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ABSTRACT

The predominant approach for training web navigation agents gathers human
demonstrations for a set of popular websites and hand-written tasks, but it is be-
coming clear that human data are an inefficient resource. We develop a pipeline to
facilitate Internet-scale training for agents without laborious human annotations.
In the first stage, an LLM generates tasks for 150k diverse websites. In the next
stage, LLM agents complete tasks and produce trajectories. In the final stage, an
LLM reviews the trajectories and judges their success. Language models are com-
petitive with human annotators, detecting and filtering out harmful content with
an accuracy of 97%, generating feasible tasks with an 89% rate, and judging suc-
cessful trajectories with an 82.6% accuracy. Scaling the pipeline, agents based on
Llama 3.1 70B solve 16.7% of tasks for 150k sites. Training on the data generated
by our pipeline is competitive with training on human demonstrations. In data-
limited settings derived from Mind2Web and WebLINX, we improve Step Accu-
racy by up to +89.5% and +122.1% respectively for agents trained on mixtures of
data from our pipeline, and human data. When training agents with all available
human data from these benchmarks, agents fail to generalize to diverse real sites,
and adding our data improves their generalization by +149.0% for WebLINX and
+156.3% for Mind2Web. Code will be available at: data-for-agents.github.io.

1 INTRODUCTION

The predominant approach to training LLM-based web navigation agents is to collect human demon-
strations on a set of manually curated websites and tasks (Deng et al., 2023; Zhou et al., 2024b; Putta
et al., 2024; Koh et al., 2024a; Liu et al., 2024; Lù et al., 2024; Rawles et al., 2023). Human data can
be laborious to collect and becomes costly to scale as the breadth of skills that users require from
language model agents grows. There are more than three-hundred million sites on the Internet (The
Common Crawl Foundation, 2024), and the range of sites that researchers can manually prepare for
human annotation represents a tiny fraction of the Internet. The key problem is that human data can
become unreliable at scale. Human-written web navigation tasks are highly effective for popular
sites, but reliability drops for sites with lower popularity due to annotators’ lack of familiarity. For
these sites with lower popularity, which represent the majority of sites on the internet, human-written
web navigation tasks are feasible only 40% of the time (discussed in Section 4), requiring a costly
manual verification step. For the same pool of sites, language models improve feasibility rates to
more than 80%. There is a growing need to automate data pipelines for the next generation of agents
trained at internet scale. We address a key challenge by reducing the dependency on human data in
the training pipelines for LLM agents. We develop an automatic data pipeline that aims to facilitate
Internet-Scale Training for Agents, which we shorten to InSTA—a pipeline that relies on synthetic
web navigation tasks proposed, attempted, and evaluated by language models.

Our method operates in three stages. In the first stage, we employ a language model to propose
candidate web navigation tasks for an agent to perform across 150k live sites on the Internet. Current
works are limited to 200 popular sites (Lù et al., 2024; Rawles et al., 2023; Deng et al., 2023) that
human annotators are likely to be familiar with. Language models help us scale to 1,000 times
more sites than current efforts, with better coverage of real-world sites. One major consideration
when scaling up training for agents is safety: building safe agents requires that we avoid sites with
harmful, unsafe, or dangerous content. We evaluated the ability of language models to detect such
content and aggressively filtered out 85% candidates from the initial 1M sites to 150k sites that are
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Figure 1: Overview of the proposed agent pipeline. We develop a pipeline for training web navigation
agents at internet scale using tasks proposed, attempted, and evaluated by pretrained large language models.
We generate 150k diverse tasks across 1M internet sites. Code for our data generation pipeline, and traces for
agent rollouts will be available on our website: data-for-agents.github.io.

judged safe by language models. These models succeed at detecting safe content with an accuracy
of 97%, compared to 75% human accuracy. With tasks generated across a safe and diverse set of
websites, we proceed to run language model agents to attempt the generated tasks.

In the second stage of the pipeline, a language model agent attempts to complete tasks using a web
browser. We provide the entire Playwright API to the agent, which operates the browser by gener-
ating function calls in the Playwright API, a standard choice in recent web navigation benchmarks
(Chezelles et al., 2024; Du et al., 2024; Drouin et al., 2024). While existing LLM agents can be
directly applied to our tasks, measuring their success presents another challenge: sites organize
data in bespoke formats. Previous efforts circumvent this by enlisting human labelers to review at-
tempts manually and judge their success (Lù et al., 2024; Deng et al., 2023), or by designing sites
for benchmarking where formats are consistent (Zhou et al., 2024b; Koh et al., 2024a). However,
neither approach scales efficiently, and human annotators may not be reliable for sites they are not
familiar with in the tail of the distribution. In the third stage of the pipeline, we scale the evalua-
tion using language models. We employ LLMs to judge (Lightman et al., 2024) whether a task is
solved by the final timestep and obtain an accuracy of up to 93.1% in detecting successful trajecto-
ries for the most confident predictions. Llama-3.1-70B-Instruct solves 16.7% of zero-shot tasks with
a judge confidence of conf = 1. In data-limited settings derived from Mind2Web and WebLINX,
we improve Step Accuracy by up to +89.5% and +122.1%, respectively, when training agents on
mixtures of data from our pipeline and human data. When training agents with all human data from
these benchmarks, agents fail to generalize to diverse real sites, and adding our data improves their
generalization by +149.0% for WebLINX and +156.3% for Mind2Web.

Our work develops InSTA, an automatic data pipeline that aims to facilitate Internet-scale training
for agents. Driven by pretrained language models, we generate web navigation tasks for 150k live
websites, run LLM agents, and judge their success. By removing humans from the agent pipeline,
we can scale and extend coverage towards sites where human data is less reliable. We present an
analysis to improve safety and show that our data can improve data-efficiency and generalization
when training agents. Code will be available at: data-for-agents.github.io.

2 RELATED WORKS

Language Model Agents. There is an emerging paradigm in modern NLP using language mod-
els (Radford et al., 2019; Brown et al., 2020; Touvron et al., 2023a;b) as the backbone for agents
(Andreas, 2022). These models show impressive reasoning capabilities (Bubeck et al., 2023; Zhong
et al., 2024; Valmeekam et al., 2024) that allow them to generalize to downstream applications, such
as web navigation, where text formats differ significantly from their training data. Search algorithms
provide a secondary axis to improve the reasoning capabilities of language model agents (Yao et al.,
2023b; Besta et al., 2024; Koh et al., 2024b; Zhou et al., 2024a) by providing an explicit algorithmic
scaffold and allowing test-time compute to improve reasoning steps (Snell et al., 2024; Zhong et al.,
2024). Although most of the work focuses on running language models as zero-shot agents, fine-
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tuning language models to improve their effectiveness as agents is becoming popular (Putta et al.,
2024; Zeng et al., 2023; Zhang et al., 2023; Hong et al., 2023; Xie et al., 2024; Wang et al., 2024)
as target benchmarks are becoming more difficult for zero-shot language models.

