energies nouvelles
claire.bizon-monroc@inria.fr

Ana Bušić
Inria and DI ENS, École Normale Supérieure, PSL Research University

Paris, France

Donatien Dubuc
IFP Energies nouvelles

Solaize, France

Jiamin Zhu
IFP Energies nouvelles

Rueil-Malmaison, France

Abstract

The wind farm control problem is challenging, since conventional model-based1

control strategies require tractable models of complex aerodynamical interactions2

between the turbines and suffer from the curse of dimension when the number of3

turbines increases. Recently, model-free and multi-agent reinforcement learning4

approaches have been used to address this challenge. In this article, we introduce5

WFCRL (Wind Farm Control with Reinforcement Learning), the first suite of multi-6

agent reinforcement learning environments for the wind farm control problem.7

WFCRL frames a cooperative Multi-Agent Reinforcement Learning (MARL)8

problem: each turbine is an agent and can learn to adjust its yaw, pitch or torque9

to maximize the common objective (e.g. the total power production of the farm).10

WFCRL also offers turbine load observations that will allow to optimize the11

farm performance while limiting turbine structural damages. Interfaces with two12

state-of-the-art farm simulators are implemented in WFCRL: a static simulator13

(FLORIS) and a dynamic simulator (FAST.Farm). For each simulator, 10 wind14

layouts are provided, including 5 real wind farms. Two state-of-the-art online15

MARL algorithms are implemented to illustrate the scaling challenges. As learning16

online on FAST.Farm is highly time-consuming, WFCRL offers the possibility of17

designing transfer learning strategies from FLORIS to FAST.Farm.18

1 Introduction19

The development of wind energy plays a crucial part in the global transition away from fossil energies,20

and it is driven by the deployment of very large offshore wind farms [38, 28]. Significant gains21

in wind energy production can be made by increasing the amount of wind power captured by the22

farms [28]. The power production of a wind farm is greatly influenced by wake effects: an operating23

upstream turbine causes a decrease in wind velocity and an increase in wind turbulence behind its24

rotor, which creates sub-optimal wind conditions for other wind turbines downstream. An illustration25

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

Figure 1: Left: Wake effects in the offshore wind farm of Horns Rev 1 - Vattenfall. Right: Schema of
a wind turbine [6]. The pitch, yaw or torque can be controlled.

of this phenomenon can be seen on Figure 1. Wake effects are a major cause of power loss in wind26

farms, with the decrease in power output estimated to be between 10% and 20% in large offshore27

wind farms [4]. Higher turbulence in wakes also increases fatigue load on the downstream turbines28

by 5% to 15%, which can shorten their lifespans [37].29

The wind farm control problem is challenging. Conventional model-based control strategies require30

tractable models of complex dynamic interactions between turbines, and suffer from the curse31

of dimensionality when the number of turbines increases. Moreover, optimal strategies differ32

significantly with modeling choices. Reinforcement Learning (RL) provides a model-free, data-based33

alternative, and recent work applying RL algorithms to wind farm control has yielded promising34

results (see e.g. [1, 25]). Single agent approaches, where a single RL controller must learn a35

centralized policy, encounter scaling challenges [10], are slow to converge under dynamic conditions36

[23] and do not explore the graph structure of the problem induced by local perturbations. Several37

multi-agent RL approaches have been proposed to tackle this issue, relying on both centralized38

critics [9, 10, 27] and independent learning approaches [5, 21, 33]. Different authors have published39

code relative to their specific applications, but there is to the best of our knowledge no open-source40

reinforcement learning environment for the general wind farm control problem.41

In this article, we propose WFCRL, the first suite of reinforcement learning environments for the42

wind farm control problem. WFCRL is highly customizable, allowing researchers to design and run43

their own environments for both centralized and multi-agent RL.44

Wind turbines can be controlled in several ways. A turbine can adjust its yaw (defined as the angle45

between the rotor and the wind direction) to deflect its wake, increase its pitch (the angle between the46

turbine blades and the incoming wind) to decrease its wind energy production, or directly control the47

torque of its rotor. WFCRL makes it possible to control yaw, pitch or torque, and a schema of these48

different control variables can be found in fig. 1. WFCRL offers a large set of observations including49

local wind statistics, power production, and fatigue loads for each turbine. This makes it possible to50

consider different objective, including the maximization of the total production, the minimization of51

loads to reduce maintenance costs over the wind turbine life-cycle [22], or, as wind energy becomes a52

larger part of the energy mix, the tracking of power or frequency targets that will allow operators to53

offer ancillary services for grid integration [24].54

In WFCRL, interfaces with two state-of-the-art farm simulators are implemented : a static simulator55

FLORIS [12] and a dynamic simulator FAST.Farm [20]. Indeed, the choice of a static or dynamic56

model is particularly important: the overwhelming majority of proposed approaches are evaluated on57

static models, but it was shown in [34] that successful learning approaches under static conditions58

2

generally do not adapt to dynamic ones. However, online learning from scratch with dynamic59

simulators is often too slow, making transfer learning from static to dynamic simulators of great60

interest. From the broader literature on transfer learning and learning from simulators we know that61

it is challenging to train policies that can improve on previously learned behavior when deployed62

on new environments with unseen dynamics [40, 14]. In spite of this problem, to the best of our63

knowledge, most approaches so far have been trained and evaluated on the same environment, and64

it is therefore not clear whether the policies learned with simulators are robust enough to be useful,65

or even safe, when deployed on real wind farms. With two simulators of different model-fidelity66

(referring to how closely the model represents the real system), WFCRL offers the possibility of67

designing transfer learning strategies between these simulators.68

Contributions of the paper69

• We introduce WFCRL, the first reinforcement learning suite of environments for wind70

farm control. WFCRL is highly customizable, allowing researchers to design and run their71

own environments for both centralized and multi-agent RL. It includes a default suite of72

wind farm layouts to be used in benchmark cases.73

• We interface all our wind farm layouts with two different wind farm simulators: a static74

simulator FLORIS [12] and a dynamic simulator FAST.Farm [20]. They can be used to75

design transfer learning strategies, with the goal to learn robust policies that can adapt76

to unseen dynamics.77

• We include two implementations of PPO-based state-of-the-art MARL algorithms, IPPO78

and MAPPO [39], adapted to our environments.79

• We propose a benchmark example for wind power maximization with two wind condition80

scenarios. It takes into account the costs induced by wind turbine fatigue.81

The paper is organized as follows. In Section 2, we introduce the WFCRL environment suite. First in82