Agent Pipelines. There are a growing number of agent pipelines aimed at fine-tuning language
models to improve their effectiveness as agents (Mitra et al., 2024; Zeng et al., 2023; Putta et al.,
2024; Chen et al., 2023; Ou et al., 2024). However, driven by the limited data available, many
such works train on data with significant overlap with their test environment, either with different
tasks for the same environment configuration as the test setting (Deng et al., 2023), or the same
tasks (Putta et al., 2024). We instead consider a setting where tasks and environment configurations
are entirely separate between training and testing, creating a strong train-test split that follows rec-
ommended practice. This presents a challenge: the web navigation data for training LLM agents
is limited (Deng et al., 2023; Lù et al., 2024). We address this challenge by increasing the scale
of data collection and better coverage of the distribution of real-world sites. We train on diverse
tasks generated by our pipeline and successfully transfer agents trained on our data to downstream
benchmarks while maintaining a strong train-test split. Our training procedure resembles a modified
FireAct (Chen et al., 2023), where language models jointly propose and evaluate tasks for agents.

Agent Datasets. The majority of datasets for training web navigation agents rely on human an-
notators to create tasks (Zhou et al., 2024b; Koh et al., 2024a; Rawles et al., 2023), and provide
demonstrations (Deng et al., 2023; Lù et al., 2024; Rawles et al., 2023; Shen et al., 2024). This ap-
proach has limits, as the breadth and diversity of tasks researchers can manually curate are dwarfed
by the volume of sites on the Internet. There are more than three-hundred million sites on the Inter-
net according to The Common Crawl Foundation (2024), and existing datasets are limited to about
150 popular sites that human annotators are already familiar with (Deng et al., 2023; Lù et al., 2024;
Shen et al., 2024). There are more than 1,000,000 times more sites that could be available if we
can efficiently harness this previously untapped resource. However, most sites are relatively obscure
and human annotators are unreliable for sites they are not already familiar with. Finding suitable
annotators becomes impractical at this massive scale, so we adapt language models to propose, at-
tempt, and evaluate web navigation tasks. Although we are not the first to consider synthetic data
for training agents (Gandhi et al., 2024; Ou et al., 2024; Setlur et al., 2024; Tajwar et al., 2024), we
have developed a key approach to harness internet-scale data efficiently.

Language Model Judges. Core to our pipeline is a language model evaluator. Using language
models to judge the correctness of responses is becoming popular to improve accuracy for LLMs
(Li et al., 2024), and applications include verifying reasoning steps (Zhang et al., 2024), rejection
sampling (Snell et al., 2024; Sun et al., 2024), prioritizing frontier nodes in search algorithms (Zhou
et al., 2024a; Koh et al., 2024b), filtering out harmful responses (Inan et al., 2023), providing feed-
back for response improvement (Madaan et al., 2023; Paul et al., 2024; Patel et al., 2024; Yuksek-
gonul et al., 2024), and providing ratings for alignment (Lee et al., 2024; Ouyang et al., 2024). Our
use of language models to evaluate agent tasks is inspired by the generative verifier in Zhang et al.
(2024), and modified from the multimodal verifier in He et al. (2024), where our language model
predicts a confidence score that a task is solved, which is used to identify successful attempts.

3 LANGUAGE MODEL AGENTS

Language model agents are a class of decision-making agents represented by πLLM(at|st, c), a pol-
icy that processes multimodal observations st (from a web environment in our case) and predicts
textual actions at to complete a task c. Underneath this abstraction, a large language model (LLM)
generates actions via the next-token prediction, conditioned on a system prompt xsys.

at = f text→act( LLM([ xsys, c,Enc(st) ])
)

(1)

Environment representations for observations and actions typically differ from the expected input
format of the language model (typically images and text), and functions are introduced that map the
observations to a multimodal prompt Enc(·), and parse actions from the language model generated
response f text→act(·). For web navigation, the environment state st is HTML DOM, and is often
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formatted as raw HTML code, an Accessibility Tree, Set-of-marks, or screenshots (Zhou et al.,
2024b; Koh et al., 2024a; Chezelles et al., 2024; Shen et al., 2024). In this work, we employ an off-
the-shelf HTML-to-Markdown parser to convert observations into a textual format. Action formats
vary between works, and we build on Schick et al. (2023)’s function-calling framework, where a
language model generates code that is parsed into a function name and corresponding arguments.
Given a set of strings L, and a set of function argument values G, the set of actions A is:

A =
(
Lfunc × (Larg1 ×Garg1)× (Larg2 ×Garg2)× · · ·

)
(2)

where Lfunc is the set of function names in our API, and function arguments have a name and value
(Larg1×Garg1). We provide agent access to the entire Playwright API (Microsoft, 2024), a Microsoft-
developed browser automation library that wraps around a Chromium web browser. The agent’s goal
is to complete a web navigation task specified via a natural language instruction c ∈ L, starting from
an initial URL, and operating the browser via function calls to the Playwright API until the task is
complete, after which point the agent calls stop with an optional answer:

astop =
(
“stop”, (“answer”, “I am done”)

)
(3)

We prompt the language model backbone to generate actions wrapped in a JSON code block for
straightforward parsing. The action parser f text→act consists of a regex template that matches the
first JSON code block, such as the example in Figure 1, followed by JSON decoding of the string
contents within the code block. When parsing fails due to invalid syntax, we generate a new response
until parsing succeeds. Equipped with a language model agent that makes calls to the Playwright
API, we face a crucial roadblock that impedes scaling: obtaining large and diverse data.

4 INTERNET-SCALE TASK GENERATION

Building internet-scale agents requires a diverse scaffold of tasks and environment configurations
beyond what can be attained via manually curated examples annotated by humans. We develop a
pipeline to efficiently harness vast quantities of sites on the Internet that aims to facilitate Internet-
Scale Training for Agents, shortened to InSTA. Our pipeline uses pretrained language models to
generate, attempt, and evaluate synthetic web navigation tasks for a more diverse pool of sites than
current efforts that rely on tasks designed by researchers (Deng et al., 2023; Zhou et al., 2024b; Putta
et al., 2024; Koh et al., 2024a; Liu et al., 2024; Lù et al., 2024; Rawles et al., 2023; He et al., 2024).
Human data is a valuable resource, but can be inefficient to gather. Our work shows that language
models can be as accurate as human annotators. By removing human data from the agent pipeline,
we can improve the safety and reliability of tasks, and efficiently scale task generation to 1M sites.

4.1 LANGUAGE MODEL TASK PROPOSER

In the first stage, we scale the generation of web navigation tasks to 1M diverse websites using a
Language Model Task Proposer. Shown in Figure 2, the task proposer serves two key functions in
the pipeline: (1) filtering out harmful content and websites that cannot be safely annotated, and (2)
proposing realistic web navigation tasks that a hypothetical user might want to accomplish.

Model Details. We utilize pretrained and frozen language models that conform to a chat interface
and accept a system prompt xsys, and a series of in-context examples through interleaved user and
assistant prompts xusr and xast. The system prompt used for task generation is shown in Figure 2,
and outlines all cases for which sites are considered unsafe for annotation. We consider the Llama
3.1 family of LLMs from Meta (Grattafiori et al., 2024; Touvron et al., 2023b;a), the GPT family
of LLMs from OpenAI, and the Gemini family of LLMs from Google. Inference is served using
vLLM (Kwon et al., 2023) for the Llama series of models. We employ a sampling temperature of
0.5, and a maximum budget of 64 newly generated tokens; all other parameters are kept as defaults
in the OpenAI chat completions API, which is used to make inference calls to all LLMs.

Prompt Details. The goal of the task proposer is to accurately detect unsafe websites and generate
realistic web navigation tasks when appropriate. We prompt the task proposer with the system
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social media sites, and domains that are not intended for user-access, such as API endpoints and CDNs.

## Here are some domains to provide tasks for:

* `www.amazon.com`: `Find the price of the 24in LG Ultragear Monitor.`

* `www.wikipedia.org`: `Look up the history of the Eiffel Tower on Wikipedia.`

## Here are some domains to skip:

* `fbcdn.net`: `N/A`

* `api.github.com`: `N/A`

Tasks should not require external knowledge, not modify the state of the web, and should not require logging 

in or creating an account. For each of the following domains, provide a realistic, and specific task that a user 

could reasonably accomplish in a single session on the website, and limit your response to 20 words.

Language Model Task Proposer

harmful-website.com

Figure 2: Task proposal and filtering for 150k live websites. Starting from 1,000,000 websites, we employ
a pretrained language model that marks sites as safe/unsafe for annotation, and assigns a realistic task that a
hypothetical user might want to accomplish on each site. The task proposer aggressively filters out 85% of
websites from the pipeline, resulting in 150k safe websites annotated with realistic tasks.

prompt in Figure 2, a series of in-context examples (listed in Appendix E), and a final user prompt
containing just the URL of the target website. We instruct the LLM via the system prompt to provide
a task for the target website or to return “N/A” and mark the website as not suitable for annotation.
This format produces a throughput of 20 websites per second for Llama 3.1 70B served on 16 GPUs
with vLLM, processing 1M sites in 14 hours. The efficiency of stage one aids in scaling to large
numbers of sites on the Internet, but we must not compromise safety and reliability for efficiency.
To understand the trade-offs presented by our task proposal approach, we compare against typical
human annotators at detecting safe websites for annotation and creating realistic agent tasks.

4.2 IMPROVING SAFETY Method Acc. Prec. Recall

Llama 3.1 70B 85% 0.77 1.00
GPT-4o 95% 0.91 1.00
Gemini 1.5 Pro 97% 0.96 0.98

Human Baseline 75% 0.71 0.84

Figure 3: Accuracy for detecting harmful sites.
We select 100 website domains, where 50 are safe,
and 50 are unsafe based on the criteria in Figure 2.
Pretrained language models exceed the accuracy and
recall of human annotators at detecting harmful sites
that are unsuitable for training agents safely.

Language models beat single pass non-expert an-
notators at detecting websites suitable for anno-
tation. To evaluate detection performance, we
employ the task proposer as a classifier and con-
sider sites where the task proposer returns “N/A”
as the positive class. We curate 50 safe and 50
unsafe domains, based on the filtering conditions
outlined in the system prompt in Figure 2 (se-
lected websites and their URLs are listed in Ap-
pendix E). We generate task proposals for each
site and measure the accuracy, precision, and re-
call of our safety filter compared to human anno-
tators. The annotators are asked to classify each site as suitable or unsuitable for annotation based
on the website URL, and the criteria listed in the system prompt the same observations given to the
task proposer to ensure a fair comparison. Results are presented in Table 3.

Understanding The Results. Language models outperform human annotators by 29.3% in accu-
racy, 35.2% in precision, and 31.0% in recall at detecting harmful sites. While larger models like
Gemini 1.5 Pro show the best overall accuracy, smaller models like Llama 3.1 70B display high
recall with a minor decrease in accuracy. Recall matters most for safety filters, and these results
suggest that Llama 3.1 70B is sufficient to detect most harmful sites with high confidence.

4.3 IMPROVING RELIABILITY

Language models are more reliable than human annotators at creating realistic web navigation tasks.
To evaluate reliability, we measure the rate at which human workers are able to perform web navi-
gation tasks generated by our pipeline. We curate a set of 100 safe website domains (different from
the safety experiment, refer to Appendix E), generate task proposals using our pipeline, and measure
the rate of self-reported task completion for human workers performing tasks. Workers start from

5



the initial website URL in their browser and navigate pages using their mouse and keyboard while
staying on the original site, reporting once the task is complete or once they believe the task is not
feasible on the current site. We compare the feasibility rates for tasks generated by our pipeline and
tasks written by human annotators given the criteria listed in Figure 2. Results are shown in Table 4.

Method Feasibility Rate

Llama 3.1 70B 75%
GPT-4o 85%
Gemini 1.5 Pro 89%

Human Baseline 54%

Figure 4: Expert feasibility of proposed tasks.
We generate tasks for 100 safe websites (listed in
Appendix E), and measure the completion rates of
human workers attempting to perform the generated
tasks in their browser. Language models exceed the
performance of human annotators at creating feasible
web navigation tasks for agents.

Understanding The Results. Language mod-
els outperform human annotators by 64.8% at
creating feasible web navigation tasks. Larger
models like Gemini 1.5 Pro display the best feasi-
bility rates, but the smaller model Llama 3.1 70B
still outperforms the human annotators by 38.9%.
To understand the relationship between the pop-
ularity of the site being annotated and the relia-
bility of human-written tasks, we conduct an ex-
periment in Figure 5 comparing PageRank values
(Page et al., 1999) of sites according to the official
June 2024 host-level web graph from The Com-
mon Crawl Foundation (2024), versus the feasi-
bility rates of the proposed tasks from Table 4.