Section 2.1 we introduce the simulators, the specifications of the simulated wind farms and turbines83

and the wind conditions scenarios we consider. We then lay out in Section 2.2 the cooperative MARL84

framework for the wind farm control problem, and finally detail the learning tasks and algorithms85

available with the suite in Section 2.3. In the second part Section 3, we illustrate the possibilities86

of the WFCRL environment suite by introducing a benchmark example: the maximization of total87

power production with fatigue-induced costs. In Section 3.1, we explicit the actions, observations88

and rewards used in this problem, then in Section 3.2, we present and discuss the results of the IPPO89

and MAPPO on our benchmark tasks. In Section 4, we discuss perspectives and limitations, and we90

conclude in Section 591

2 WFCRL environments suite92

In this section, we present our WFCRL environments suite. We first present the simulators interfaced93

in WFCRL (FLORIS and FAST.Farm), several pre-defined layouts and wind condition scenarios.94

Note again that having two simulation environments with different model-fidelity offers the possibility95

of designing transfer learning strategies between simulation environments. Then, we describe briefly96

the MARL framework for the wind farm control problem. More precisely, we consider a wind farm97

with M turbines, which operate in the same wind field and create turbulence that propagates across98

the farm. In our multi-agent environment, each turbine is considered as an agent receiving local99

observations, and all cooperate to maximize a common objective.100

2.1 The simulation environments101

In WFCRL, users can choose one of the two state-of-the-art wind farm simulators (FLORIS or102

FAST.Farm), select a pre-defined wind farm layout or define a custom one, and choose one of the103

implemented wind conditions. Though designed for the MARL framework, we note that is is also104

possible to apply single-agent RL algorithms by considering global observations and actions.105

3

WFCRL environment Real wind farm
Ablaincourt Ablaincourt Energies onshore wind farm, Somme, France

Ormonde Ormonde Offshore Wind Farm, Irish Sea, UK
WMR Westermost Rough Wind Farm is an offshore wind farm, North Sea, UK

HornsRev1 Horns Rev 1 Offshore Wind Farm, North Sea, Denmark
HornsRev2 Horns Rev 2 Offshore Wind Farm, North Sea, Denmark

Table 1: Correspondences between WFCRL environments and real wind farms.

FLORIS environments The wind farm simulator FLORIS implements static wind farm models,106

which predict the locations of wake centers and velocities at each turbine in the steady state: the107

dynamic propagation of wakes are neglected. The yaws of all wind turbines can be controlled, and the108

power production of the wind farm is then a function of all yaw angles and the so-called free-stream109

wind conditions: wind measurements - e.g. velocity and direction - taken at the entrance of the farm.110

FLORIS has been released as an open-source Python software tool1. In WFCRL environments built111

on FLORIS, global and local states contain time-averaged, steady-state wind and production statistics112

for both global and local observations.113

The models used by FLORIS do not compute any estimate of fatigues on wind turbines, and we114

propose to use local wind statistics to compute proxy for load estimates indeed. We detail this when115

introducing our benchmark example in Section 3.1.116

FAST.Farm environments Unlike FLORIS, FAST.Farm is a dynamic simulator that produces117

time-dependent wind fields that take into account the dynamics of wake propagation [20]: wakes in118

wind farms tend to meander, and the wakes of different turbines interact and eventually merge as119

they propagate in the farms. One consequence is that under dynamic conditions there is a significant120

delay between the time agents take an action and the time this action finally impacts the turbines121

downstream.122

FAST.Farm is built on wind turbine simulation tool OpenFAST [26] which computes an estimate of123

the strength of the bending moment on each turbine blades. This reflects the structural loads induced124

on turbine blades, and thus can be used to design rewards in RL problems to reduce or avoid physical125

damages to turbines.126

FAST.Farm is coded in Fortran. To allow for integration with the large ecosystem libraries and RL127

research practices developed in Python, we implement an interface between the simulator and the128

Python wind farm environment via MPI communication channels. The details of the interfacing129

infrastructure are reported in Appendix B.130

Wind farm layouts Any custom layout - the arrangement of the wind turbines in the farm - can be131

used in WFCRL. We also propose several pre-defined wind farm layouts for use in benchmark cases.132

The coordinates of the wind turbines of 5 real wind farms with 7 to 92 wind turbines are obtained133

from [2]. A complete list of all correspondences between wind farms inspired by real environments134

and their locations is in Table 1, and a list of all available environments can be found in Appendix C.135

We also include in WFCRL several toy layouts, including a simple row of 3 turbines (the Turb3_Row1136

environment) for validation purpose and the 32 turbines layout of the FarmConners benchmark [13].137

A visual representation of the layouts can be found in Appendix G.138

For all cases, we simulate instances of the NREL Reference 5MW wind turbines, whose specifications139

have been made public by the National Renewable Energy Laboratory (NREL) [19]. It has become140

standard reference for wind energy research and is used by the majority of proposed evaluations of141

RL methods [1].142

Wind condition scenarios For all environments, we distinguish two scenarios.143

1https://nrel.github.io/floris/

4

Wind scenario I: In this scenario, all trajectories in a given environment are run under the prevailing144

wind velocity and direction at the location.145

Wind scenario II: In this scenario, we let the wind farm be subject to variations in wind change, and146

sample new free-stream wind conditions u∞, ψ∞ at the beginning of each episode:147

u∞ ∼ W(ū, λ) ψ∞ ∼ N (ψ̄, σψ) (1)

where W is a Weibull distribution modeling wind speed with shape λ and scale ū, and N is a Normal148

distribution with ψ̄ being the dominant wind direction for a given farm.149

By default, at the beginning of each simulation, all wind turbines have the yaw angle zero. This150

corresponds to the so-called greedy case, the strategy that would allow each of them to maximize its151

production in un-waked conditions.152

2.2 The MARL framework for the wind farm control problem153

A Decentralized Partially Observable Markov Decision Process (Dec-POMDP) with M interacting154

agents is a tuple {M,S,O1, . . . , OM , A1, . . . , Am, P, r}. S is the full state space of the system,155

while for any i ∈ {1, . . . ,M}, Oi is the observation space of the ith agent, with the mapping from156

the full state to the local observation defined by a function oi : S → Oi. Ai is the local action157

space of the agent, and the global action space is the product of all local action spaces A = ×Mi Ai.158

At each iteration, all agents observe their local information, chose an action and receive a reward159

r : S×A×S → R. The system then moves to a new state, the transition kernel P : S×A→ S gives160

the probability of transition from a state s ∈ S to s′ ∈ S when agents have taken global action a ∈ A.161