Although human annotators match the reliability
of LLMs at creating feasible web navigation tasks for popular sites, LLMs outperform human an-
notators by 157.1% for less popular sites with low PageRank values. As obscurity increases, human
annotators are less familiar with the sites, and the reliability of their task proposals decreases by
55.7%, whereas the reliability of tasks generated by LLMs remains relatively constant. This differ-
ence suggests that we should employ language models to ensure that task proposals are reliable as
we begin to scale agents to vast numbers of sites on the Internet. However, where do we acquire this
large and diverse set of websites to process for annotation?

4.4 SCALING TO 150,000 SITES
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Figure 5: Feasibility rates vs PageRank values.
We visualize PageRank values, a proxy for the pop-
ularity of websites, versus the expert feasibility rates
of proposed web tasks. Human-written tasks perform
on par with LLMs for popular sites, but as target sites
become less popular and annotators are less familiar
with them, LLMs begin to outperform human anno-
tators at creating feasible tasks for agents.

We propose to leverage open-source crawls of the
internet for large-scale task generation. As of
June, 2024, the web graph released by The Com-
mon Crawl Foundation (2024) contains more than
300 million unique hosts, which we adapt to a
data source for agents. In particular, we sort hosts
by their PageRank values, and select the top 1M
sites for task generation. CommonCrawl is likely
to contain many sites not suitable for annotation,
and the experiments in Section 4.2 illustrate that
the safety filter in the task proposer can detect
and remove them effectively. In our configura-
tion, task generation with Llama 3.1 70B takes
14 hours for 1M sites served with vLLM (Kwon
et al., 2023) on two 8-GPU nodes. Sections 4.2
and 4.3 show Llama 3.1 70B outperforms human
annotators in safety and reliability, and we can serve it locally at significantly reduced cost compared
to proprietary LLMs with a marginal loss in quality. The distribution of tasks generated with Llama
3.1 70B for the top 1M sites in the CommonCrawl PageRank are visualized in Figure 6.

Understanding The Data. The task proposer filters out 85% of the sites in CommonCrawl, result-
ing in 150k sites that can be safely assigned tasks for agents. Visualized in Figure 6, our distribution
is denser than human-written tasks, has a wide coverage of real-world sites, and diverse categories
of tasks. We automatically label task categories (procedure in Appendix E) and find that 89% of
categories have fewer than the mean of 16.9 tasks per category. Top categories include news search,
recipe search, product lookup, tutorial search, event schedules, health information, and many more.
Refer to Appendix E for the top categories. Empowered by this large and diverse collection of tasks
across the internet, we can start building internet-scale agents.
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Figure 7: Automatic evaluation for agents with language model judges. Building on the large and diverse
set of tasks generated by the pipeline, we employ pretrained language models to attempt and evaluate web
navigation tasks. We dispatch language model agents to perform tasks by making calls to the Playwright API.
We then employ language model judges to evaluate the trajectories.

5 INTERNET-SCALE AGENTS

Tasks via Llama 3.1 70B Human-Written Tasks

Figure 6: Distribution of 150k tasks. We compare
the distribution of tasks generated by our pipeline
(blue points) to the Mind2Web (Deng et al., 2023)
dataset (orange points) via textual features extracted
by a sentence embedding model, and projected in 2D
with UMAP (McInnes et al., 2020). Our distribution
is denser than human-written tasks, and has broad
coverage of diverse real-world sites and tasks.

In the next stage, we begin to scale LLM agents
to diverse web navigation tasks across the web.
Shown in Figure 7, we initialize a web brows-
ing environment to the URL provided to the
task proposer in Section 4, and run a language
model agent to complete tasks by generating
function calls in the Playwright API. For evalu-
ation, current efforts typically use human-written
constraints based on the final URL or page state
(Zhou et al., 2024b; Koh et al., 2024a; Yao et al.,
2023a; Drouin et al., 2024), but it can be difficult
to scale these. Recall from Figure 5 that human
annotators are less reliable for sites lower in the
PageRank, where their familiarity is reduced. Results in section 4 showed that language models beat
humans in safety and reliability for task generation. As we begin to scale agents to diverse websites
from the internet, can we replace human-written criteria with language model judgments for effi-
cient evaluation? Their robustness remains an important unresolved question, and current work only
considers language model judges for a limited set of popular websites (He et al., 2024). We begin
by validating the robustness of language models for evaluating diverse internet tasks.

5.1 EVALUATION WITH LANGUAGE MODELS

We model the process of evaluating trajectories from agents as a classification problem, where the
goal is to estimate the probability rT that a task c is solved by the final timestep. Conditioned on
a system prompt ysys, a task c, the history of previous actions a1, · · · ,aT and the final observation
from a web browsing environment sT formatted in text, we generate a completion using a language
model and employ a function f text→val(·) to parse the estimated probability.

rT = f text→val( LLM([ ysys, c,a1, · · · ,aT ,Enc(sT ) ])
)

(4)

Building on the sites used to measure reliability in Section 4.3, we conduct an experiment to measure
the accuracy of language models to detect successful web navigation trajectories. We run agents on
tasks generated by Llama 3.1 70B for the 100 sites in Section 4.3, and prompt language models
to estimate the probability that tasks are solved rT based on Equation 4. We then conduct human
evaluations for the trajectories and manually assign binary success labels. Accuracy is calculated by
applying a threshold to the predictions rT > 0.5 to assign classes and tracking the rate at which the
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predictions agree with human labels. To understand robustness for sites of varying popularity, we
report the accuracy of language models versus the PageRank of the corresponding sites. Similarly,
to understand the ability of language models to judge their own uncertainty, we report their accuracy
versus their prediction confidence, given by conf = 2 · |rT −1/2| (twice the total variation distance
from the uniform distribution to the predicted distribution). Results are shown in Figure 8.
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Figure 8: Language models are robust evaluators.
We measure the accuracy of language models for de-
tecting successful trajectories, and find that accuracy
remains stable relative to PageRank values (left plot).
As models become more confident, their accuracy
improves (right plot), suggesting confidence is a use-
ful proxy for the reliability of their predictions.

Understanding The Results. Language mod-
els are robust evaluators for web navigation tasks.
Accuracy remains stable relative to PageRank
values, suggesting that language models are ef-
fective for sites that typical human annotators are
less familiar with. The best results are obtained
with an evaluator based on GPT-4o, which attains
an accuracy of 82.6%, compared to 81.7% for
Llama 3.1 70B, and 78.0% for Gemini 1.5 Pro.
Although the accuracy is robust to PageRank, the
accuracy is highly informed by confidence. Lan-
guage models show improved accuracy as their
confidence improves, suggesting that they can ef-
fectively determine when their predictions are re-
liable. When considering predictions with conf
= 1, the Llama 3.1 70B evaluator displays a com-
pelling 93.1% accuracy, 0.87 precision, and 0.82 recall for detecting successful trajectories. Now
that we can efficiently and accurately judge trajectories, we can begin to scale language model
agents to diverse internet tasks and track their success. Harnessing this judge, we can study the
current abilities and shortcomings of language model agents spanning 150k websites.

5.2 SCALING TO 150,000 AGENTS
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Figure 9: Scaling LLM agents to 150k live sites.
We run agents based on Llama 3.1 70B to complete
tasks generated by our pipeline. We estimate suc-
cess probabilities using a language model evaluator
(left plot), and estimate probabilities agents are on the
right track (right plot). 16.7% of tasks are estimated
to be successful with conf = 1, and the spread of
probabilities suggests data spans many difficulties.

We scale language model agents to 150k live sites
in diverse domains across the Internet and attempt
to complete 150k web navigation tasks generated
by our pipeline. Shown in Figure 9, we evalu-
ate the trajectories using a Llama 3.1 70B judge
and run agents based on Llama 3.1 70B, selected
because this model demonstrates high accuracy
in Figure 8, and running currently available pro-
priety models would be prohibitively expensive
at this scale (see Appendix K for a cost analysis
with different LLMs). We find that agents solve
16.7% of tasks with a model confidence of conf
= 1. Furthermore, we observe that 35k tasks are judged to be on the right track with a confidence
of conf = 1, suggesting that these could be solved if a larger computing budget was allocated.
The spread along the x-axis in both plots in Figure 9 suggests that our tasks cover a broad range of
difficulties, and working to solve them presents an opportunity to improve the capabilities of LLM
agents. We observe that, when judging success, our evaluator tends to prefer binary predictions
with high confidence values, suggesting that this subset of predictions is accurate based on Figure 8
results. Analyses for the agents that produced Figure 9 are presented in Appendix F.

Assembling the stages of the InSTA pipeline, we first generated tasks for 1M diverse sites across the
Internet, we then dispatched language model agents to complete tasks for 150k sites marked as safe,
and finally we evaluated the trajectories using a language model judge. Equipped with this large and
diverse source of data, we seek to understand the utility of the data for training agents.

6 TRAINING AGENTS

We compare the performance of agents trained on data from the InSTA pipeline to agents trained
on human demonstrations from WebLINX (Lù et al., 2024) and Mind2Web (Deng et al., 2023),
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two recent and popular benchmarks for web navigation. Recent works that mix synthetic data with
real data control the real data sampling probability in the batch preal independently from data size
(Trabucco et al., 2024). We employ preal = 0.5 in few-shot experiments and preal = 0.8 otherwise.
Shown in Figure 9, our data have a wide spread in performance, so we apply several filtering rules to
select high-quality training data. First, we require the evaluator to return conf = 1 that the task was
successfully completed, and that the agent was on the right track (this selects data where the actions
are reliable, and directly caused the task to be solved). Second, we filter data where the trajectory
contains at least three actions. Third, we remove data where the agent encountered any type of
server error, was presented with a captcha, or was blocked at any point. These steps produce 7, 463
high-quality demonstrations in which agents successfully completed tasks on diverse websites. We
sample 500 demonstrations uniformly at random from this pool to create a diverse test set, and
employ the remaining 6, 963 demonstrations to train agents on a mix of real and synthetic data.

6.1 IMPROVING DATA-EFFICIENCY
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Figure 10: Data from InSTA improves efficiency.
Language model agents trained on mixtures of our
data and human demonstrations scale faster than
agents trained on human data. In a setting with 32 hu-
man actions, adding our data improves Step Accuracy
by +89.5% relative to human data for Mind2Web, and
+122.1% relative to human data for WebLINX.

In a data-limited setting derived from WebLINX
(Lù et al., 2024) and Mind2Web (Deng et al.,
2023), agents trained on our data scale faster
with increasing data size than human data alone.
Without requiring laborious human annotations,
the data produced by our pipeline leads to
improvements on Mind2Web that range from
+89.5% in Step Accuracy (the rate at which the
correct element is selected and the correct action
is performed on that element) with 32 human ac-
tions, to +77.5% with 64 human actions, +13.8%
with 128 human actions, and +12.1% with 256
human actions. For WebLINX, our data improves
by +122.1% with 32 human actions, and +24.6%
with 64 human actions, and +6.2% for 128 human
actions. Adding our data is comparable in perfor-
mance gained to doubling the amount of human
data from 32 to 64 actions. Performance on the
original test sets for Mind2Web and WebLINX
appears to saturate as the amount of human data
increases, but these benchmark only test agent ca-
pabilities for a limited set of 150 popular sites.

6.2 IMPROVING GENERALIZATION
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Figure 11: Our data improves generalization.
We train agents with all human data from the We-
bLINX and Mind2Web training sets, and resulting
agents struggle to generalize to more diverse test data.
Adding our data improves generalization by +149.0%
for WebLINX, and +156.3% for Mind2Web.

To understand how agents trained on data from
our pipeline generalize to diverse real-world
sites, we construct a more diverse test set than
Mind2Web and WebLINX using 500 held-out
demonstrations produced by our pipeline. Shown
in Figure 11, we train agents using all human data
in the training sets for WebLINX and Mind2Web,
and compare the performance with agents trained
on 80% human data, and 20% data from our
pipeline. Agents trained with our data achieve
comparable performance to agents trained purely
on human data on the official test sets for the We-
bLINX and Mind2Web benchmarks, suggesting
that when enough human data are available, syn-
thetic data may not be necessary. However, when
evaluated in a more diverse test set that includes 500 sites not considered by existing benchmarks,
agents trained purely on existing human data struggle to generalize. Training with our data improves
generalization to these sites by +149.0% for WebLINX agents, and +156.3% for Mind2Web agents,
with the largest gains in generalization Step Accuracy appearing for harder tasks.
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7 CONCLUSION

We present a pipeline that unlocks new scaling potential for language model agents by generat-
ing internet-scale web navigation data for diverse sites. We employ pretrained language models to
generate, attempt, and evaluate web navigation tasks at scales beyond what humans can manually
annotate. Our results show that language models outperform human annotators at detecting safe
websites, and proposing feasible web navigation tasks. In addition, we find that language models
can judge successful web navigation trajectories with an accuracy up to 93.1% for their most con-
fident predictions. We scale task generation to the top 1M sites in the CommonCrawl PageRank,
and test agents on 150k live web navigation tasks. Agents based on Llama 3.1 70B solve 16.7%
of these tasks zero-shot. In data-limited settings derived from Mind2Web and WebLINX, we im-
prove Step Accuracy by up to +89.5% and +122.1% respectively for agents trained on mixtures of
data from our pipeline, and human data. When training agents with all available human data from
these benchmarks, agents fail to generalize to diverse real sites, and adding our data improves their
generalization by +149.0% for WebLINX and +156.3% for Mind2Web.