We call π1, . . . , πM the policies followed by each agent, where πi(ai|oi), defined the probability for162

agent i to chose action ai when observing oi. The corresponding global policy π = (π1, . . . , πM)163

simply concatenates the outputs of all local policies.164

Objective The MARL problem is to find a policy π∗ that maximizes the expectation of the165

discounted sum of rewards collected over a finite or infinite sequence of time-steps166

max
π

Es0,a0,s1,... [J] , J :=

T∑
k=0

βkrk (2)

with 0 < β < 1 the discount factor and T the number of steps in the environment, or the length of an167

episode. For the wind farm control problem, possible rewards include the total production of the farm168

or a distance to a target production. As the fatigue load measurements are also available, rewards can169

also be designed to encourage actions that preserve the turbine structure.170

State and Observation As the production of each turbine is a function of the local wind conditions171

at its rotor, a Markovian description of the full state of the system should contain the whole wind172

velocity field of the entire farm. This is so far impossible to know in practice. We rather assume173

that local measurements of wind speed and direction are available at each wind turbine, and that an174

estimate of the free-stream wind speed and direction can be accessed, but might not necessarily be sent175

to the turbines in real time. Our environments therefore distinguish between the local observations oi176

for each i ∈ {1, . . . ,M} and a global observation og . Each oi = (ui, ϕi, θi) contains a local measure177

of the wind velocity ui and direction ψi, as well as the last target value sent to each actuator θi. The178

global observation og = (oi, . . . , oM , u∞, ψ∞) contains the concatenation of all local states, as well179

as the free-stream measure of the wind u∞, ψ∞. Table 2 summarizes all observations and actions180

available with the two simulators.181

Actions WFCRL offers several ways to control wind turbines: the yaw, the pitch or torque. Yaw182

control is available on the FLORIS environments, and all three can be controlled on FAST.Farm183

environments. The yaw is the angle between a wind turbine’s rotor and the wind direction: turbines184

facing the wind have a yaw of 0° which maximizes their individual power output. Increasing the yaw185

can deflect the wake away from downstream turbines, which may increase the total production of the186

5

FLORIS FAST.Farm
Local Observations oi ui, ϕi (steady-state), yi ui, ϕi (time-dependent), yi, pi, τi

Global Observations og o1, . . . , oM , u∞, ϕ∞
Actions ∆yi ∆yi,∆pi,∆τi

Table 2: Observations (global and local) and actions available for an agent i in FLORIS and
FAST.Farm environments. yi, pi, τi refer respectively to the yaw, pitch and torque of the turbine.

wind farm. The pitch is the angle of the attack of the rotor blades with respect to the incoming wind,187

while the torque of the turbine’s rotor directly controls the rotation speed. Increasing the blade pitch188

or decreasing the torque target both decrease the fraction of the power in the wind extracted by the189

turbine, and therefore decrease the turbulence in its wake. To reflect the fact that the actuation rate of190

the wind turbines is limited by physical constraints, we conceive actions as increases or decreases in191

the actuator target value rather than absolute values, with the limits being implemented by the upper192

and lower bounds of a continuous action space.193

2.3 Learning in WFCRL194

All environments are implemented with known RL and MARL Python interfaces Gymnasium [7]195

and PettingZoo [36]. The code is open-sourced under the Apache-2.0 license.196

2.3.1 Online Learning197

Environments implemented on both FLORIS and FAST.Farm can be used in an episodic learning198

approach. This is the traditional setting of the RL problem, and we will refer to it as the Online199

Learning Task. In Wind scenario I, where agents learn to cooperate against a single set of wind200

conditions, we look at the evolution of the sum of rewards collected over an episode. In Wind scenario201

II, where a different set of wind conditions is sampled at each episode, we evaluate the policies on a202

predefined set of wind conditions and use a weighted average as the final score. This gives us our203

evaluation score:204

score(π1, . . . , πM) =

nw∑
j=1

ρj

T∑
k=0

rk (3)

where T is the length of the episode, nw is the number of wind conditions considered and the205

ρ1, . . . , ρnw are the weights on each conditions, with for all j, 0 < ρj < 1 and
∑nw

j ρj = 1. The206

wind conditions distributions on which policies are evaluated need not be identical to the one from207

which conditions were sampled during training.208

2.3.2 Transfer209

Exploration on real wind farms is costly: as prototype models are typically not available for large210

wind farms, adjusting to the real dynamics of the system will require exploring in real time on an211

operating wind farm. Every move of explorating in a suboptimal direction is a cost for the farm212

operator. Learning efficient policies offline that can quickly adapt to the real system is therefore213

critical. Since the dynamic FAST.Farm simulator is considered a higher fidelity version of the static214

simulator FLORIS, we propose to use the former as a proxy of a real wind farm to evaluate the215

robustness of policies learned on the latter, and their ability to adjust to the real dynamics of a farm.216

We will refer to this as the Transfer Task.217

2.3.3 Algorithms218

We consider two state-of-the-art algorithms IPPO (Independent PPO) and MAPPO (Multi-Agent219

PPO) introduced in [8, 39]. Both are based on the on-policy PPO algorithm [31]. In [39], it was found220

that PPO-based methods can perform very well when extended to cooperative multi-agent tasks,221

outperforming algorithms specifically designed for cooperative problems like QMIX [30]. Following222

an approach called independent learning, IPPO builds on PPO by allowing every agent to run a PPO223

algorithm in parallel. On the other hand MAPPO maintains both M agent policies taking actions224

based on local information and a shared critic, which estimates the value of a global observation. The225

6

choice of the global observation fed to the critic is an important factor influencing the performance of226

the algorithm [39]. We follow the recommendations of [39] to adapt PPO to the multi-agent case.227

They suggest to include both local and global observation features to the value function input. We228

therefore feed to our shared critic network the full global observation introduced in Section 2.2, that229

is both the of concatenation of all local observations and the free-stream wind velocity230

For implementation, we adapt the CleanRL 2 [17] baseline implementations of PPO to our multi-agent231

Petting Zoo environments. Since given a local observation the optimal policies are not identical232

for all turbines, we do not implement weight sharing between different agents.233

3 Benchmark example: the maximization of the total power production234

We consider the problem of finding the optimal yaws to maximize the total power production under235

a set of wind conditions, and taking into account the costs induced by turbine fatigue load. This236

problem is known as the wake steering problem, and is an active area of research in the wind energy237

literature [15, 16].238

3.1 Problem formulation239

Actions and observations Local observations include the local yaw and local wind statistics. The240

concatenation of all local observations along with free-stream wind statistics in the global observation241

is as described in Section 2.2. Recall that actions are defined as increase or decrease in the actuator242

target value. In this problem, all agents control their yaws, and we define the continuous action space243