Our work reveals several exciting directions for future work. First, our work can be scaled further.
The latest CommonCrawl release contains data for more than 300 million sites, suggesting another
1,000 times more data than we explored could be available for training agents by scaling the pipeline.
In addition, our language model judge was employed offline, and its high accuracy suggests that it
could be used to guide an online algorithm. Finally, we considered primarily text-based agents in
this work, and our pipeline could be extended to generate data for multimodal tasks.
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A LIMITATIONS & SAFEGUARDS

Language model agents present unique challenges and risks when applied to live tasks on the inter-
net. For instance, agents visiting shopping sites can influence the statistics produced by analytics
tools, which can impact prices on products, and product decisions from companies. Furthermore,
agents visiting harmful content can add such harmful content to datasets, and perpetuate harmful
behaviors into the training data for future agents. We mitigate these risks by carefully designing the
task proposal stage of the InSTA pipeline. We consider the risks posed to analytics tools by limiting
the engagement between agents and sites. We generate only one task per website, and we limit
agents to just 10 actions per site, which includes clicks, typing, dropdown selection actions, and
more. By limiting the interaction between agents and sites, the change in website traffic generated
by the InSTA pipeline is minimal (just 30 seconds of interaction per site on average). By utilizing
data from the InSTA pipeline in an offline fashion, as in Section 6 of the main paper, no additional
web traffic is generated when training agents. To ensure that agents do not modify the state of the
web (i.e. avoid attempting to make purchases, avoid leaving comments on posts, avoid making ac-
counts, etc), we provide an instruction in the system prompt of the task proposer (see Figure 2) to
avoid writing tasks that require the agent to modify the state of the web.

The task proposer is instructed via the system prompt to filter out sites with harmful content, sites
not intended for user access, and sites that require making an account to operate (such as social
media, and forums). We explore the performance of the task proposer at filtering out unsuitable sites
in Section 4.2, and find that all models detect unsuitable sites with a recall from 0.98 to 1.0, and
accuracy up to 97%, suggesting our filter is reliable. Sites used to benchmark the performance of
the safety filter are discussed in Appendix E, and include harmful, and mature content.

B ETHICAL CONSIDERATIONS

One important ethical consideration when gathering data from the internet is to handle copyrighted,
private, and sensitive materials carefully. The internet contains vast amounts of personal data cre-
ated by users that includes personally-identifying-information that should not be included in public
datasets. We address this ethical consideration in two ways. First, the task proposer is instructed to
filter out social media sites and forums that are likely to contains personally-identifying-information.
Second, we store and release only the prompts we used, and traces for agents’ actions—importantly,
we do not release any web source code that could be used to recover sensitive data. These steps
significantly reduce, but do not completely eliminate the risk that private, and sensitive materials
are included in our data, and methods for detecting, replacing, and removing such materials from
datasets remains an important task for researchers working on safety.

C BROADER IMPACTS

As their capabilities broaden, language model agents are being increasingly used to operate real-
world systems and APIs. This shift comes with several benefits and risks. Agents that operate your
computer to aid in work tasks can significantly boost productivity for certain workers, but can dis-
place others whose jobs have been fully automated. Agents that operate web browsers to complete
personal tasks for users can provide convenience, but expose a new attack vector where compro-
mised agents perform unintended actions. Certain risks can be mitigated with proper safeguards,
such as post-processing data to prevent jail-breaking, but other risks are existential in nature, and
harder to address purely from a research perspective.

Our data pipeline aims to facilitate internet-scale training for agents using offline data. Training
from offline data is important because current agent capabilities are low, and training them on live
websites risks taking bandwidth away from real users, while polluting the internet with noisy LLM
outputs. Due to these concerns, we advocate for researchers building internet-scale agents to follow
the guidelines set forth in this work: (1) agents should not modify the state of the internet by making
accounts, creating posts, or submitting content; (2) agents should be throttled to a maximum rate
of interaction, and a maximum number of interactions per website; (3) copyrighted, private, and
sensitive materials should be removed from training data.
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You are helping us create tasks for a web navigation system. We
↪→ will tell you the domain of a website. You should provide a
↪→ realistic, and specific task that a hypothetical user might
↪→ want to accomplish on that website.

## Skipping Unsafe / Inappropriate Domains

To skip a domain, respond with ’N/A’ instead of providing a task.

You should skip domains that have mature, adult, unsafe, or
↪→ harmful content. If you are unsure whether a domain is safe,
↪→ please skip it. In addition, skip domains that require
↪→ logging in or creating an account, such as social media
↪→ sites, and domains that are not intended for user-access,
↪→ such as API endpoints and CDNs.

## Here are some domains to provide tasks for:

* ‘www.amazon.com‘: ‘Find the price of the 24in LG Ultragear
↪→ Monitor.‘

* ‘www.wikipedia.org‘: ‘Look up the history of the Eiffel Tower on
↪→ Wikipedia.‘

## Here are some domains to skip:

* ‘fbcdn.net‘: ‘N/A‘
* ‘api.github.com‘: ‘N/A‘

Tasks should not require external knowledge, not modify the state
↪→ of the web, and should not require logging in or creating an
↪→ account. For each of the following domains, provide a
↪→ realistic, and specific task that a user could reasonably
↪→ accomplish in a single session on the website, and limit
↪→ your response to 20 words.

Figure 12: System prompt for task generation. We carefully design the system prompt for task
generation to ensure that sites not suitable for inclusion in the training data for agents are detected
and removed. This prompt ensures that proposed tasks are passive in nature, and only involve retriev-
ing information—active tasks like making posts and creating accounts are explicitly not allowed.

D AGENTS.TXT & STANDARDS FOR INTERNET AGENTS

Akin to robots.txt directives, website creators should have a standard format to specify how
internet agents are allowed to interact with their websites—if at all. Desireable controls include rate
limits for interactions, limits for maximum numbers of interactions, restrictions to allow agents to
interact with certain pages and not others, and restrictions on the kind of data on webpages that
agents are allowed to observe (achieved via tagging elements to hide their content from agents). In
addition to restricting the data available to agents, website creators should have the ability to specify
locations for “playgrounds” that replicate certain key functions of their site with virtual tasks and
simulated data that are intended to teach agents how to operate their site while directing traffic from
agents away from their primary user-facing platform.

E MORE DETAILS ON TASK GENERATION

We provide the system prompt used for task generation in Figure 12. This prompt was provided
to Llama 3.1 70B, GPT-4o, and Gemini 1.5 Pro to generate tasks and filter sites unsuitable for
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annotation in Section 4. We carefully designed this system prompt to enforce that generated tasks
are passive in nature, and do not modify the state of content on the internet. In addition to this
system prompt, we employed a list of 100 hand-picked in-context examples of website URLs and
appropriate tasks, which are provided in the following JSON list. When querying an LLM to
generate tasks, we randomly sample 16 in-context examples from the following list, and provide
only these examples to the LLM. This helps promote diverse tasks.

[
{

"domain": "archive.org",
"task": "Identify the oldest book available in the public

↪→ domain on this site."
},
{

"domain": "arxiv.org",
"task": "Retrieve the latest preprint paper on machine

↪→ learning."
},
{

"domain": "wikibooks.org",
"task": "Find a freely available textbook on linear algebra

↪→ ."
},
{

"domain": "wiktionary.org",
"task": "Get the definition and etymology of the word ’

↪→ serendipity’."
},
{

"domain": "openlibrary.org",
"task": "Locate an ebook about classic literature that is

↪→ available for borrowing."
},
{

"domain": "openculture.com",
"task": "Find a free online course on ancient history."

},
{

"domain": "theguardian.com",
"task": "Retrieve an article discussing recent trends in

↪→ renewable energy."
},
{

"domain": "medium.com",
"task": "Identify a highly rated blog post on productivity

↪→ hacks."
},
{

"domain": "goodreads.com",
"task": "Find the most popular book related to neuroscience

↪→ ."
},
{

"domain": "wired.com",
"task": "Retrieve an article about the latest advancements

↪→ in wearable technology."
},
{
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"domain": "data.gov",
"task": "Identify the latest government dataset on climate

↪→ change."
},
{

"domain": "kaggle.com",
"task": "Find a well-documented data science competition on

↪→ image recognition."
},
{

"domain": "gov.uk",
"task": "Locate the latest UK government report on

↪→ healthcare."
},
{

"domain": "unsplash.com",
"task": "Find a high-resolution image of the Milky Way

↪→ Galaxy."
},
{

"domain": "pexels.com",
"task": "Retrieve a popular photo tagged with ’nature’."

},
{

"domain": "creativecommons.org",
"task": "Find an article explaining Creative Commons

↪→ licensing types."
},
{

"domain": "pypi.org",
"task": "Retrieve the most downloaded Python package for

↪→ data analysis."
},
{

"domain": "huggingface.co",
"task": "Identify a popular machine learning model on this

↪→ platform."
},
{

"domain": "sciencenews.org",
"task": "Find the most recent article on the health impacts

↪→ of air pollution."
},
{

"domain": "mit.edu",
"task": "Retrieve a publicly available research paper on

↪→ quantum computing."
},
{

"domain": "springer.com",
"task": "Identify the latest edition of a Springer book on

↪→ robotics."
},
{

"domain": "jstor.org",
"task": "Find a research paper discussing the history of the

↪→ Internet."
},
{
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"domain": "biorxiv.org",
"task": "Retrieve the most recent bioRxiv preprint on CRISPR

↪→ technology."
},
{

"domain": "medrxiv.org",
"task": "Find a public health preprint related to COVID-19."

},
{

"domain": "commons.wikimedia.org",
"task": "Retrieve a high-resolution image of the Eiffel

↪→ Tower."
},
{

"domain": "scholar.google.com",
"task": "Find the most cited article by a specific

↪→ researcher."
},
{

"domain": "plos.org",
"task": "Locate the latest research paper on gene editing

↪→ published here."
},
{

"domain": "flickr.com",
"task": "Find a photo that has been released under a

↪→ Creative Commons license."
},
{

"domain": "datacite.org",
"task": "Retrieve metadata for a dataset related to

↪→ environmental studies."
},
{

"domain": "orcid.org",
"task": "Find the ORCID ID of a well-known researcher in AI

↪→ ."
},
{

"domain": "zotero.org",
"task": "Retrieve an article discussing citation management

↪→ tools."
},
{

"domain": "github.com",
"task": "Find the most starred repository on deep learning."

},
{

"domain": "figshare.com",
"task": "Retrieve an open dataset on climate patterns."

},
{

"domain": "zenodo.org",
"task": "Find the latest publication on open science

↪→ practices."
},
{

"domain": "worldcat.org",
"task": "Locate a catalog entry for a rare book on botany."
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},
{

"domain": "biodiversitylibrary.org",
"task": "Retrieve a scanned copy of an 18th-century

↪→ botanical illustration."
},
{

"domain": "genome.gov",
"task": "Find the latest update on the Human Genome Project

↪→ ."
},
{

"domain": "merriam-webster.com",
"task": "Retrieve the definition and usage of the word ’

↪→ quantum’."
},
{

"domain": "stanford.edu",
"task": "Find the most recent online lecture on artificial

↪→ intelligence."
},
{

"domain": "edx.org",
"task": "Retrieve a TED Talk on leadership in technology."

},
{

"domain": "ted.com",
"task": "Find the latest ocean temperature data available."

},
{

"domain": "noaa.gov",
"task": "Retrieve a dataset related to consumer behavior."

},
{

"domain": "data.world",
"task": "Find a course on data visualization."

},
{

"domain": "curious.com",
"task": "Retrieve a well-cited article on the psychological

↪→ impact of social media."
},
{

"domain": "theconversation.com",
"task": "Identify a recent research paper on biodiversity

↪→ conservation."
},
{

"domain": "nature.com",
"task": "Retrieve the latest article on genomics research."