[−5, 5], defining changes in yaw angle expressed in degrees. To constraint the load on the turbines244

caused by the control strategies and reduce its impact on the lifetime of the turbines, the time each245

turbine spends actuating is limited. We choose the upper bound of 10% of the time, which is the246

same upper bound value discussed in [29]. At every iteration, the time needed to change the state of247

the actuator is computed, and any action violating this condition is not allowed.248

Rewards At each iteration k, all agents receive a reward rPk which is the currently measured249

production of the wind farm in kW divided by the number of agents and normalized by the free-250

stream wind velocity:251

rPk =
1

M

M∑
i

P̂ ik
(u∞,k)3

(4)

where P̂ ik is the measured power production and u∞,k the free-stream wind velocity at time-step k.252

To discourage agents from taking risky policies damaging the turbines, we also return a load penalty253

rLk which increases with the sum of loads on all the turbine blades.254

FLORIS does not provide estimates of the loads on structures. Instead, we evaluate the impact of255

actuations on loads with a proxy based on local estimates of turbulence and velocities on the surface256

of the rotor planes. Our proxy takes into account 2 factors increasing stress on wind turbine structures257

as noted in [35]: first, the turbulence of the wind and second, the variation of velocities on the turbine258

rotor. We therefore define the load penalty in FLORIS environments as259

rLk,S =
1

M

M∑
i

 9∑
j

TIk[xi,j , yi,j] + σ(uk) + σ(vk) + σ(wk)

 (5)

where TIk is the turbulence field at time-step k, uk, vk and wk are respectively the x, y and z260

components of the velocity field at time-step k, and the xi,j define the coordinates of the 9×M grid261

points at which these values are computed for the M rotor planes. σ denotes the standard-deviation.262

For FAST.Farm, we use the estimates of the the blades’ bending moment strength as a proxy for the263

2https://github.com/vwxyzjn/cleanrl

7

(a) Ablaincourt Layout (b) Episode Reward

(c) Power (MWH) (d) Load Indicator

Figure 2: The evolution of episode reward, average power output and average load on the Ablaincourt
environment, simulated with FLORIS. A visual representation of the layout is in (a), the evolution of
the episode reward is reported (b), the power output averaged on an episode length (here T=2048) is
reported on the (c) and the loading indicator is on (d). The curves are plotted for all 5 seeds.

structural loads induced on the turbines, and define the load penalty as264

rLk,D =
1

M

M∑
i

(
3∑
j

|Mopk[i, j]|+
3∑
j

|Mipk[i, j]|

)
(6)

where Mopk is the M × 3 matrix of out-of-plane bending moments for the 3 blades of every turbine265

at time-step k, and Mipk is the corresponding matrix of in-plane bending moments.266

Both rewards are common to all turbines, and all must therefore maximize (2) with rk = (rPk −0.1rLk).267

We downscale the load penalty to account for the difference in magnitude between current production268

energy and load-induced maintenance cost for wind energy projects.269

Wind conditions To evaluate the algorithms with score (3), we need to choose weights ρj . We270

use data acquired during the SmartEole project at the location of the Ablaincourt wind farm [11].271

It consists of estimates of free-stream wind direction and velocity computed from measures taken272

during a 3 months field campaign every 10 min. Since in real conditions wind velocity and wind273

direction are correlated, we compute the bi-dimensional histogram for the two variables, taking 5 bins274

for each dimension. We obtain a set of 25 wind condition rectangle. The wind condition w1, . . . , wj275

are the center of each rectangle, and the corresponding weights ρj are defined as the frequencies at276

which wind conditions in the time series appeared in the rectangle.277

3.2 Results278

We apply algorithms IPPO and MAPPO available in WFCRL to our benchmark example. We279

distinguish two scenarios, the first (resp. second) is trained with the wind scenario I (resp. II)280

8

(a) Turb3Row1 (b) Ablaincourt

Figure 3: Evolution of the evaluation score, defined in (3), during the training of IPPO an MAPPO
on the two environments Turb3Row1 (left) and Ablaincourt (right).

described in section 2.1. Both are learned with the static simulator FLORIS. For the first scenario,281

the score is reward obtained on a single policy rollout of 2048 steps in the environment. Results with282

on the Ablaincourt layout are given in Fig. 2. For the second scenario, the score is the one defined in283

(3). The training curves for the the Ablaincourt and the Turb3Row1 layouts are illustrated in Fig. 3.284

A table detailing training scores at convergence is available in Appendix F and hyper-parameters are285

given in Appendix D286

To illustrate the Transfer case, we then deploy the learned IPPO policies on a Turb3Row1 on 900287

steps (45 minutes in simulated time) in the corresponding FAST.Farm environment. We report in288

Appendix F.1 the average percentage increase of power output and load compared to the greedy case,289

and compare it to a naive deployment of strategies learned online. Our results illustrate the difficulty290

of adapting learned policies to unseen dynamics.291

4 Limitations292

The choice of the wind farm simulators included in WFRCL relies on three criteria: the trade-off293

between fidelity and computation time, the popularity of the simulators in the wind farm energy294

community, and its open-source availability. Both FLORIS and FAST.Farm are developed and295

actively maintained by the US-based National Renewable Energy Laboratory 3, and have a large user296

base among wind energy researchers. FAST.Farm was explicitly designed to provide good fidelity297

at a limited computation cost [20]. Despite this, dynamic wind farm simulators remain slow. The298

development and open-sourcing of faster dynamic simulators will be critical. Machine-learning299

accelerated simulators could be an important step in that direction.300

5 Conclusion301

We have introduced WFCRL, the first reinforcement learning suite of environments for wind farm302

control. WFCRL is highly customizable, allowing researchers to design and run their own envi-303

ronments for both centralized and multi-agent RL. It is interfaced with two different wind farm304

simulators: a static simulator FLORIS and a dynamic simulator FAST.Farm. They can be used to305

design transfer learning strategies with the goal to learn robust policies that can adapt to unseen306

dynamics. We have proposed a benchmark example for wind power maximization with two wind307

condition scenarios that take into account the costs induced by wind turbine fatigue. We hope that308

WFCRL will help building a bridge between the RL and wind energy research communities.309

3https://www.nrel.gov/

9

References310

[1] Mahdi Abkar, Navid Zehtabiyan-Rezaie, and Alexandros Iosifidis. Reinforcement learning for311

wind-farm flow control: Current state and future actions. Theoretical and Applied Mechanics312

Letters, 13(6):100475, 2023.313

[2] Ramon Abritta. Wind power plants layouts according to arbitrary reference points, thanet, west314

of duddon sands, ormonde, westermost rough, horns rev 1 & 2, anholt, and london array [data315

set]. zenodo. https://zenodo.org/records/10927983, 2023.316

[3] Cristina L. Archer, Ahmadreza Vasel-Be-Hagh, Chi Yan, Sicheng Wu, Yang Pan, Joseph F.317

Brodie, and A. Eoghan Maguire. Review and evaluation of wake loss models for wind energy318

applications. Applied Energy, 226:1187–1207, 9 2018.319

[4] R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. G. Schepers, K. Rados, W. Schlez,320

A. Neubert, L. E. Jensen, and S. Neckelmann. Quantifying the impact of wind turbine wakes321

on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology,322

27(8):1302 – 1317, 2010.323

[5] Claire Bizon Monroc, Ana Bušić, Donatien Dubuc, and Jiamin Zhu. Actor critic agents for324

wind farm control. In 2023 American Control Conference (ACC), pages 177–183, 2023.325

[6] Sjoerd Boersma, Bart M Doekemeijer, Pieter MO Gebraad, Paul A Fleming, Jennifer Annoni,326

Andrew K Scholbrock, Joeri Alexis Frederik, and Jan-Willem van Wingerden. A tutorial on327

control-oriented modeling and control of wind farms. In 2017 American control conference328

(ACC), pages 1–18. IEEE, 2017.329

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,330

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.331

[8] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS332

Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft333

multi-agent challenge? 2020.334

[9] Zhiwen Deng, Chang Xu, Xingxing Han, Zhe Cheng, and Feifei Xue. Decentralized yaw335

optimization for maximizing wind farm production based on deep reinforcement learning.336

Energy Conversion and Management, 286:117031, 2023.337

[10] Hongyang Dong and Xiaowei Zhao. Reinforcement learning-based wind farm control: Toward338

large farm applications via automatic grouping and transfer learning. IEEE Transactions on339

Industrial Informatics, 19(12):11833–11845, 2023.340

[11] Thomas Duc, Olivier Coupiac, Nicolas Girard, Gregor Giebel, and Tuhfe Göçmen. Local341

turbulence parameterization improves the jensen wake model and its implementation for power342

optimization of an operating wind farm. Wind Energy Science, 4(2):287–302, 5 2019.343

[12] PMO Gebraad, FW Teeuwisse, JW van Wingerden, PA Fleming, SD Ruben, JR Marden, and344

L.Y Pao. Wind plant power optimization through yaw control using a parametric model for345

wake effects - a cfd simulation study. Wind Energy, 19(1):95 – 114, 2016.346

[13] T. Göçmen, F. Campagnolo, T. Duc, I. Eguinoa, S. J. Andersen, V. Petrović, L. Imširović,347

R. Braunbehrens, J. Liew, M. Baungaard, M. P. van der Laan, G. Qian, M. Aparicio-Sanchez,348

R. González-Lope, V. V. Dighe, M. Becker, M. J. van den Broek, J.-W. van Wingerden, A. Stock,349

M. Cole, R. Ruisi, E. Bossanyi, N. Requate, S. Strnad, J. Schmidt, L. Vollmer, I. Sood, and350

J. Meyers. Farmconners wind farm flow control benchmark – part 1: Blind test results. Wind351

Energy Science, 7(5):1791–1825, 2022.352

[14] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozifian, Florian353

Golemo, Chris Atkeson, Dieter Fox, Ken Goldberg, John Leonard, et al. Sim2real in robotics354

and automation: Applications and challenges. IEEE transactions on automation science and355

engineering, 18(2):398–400, 2021.356

[15] Daniel R Houck. Review of wake management techniques for wind turbines. Wind Energy,357

25(2):195–220, 2022.358

10

https://zenodo.org/records/10927983

[16] Michael F. Howland, Sanjiva K. Lele, and John O. Dabiri. Wind farm power optimization359

through wake steering. Proceedings of the National Academy of Sciences, 116(29):14495–14500,360

2019.361

[17] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,362

Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of363

deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,364

2022.365

[18] J Jonkman, P Doubrawa, N Hamilton, J Annoni, and P Fleming. Validation of FAST.farm366

against large-eddy simulations. Journal of Physics: Conference Series, 1037:062005, 6 2018.367

[19] Jason Jonkman, Sandy Butterfield, Walter Musial, and George Scott. Definition of a 5-mw368

reference wind turbine for offshore system development. Technical report, National Renewable369

Energy Lab.(NREL), Golden, CO (United States), 2009.370

[20] Jason M Jonkman, Jennifer Annoni, Greg Hayman, Bonnie Jonkman, and Avi Purkayastha.371

Development of fast. farm: A new multi-physics engineering tool for wind-farm design and372

analysis. In 35th wind energy symposium, page 0454, 2017.373

[21] Elie Kadoche, Sébastien Gourvénec, Maxime Pallud, and Tanguy Levent. Marlyc: Multi-agent374

reinforcement learning yaw control. Renewable Energy, 217:119129, 2023.375

[22] Ali C. Kheirabadi and Ryozo Nagamune. A quantitative review of wind farm control with376

the objective of wind farm power maximization. Journal of Wind Engineering and Industrial377

Aerodynamics, 192:45–73, 2019.378

[23] Jaime Liew, Tuhfe Göçmen, Wai Hou Lio, and Gunner Chr. Larsen. Model-free closed-loop379

wind farm control using reinforcement learning with recursive least squares. Wind Energy,380

2023.381

[24] Nicholas W. Miller and Kara Clark. Advanced controls enable wind plants to provide ancillary382

services. In IEEE PES General Meeting, pages 1–6, 2010.383

[25] Grigory Neustroev, Sytze PE Andringa, Remco A Verzijlbergh, and Mathijs M De Weerdt.384

Deep reinforcement learning for active wake control. In Proceedings of the 21st International385

Conference on Autonomous Agents and Multiagent Systems, pages 944–953, 2022.386

[26] NREL. Openfast documentation, 2022.387

[27] Venkata Ramakrishna Padullaparthi, Srinarayana Nagarathinam, Arunchandar Vasan, Vishnu388

Menon, and Depak Sudarsanam. Falcon-farm level control for wind turbines using multi-agent389

deep reinforcement learning. Renewable Energy, 181:445–456, 2022.390

[28] Sara C Pryor, Rebecca J Barthelmie, and Tristan J Shepherd. Wind power production from very391

large offshore wind farms. Joule, 5(10):2663–2686, 2021.392

[29] Alban Puech and Jesse Read. An improved yaw control algorithm for wind turbines via393

reinforcement learning. In Joint European Conference on Machine Learning and Knowledge394