},
{

"domain": "pnas.org",
"task": "Find a science news article on robotics

↪→ advancements."
},
{

"domain": "sciencedaily.com",
"task": "Identify the top story on global health issues."
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},
{

"domain": "bbc.com",
"task": "Retrieve a recent podcast episode about space

↪→ exploration."
},
{

"domain": "npr.org",
"task": "Locate the most recent update on the global

↪→ biodiversity status."
}

]

E.1 DETAILS FOR SAFETY EXPERIMENT

This list of examples is also provided in our code release, alongside the script that we used to
generate task proposals for the top 1M sites in the CommonCrawl PageRank (The Common
Crawl Foundation, 2024). Using these prompts for task generation, we can filter our sites that are
unsuitable for annotation, due to containing harmful content, or sensitive user data. To evaluate
the performance of our filter, we employed a set of 100 curated websites, where 50 are manually
verified as safe, and 50 are manually verified as unsafe based on the filtering conditions. These sites
were chosen to span popular sites that typical annotators are likely familiar with, and less popular
sites that annotators may not already be familiar with.

safe_sites_list = [’dhss.mo.gov’, ’dizionari.corriere.it’, ’
↪→ southgippsland.vic.gov.au’, ’ds.iris.edu’, ’lobbycontrol.de
↪→ ’, ’4rsmokehouse.com’, ’barnsleyfc.co.uk’, ’wiwi.uni-
↪→ wuerzburg.de’, ’uplandca.gov’, ’lsus.edu’, ’wpcode.com’, ’
↪→ webopedia.internet.com’, ’tamko.com’, ’premierchristian.news
↪→ ’, ’genome.jgi.doe.gov’, ’burgerking.ca’, ’thehugoawards.org
↪→ ’, ’radio.fm’, ’thevinyldistrict.com’, ’unilang.org’, ’
↪→ raywhitegroup.com’, ’grapevinetexas.gov’, ’sanfrancisco.
↪→ cbslocal.com’, ’hyde-design.co.uk’, ’breastcancerfoundation.
↪→ org.nz’, ’ludwigsburg.de’, ’ignitionrobotics.org’, ’
↪→ deliverit.com.au’, ’kodokan.org’, ’clickstay.com’, ’
↪→ searchdatamanagement.techtarget.com’, ’oceanario.pt’, ’
↪→ wentworthpuzzles.com’, ’catholicworldreport.com’, ’quizlet.
↪→ com’, ’innovation.nhs.uk’, ’synonyms.reverso.net’, ’news.
↪→ siemens.co.uk’, ’readability-score.com’, ’co.modoc.ca.us’, ’
↪→ cityofmyrtlebeach.com’, ’loire.gouv.fr’, ’lawphil.net’, ’
↪→ saem.org’, ’parmigianoreggiano.it’, ’engaging-data.com’, ’
↪→ itf-tkd.org’, ’aka.education.gov.uk’, ’ub.uni-kl.de’, ’
↪→ mottchildren.org’]

unsafe_sites_list = [’refer to the code release’]

We provide the list of safe sites in the preceding code block, and in the code release, but we provide
the list of unsafe sites in just the code release to keep this manuscript clean of harmful content.
Using these lists, we conduct an experiment measuring the accuracy, precision, and recall of our
safety filter for detecting sites that are not suitable for training agents. In this experiment, we run the
task proposer with the same prompts used to scale annotation the top 1M sites in the CommonCrawl
PageRank, and we consider a site to be marked positive for unsafe content if the task proposer
generates “N/A” rather than predicting a task. To calculate the human baseline for this experiment,
we showed participants the system prompt observed by the task proposer, and asked participants to
label sites as safe or unsafe using this per-example prompt:
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human_safety_prompt = "Is this website safe to include?\n\n{
↪→ host}\n\nenter ’y’ for yes / safe, ’n’ for no / unsafe: "

Human participants were not allowed to visit the URL shown, and had to determine whether the
site is safe for annotation purely from their prior knowledge (the same conditions faced by the task
proposer). The 100 sites for the safety experiment were shuffled into a uniformly random order to
ensure the order of annotation did not bias the human annotators predictions. One human participant
was used to obtain the human baseline result in Table 3.

E.2 DETAILS FOR RELIABILITY EXPERIMENTS

Similar to the previous safety experiment, we employed human participants to obtain a human
baseline for task feasibility. In particular, we showed human participants the system prompt in
Figure 12 for the task proposer, and had them write a task for each of the following websites
without visiting the URL (the same conditions faced by the task proposer). The following 100 sites
were shuffled into a uniformly random order to ensure the participants were not influenced by the
order in which sites were shown. After tasks were proposed by participants, and by LLMs, we
evaluated the expert feasibility of tasks by manually attempting to complete the tasks proposed by
each set of participants, and marking tasks as feasible, or not feasible based on our own ability to
complete them. In total, we annotated 400 tasks, which required 8 hours of annotation. One human
participant was used to obtain the human baseline result in Table 4.

reliability_sites_list = [’godaddy.com’, ’chrome.google.com’, ’
↪→ apple.com’, ’support.cloudflare.com’, ’support.apple.com’, ’
↪→ edition.cnn.com’, ’go.microsoft.com’, ’google.de’, ’w3.org’,
↪→ ’yandex.ru’, ’bfdi.bund.de’, ’microsoft.com’, ’apps.apple.
↪→ com’, ’networksolutions.com’, ’support.mozilla.org’, ’yelp.
↪→ com’, ’cnn.com’, ’ec.europa.eu’, ’developer.mozilla.org’, ’
↪→ icann.org’, ’books.google.com’, ’globenewswire.com’, ’
↪→ onlinelibrary.wiley.com’, ’gnu.org’, ’slideshare.net’, ’
↪→ metacpan.org’, ’porkbun.com’, ’oag.ca.gov’, ’spiegel.de’, ’
↪→ linuxfoundation.org’, ’help.opera.com’, ’mayoclinic.org’, ’
↪→ podcasts.apple.com’, ’nhs.uk’, ’addons.mozilla.org’, ’google
↪→ .fr’, ’pewresearch.org’, ’finance.yahoo.com’, ’weforum.org’,
↪→ ’g2.com’, ’savethechildren.org’, ’news.com.au’, ’biblia.com
↪→ ’, ’yr.no’, ’engadget.com’, ’microsoftstore.com’, ’ema.
↪→ europa.eu’, ’theintercept.com’, ’princeton.edu’, ’
↪→ foodandwine.com’, ’sfgate.com’, ’voguebusiness.com’, ’
↪→ ourworldindata.org’, ’livingwage.org.uk’, ’cms.law’, ’
↪→ msdmanuals.com’, ’websitesetup.org’, ’support.xbox.com’, ’
↪→ treehugger.com’, ’tripadvisor.com.pe’, ’mondragon.edu’, ’
↪→ greenparty.ca’, ’aaojournal.org’, ’restaurantpassion.com’, ’
↪→ iwillteachyoutoberich.com’, ’moneyconvert.net’, ’
↪→ gesundheitsinformation.de’, ’ovc.uoguelph.ca’, ’zdnet.be’, ’
↪→ oxfordamerican.org’, ’snackandbakery.com’, ’journals.uic.edu
↪→ ’, ’confused.com’, ’standards.globalspec.com’, ’
↪→ onlyinyourstate.com’, ’ahsgardening.org’, ’wyze.com’, ’
↪→ nornickel.