Discovery in Databases, pages 614–630. Springer, 2022.395

[30] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob396

Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent397

reinforcement learning. Journal of Machine Learning Research, 21(178):1–51, 2020.398

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal399

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.400

[32] Coen-Jan Smits, Jean Gonzalez Silva, Valentin Chabaud, and Riccardo Ferrari. A fast.farm and401

matlab/simulink interface for wind farm control design. Journal of Physics: Conference Series,402

2626(1):012069, oct 2023.403

[33] Paul Stanfel, Kathryn Johnson, Christopher J. Bay, and Jennifer King. A distributed reinforce-404

ment learning yaw control approach for wind farm energy capture maximization. In 2020405

American Control Conference (ACC), pages 4065–4070, 2020.406

11

[34] Paul Stanfel, Kathryn Johnson, Christopher J. Bay, and Jennifer King. Proof-of-concept of a407

reinforcement learning framework for wind farm energy capture maximization in time-varying408

wind. Journal of Renewable and Sustainable Energy, 13(4), 8 2021.409

[35] A. P. J. Stanley, J. King, C. Bay, and A. Ning. A model to calculate fatigue damage caused by410

partial waking during wind farm optimization. Wind Energy Science, 7(1):433–454, 2022.411

[36] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,412

Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:413

Gym for multi-agent reinforcement learning. Advances in Neural Information Processing414

Systems, 34:15032–15043, 2021.415

[37] Kenneth Thomsen and Poul Sørensen. Fatigue loads for wind turbines operating in wakes.416

Journal of Wind Engineering and Industrial Aerodynamics, 80(1):121–136, 1999.417

[38] P. Veers, K. Dykes, S. Basu, A. Bianchini, A. Clifton, P. Green, H. Holttinen, L. Kitzing,418

B. Kosovic, J. K. Lundquist, J. Meyers, M. O’Malley, W. J. Shaw, and B. Straw. Grand419

challenges: wind energy research needs for a global energy transition. Wind Energy Science,420

7(6):2491–2496, 2022.421

[39] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.422

The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural423

Information Processing Systems, 35:24611–24624, 2022.424

[40] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforce-425

ment learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,426

2023.427

12

Checklist428

1. For all authors...429

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s430

contributions and scope? [Yes]431

(b) Did you describe the limitations of your work? [Yes] See Section 3.2 for a Discussion432

of the limitations of our work433

(c) Did you discuss any potential negative societal impacts of your work? [N/A] To the434

best of our knowledge our work does not have any potential negative societal impacts.435

(d) Have you read the ethics review guidelines and ensured that your paper conforms to436

them? [Yes] Yes, we believe our paper conform to the ethics review guidelines.437

2. If you are including theoretical results...438

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We have not439

included theoretical results440

(b) Did you include complete proofs of all theoretical results? [N/A] We have not included441

theoretical result442

3. If you ran experiments (e.g. for benchmarks)...443

(a) Did you include the code, data, and instructions needed to reproduce the main ex-444

perimental results (either in the supplemental material or as a URL)? [Yes] Yes, all445

code and instructions needed to reproduce the experimental results are included in the446

supplementary material in Appendix D, along an URL to both the environment suite447

and the training and evaluation scripts448

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they449

were chosen)? [Yes] Yes, see Appendix D as well as Section 3.2450

(c) Did you report error bars (e.g., with respect to the random seed after running exper-451

iments multiple times)? [Yes] Yes, all our results figures and tables either plot the452

curves for all seeds like in Appendix F or report error bars like in Section 3.2453

(d) Did you include the total amount of compute and the type of resources used (e.g., type454

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D455

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...456

(a) If your work uses existing assets, did you cite the creators? [Yes] Of course, for both457

simulators in Section 2.1 and base RL algorithms implementations in Section 2.3.3458

(b) Did you mention the license of the assets? [Yes] See Appendix H.1459

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]460

See Appendix C461

(d) Did you discuss whether and how consent was obtained from people whose data you’re462

using/curating? [Yes] See Appendix H.1, we only use open-source wind data and463

software dependencies464

(e) Did you discuss whether the data you are using/curating contains personally identifiable465

information or offensive content? [N/A] This is not relevant to our work.466

5. If you used crowdsourcing or conducted research with human subjects...467

(a) Did you include the full text of instructions given to participants and screenshots, if468

applicable? [N/A] We have not used crowdsourcing or conducted research with human469

subjects470

(b) Did you describe any potential participant risks, with links to Institutional Review471

Board (IRB) approvals, if applicable? [N/A] We have not used crowdsourcing or472

conducted research with human subjects473

(c) Did you include the estimated hourly wage paid to participants and the total amount474

spent on participant compensation? [N/A] We have not used crowdsourcing or con-475

ducted research with human subjects476

13

A Difference between FLORIS and FAST.Farm477

(a) FLORIS

(b) FAST.Farm

Figure 4: Wind velocity field for the simulation of our 3-turbines layout on the 2 simulators: FLORIS
and FAST.Farm.

Wind farm models serve two main purposes, in the broader literature as in WFCRL. First, when478

experiments on real wind farms or tunnel experiments on scaled farms are not possible, they are the479

only way to evaluate and compare control strategies by predicting their impact on the total power480

output of a farm. For that purpose, the value of models lie in their accuracy, and the best results are481

achieved by complex dynamic models involving costly computations. Secondly, a model of the farm482

can be used to estimate an optimal command. Here, accuracy must be balanced by tractability, and a483

constraint on computation time arises for real-time optimization. Of course, evaluating the command484

on the model used to derive it will likely overestimate its performance: it should rather be evaluated485

on an other, higher fidelity model which will serve as a substitute for the real farm.486

Static models estimate the time-averaged features of the wind flow while ignoring the dynamics487

of short-term effects, including wake propagation time and wake meandering. They rely on the488

design of an analytical solution to predict wind speed deficit at a downwind turbine with respect to an489

upstream turbine [3]. This gives them the advantage of a very low computation time, as they usually490

return a solution instantaneously. The wind farm simulation software FLORIS (NREL 2021), created491

and maintained by the National Renewable Energy Laboratory (NREL), proposes a variety of such492

models in a single Python framework, and has become a reference for wind farm control engineering.493

These parametric models combine several components to estimate the effects of turbine yaws on both494

the redirection of the wake behind the turbine and the velocity in the wake. An example of such a495

simulation can be found on Figure 4a.496

At higher accuracy and higher computational complexity is FAST.Farm [20]. It relies on OpenFAST497

(NREL 2022) to model the dynamics of each individual turbine, but considers additional physics to498

account for farm-wide ambient wind, as well as wake deficits, propagation dynamics and interactions499

between different wakes. It has been shown to be of similar accuracy with high-fidelity large-eddy500

simulations with much less computational expense [18], and it supports the implementation of501

controllers tracking a received yaw reference for each turbine. Figure 4b provides an example of502

these realistic wind fields.503

14

B Details of the FAST.Farm interface504

The Python-FAST.Farm interfacing tool relies on two interfaces with RECEIVE and SEND functions.505

Following [32] in which the authors designed an interface between FAST.Farm and Matlab based on506

the MPI communication protocol, we rely on an MPI communication channel between the Python507

and FAST.Farm processes. We choose to let the Python process spawn a new child process to launch508

the FAST.Farm simulation in the background, allowing the user to only interface with Python. The509

architecture of the interfacing tool is illustrated in Figure 5.510

At every iteration, the FAST.Farm interface retrieves 12 measures per turbine:511

• 2 wind measurements: wind velocity and direction at the entrance of the farm. The wind512

direction is estimated by subtracting the yaw estimation error from the current yaw measure.513

• The current output power of the turbine514

• The yaw of the turbine515

• The pitch of the turbine516

• The torque of the turbine517

• 6 measures of blade loads: the out-of-plane bending moment estimate for each blade, and518

the in-plane bending moment estimate on each blade519

and sends the 3 control targets - yaw, pitch, torque - to each local turbine controller. Other actuators520

that are not controlled by the RL algorithm are controlled by the default naive FAST.Farm controllers.521

Figure 5: Schema: interfacing infrastructure between FAST.Farm and Python

15

C Characteristic of all environments522

Centralized Control Decentralized Control
Floris LayoutName_Floris Dec_LayoutName_Floris

FAST.Farm LayoutName_Fastfarm Dec_LayoutName_Fastfarm
Table 3: Creating environment IDs: Prefix, Root, Suffix

For preregistered layouts, every environment is characterized by a tuple of 3 options, and every523

environment ID is a combination of the corresponding 3 parts: a prefix, a root, and a suffix.524

• The choice to formalize it as a centralized or decentralized control problem. Environments525

with centralized control are Gymnasium environments and expect global actions, i.e. vectors526

concatenating all actions, and have no prefix. Environments with decentralized control are527

PettingZoo environments and expect local actions sent by each agent. They have the prefix528

Dec.529

• The choice of the layout, i.e. the arrangement of wind turbines in the field. A list of all530

layouts is given in Table 4, and a visual overview of them in Appendix G. The name of the531

layout is the root of the environment ID.532

• The choice of a simulator. Two simulators are for now implemented in WFCRL: the static533

FLORIS and the dynamic FAST.Farm. The corresponding suffix Floris or Fastfarm is534

appended to the environment ID.535

Layout Name # Agents Description

Ablaincourt 7 Inspired by layout of the Ablaincourt farm
in France, (Duc et al, 2019)

Turb16_TCRWP 16 Layout of the Total Control Reference Wind Power Plant
(TC RWP) (the first 16 turbines)

Turb6_Row2 6 Custom case -
2 rows of 6 turbine

Turb16_Row5 16 Layout of the first 16 turbines in the
CL-Windcon project as implemented in WFSim

Turb32_Row5 32 Layout of the farm used in the
CL-Windcon project as implemented in WFSim

TurbX_Row1 for X in [1, 12] X Procedurally generated single row layout with X turbines,
spaced by 4D with the D the diameter of the turbine.

Ormonde 31 Layout of the Ormonde Offshore Wind Farm
WMR 36 Layout of the Westermost Rough Offshore Wind Farm

HornsRev1 76 Layout of the Horns Rev 1 Offshore Wind Farm
HornsRev2 92 Layout of the Horns Rev 2 Offshore Wind Farm

Table 4: Preregistered layouts: name, number of agents, and description

16

D Environment and Training procedure details536

The source code for the WFCRL package is open-sourced under the license Apache v2, and publicly537

released here www.github.com/ifpen/wfcrl-env, along with notebook tutorials and documenta-538

tion. An example of code snippet allowing the creation of the Floris Ablaincourt environment with539

decentralized control is given below:540

from w f c r l i m p o r t e n v i r o n m e n t s a s envs541

env = envs . make (" D e c _ A b l a i n c o u r t _ F l o r i s ")542

The code to reproduce all experiments is available here www.github.com/ifpen/543

wfcrl-benchmark. We report in Table 5 the hyper-parameters used for both algorithms.544

Parameter Value
learning_rate 0.0003

gamma 0.99
gae_lambda 0.95

num_minibatches 32
update_epochs 10

norm_adv True
clip_coef 0.2
clip_vloss True
ent_coef 0.0
vf_coef 0.5

max_grad_norm 0.5
target_kl None
kl_coef 0.0

hidden_layer_nn (64, 64)
num_steps 2048
anneal_lr True

batch_size 2048
minibatch_size 64
num_iterations 24

Table 5: Experiment Hyperparameters

545

The experiments were run on 3 different computers. The first computer, which has no GPU and a546

Intel Xeon Gold 6240Y processor, was used to train IPPO and MAPPO on Wind Scenario I during547

1 week. On the second computer, an internal cluster with a GPU Quadro RTX 6000 24Go, 1 week548

of compute was used to to train experiments of Wind Scenario II. The last computer which has a549

Intel Xeon Gold 6240Y processor and a GPU Quadro RTX 6000 24Go was used for training models550

during 3 days of compute on Wind Scenario I, and for evaluation purposes.551

17

www.github.com/ifpen/wfcrl-env
www.github.com/ifpen/wfcrl-benchmark
www.github.com/ifpen/wfcrl-benchmark
www.github.com/ifpen/wfcrl-benchmark

E Score: wind rose and weights552

In this section we illustrate the use of wind statistics from the SMARTEOLE dataset to extract553

wind conditions weights ρ of the evaluation score (3). In Figure 6a, we report the distribution of554

wind velocity and direction in the SMARTEOLE dataset. In Figure 6b, we show the corresponding555

extracted weights ρ for the 25 corresponding wind conditions.556

(a) Wind conditions in SMARTEOLE

(b) ρi extracted from SMARTEOLE

Figure 6: Extraction of the ρi weights from the SMARTEOLE dataset. The empirical distribution
of wind speed and direction in the data represented as a windrose is in (a), and the corresponding
extracted weights ρi given to each of the 25 wind conditions are in (b).

18

F More benchmark results557

F.1 Evaluation and transfer on FAST.Farm558

We evaluate the agents trained on the FLORIS environments by rolling out their determinist policies559

in this new environment (they always pick the likeliest action under their policy functions). On560

this task, we simulate a 900 steps episode of the Turb3_Row1 layout on FAST.Farm (environment561

Dec_Turb3_Row1_Fastfarm). The average rewards collected during the episode are in Table 6.562

For the Transfer task, we pursue the training in the new environments, and report the percentage563

change in power and load compared to the Greedy case in Figure 7 for the agents trained under IPPO.

Figure 7: Evaluation and transfer on FAST.Farm: evolution of power increase (left) and load increase
(Right) on the Dec_Turb3_Row1_Fastfarm environment with respect to the Greedy case. Standard
deviations are re

IPPO MAPPO
Turb3Row1 (Sc. 1) 1238± 24 1369± 41
Turb3Row1 (Sc. 2) 1607± 41 1369± 124

Table 6: FAST.Farm evaluation task

564

F.2 Some more training results565

In this section we report more benchmark results. The training curves of IPPO and MAPPO under566

Wind Scenario I on the Turb3_Row1 layout are in Figure 8. Table 7 summarizes the results at567

convergence: both on the total score and the increase or decrease in average power of load compared568

to the Greedy baseline, for both the Turb3_Row1 and Ablaincourt layouts.569

IPPO MAPPO
Score Power (%) Load (%) Score Power (%) Load (%)

Turb3. (Sc. 1) 3431 ± 138 +18± 5 +30± 11 3362± 135 +15± 5 +27± 12
Turb3. (Sc. 2) 5501 ± 86 - - 4757± 164 - -

Abl. (Sc. 1) 3968± 29 +5± 1 −15± 2 4035 ± 7 +7± 0.3 −16± 3
Abl. (Sc. 2) 4430 ± 22 - - 3808± 275 - -

Table 7: Results at the end of training IPPO and MAPPO, on 50k and 500k time-steps for Turb3Row1
(Turb3. in the table) and Ablaincourt (Abl. in the table) respectively. Sc. 1 (resp Sc. 2) corresponds
to the firts Wind Scenario I (resp. II).

19

(a) Episode Reward (b) Average Power Output (c) Load Indicator

Figure 8: Evolution of episode reward, average power output and average load on the layout
Turb3Row1 (top) and Ablaincourt (down) simulated with FLORIS. The evolution of the episode
reward is reported on the first column (a), the power output averaged on an episode length (here
T=2048) is reported on the second column (b) and the loading indicator is on column (c).

20

G Visual Overview of Layouts570

(a) Turb6_Row2: 6 turbines (b) Ablaincourt: 7 turbines (c) Turb16_Row5: 16 turbines

(d) Turb_TCRWP: 32 turbines (e) Ormonde: 31 turbines (f) Turb32_Row5: 32 turbines

(g) WMR: 36 turbines (h) HornsRev1: 76 turbines (i) HornsRev2: 92 turbines

(j) TurbX_Row1. X = 3 (k) X=6 (l) X = 12

Figure 9: Coordinates of each wind turbine for the pre-registered layouts in WFCRL. Distances are
in turbine diameters (126m for the NREL 5MW Reference turbine). The TurbX_Row1 toy layouts
are procedurally generated for any value of X between 1 and 12.

21

H Additional information on WFCRL571

H.1 List of dependencies572

We report in the table below the list of open-source Python packages and other open-source software573

that WCFRL relies on.574

Software License License Link
numpy Custom https://numpy.org/doc/stable/license.html
Gymnasium MIT https://github.com/Farama-Foundation/Gymnasium/blob/main/LICENSE
PettingZoo MIT https://github.com/Farama-Foundation/PettingZoo/blob/master/LICENSE
Floris Apache v2.0 https://github.com/NREL/floris/blob/main/LICENSE.txt
FAST.Farm (OpenFAST) Apache v2.0 https://github.com/OpenFAST/openfast/blob/main/LICENSE
mpi4py Custom https://github.com/erdc/mpi4py/blob/master/LICENSE.txt
Microsoft-MPI MIT https://github.com/microsoft/Microsoft-MPI/blob/master/LICENSE.txt
Open MPI BSD 3-Clause https://www.open-mpi.org/community/license.php
Seaborn BSD 3-Clause https://github.com/mwaskom/seaborn/blob/master/LICENSE.md
Matplotlib Custom - BSD-compatible https://matplotlib.org/stable/project/license.html
PyYAML MIT https://github.com/yaml/pyyaml/blob/main/LICENSE
Pandas BSD 3-Clause https://github.com/pandas-dev/pandas/blob/main/LICENSE

H.2 Licence575

The WFCRL package is licensed under the Apache v2 license. The text of the license can be found576

here: https://github.com/ifpen/wfcrl-env/blob/main/LICENSE.577

H.3 Responsability578

The authors bear all responsibility in case of violation of rights.579

22

https://numpy.org/doc/stable/license.html
https://github.com/Farama-Foundation/Gymnasium/blob/main/LICENSE
https://github.com/Farama-Foundation/PettingZoo/blob/master/LICENSE
https://github.com/NREL/floris/blob/main/LICENSE.txt
https://github.com/OpenFAST/openfast/blob/main/LICENSE
https://github.com/erdc/mpi4py/blob/master/LICENSE.txt
https://github.com/microsoft/Microsoft-MPI/blob/master/LICENSE.txt
https://www.open-mpi.org/community/license.php
https://github.com/mwaskom/seaborn/blob/master/LICENSE.md
https://matplotlib.org/stable/project/license.html
https://github.com/yaml/pyyaml/blob/main/LICENSE
https://github.com/pandas-dev/pandas/blob/main/LICENSE
https://github.com/ifpen/wfcrl-env/blob/main/LICENSE

	Introduction
	WFCRL environments suite
	The simulation environments
	The MARL framework for the wind farm control problem
	Learning in WFCRL
	Online Learning
	Transfer
	Algorithms

	Benchmark example: the maximization of the total power production
	Problem formulation
	Results

	Limitations
	Conclusion
	Difference between FLORIS and FAST.Farm
	Details of the FAST.Farm interface
	Characteristic of all environments
	Environment and Training procedure details
	Score: wind rose and weights
	More benchmark results
	Evaluation and transfer on FAST.Farm
	Some more training results

	Visual Overview of Layouts
	Additional information on WFCRL
	List of dependencies
	Licence
	Responsability

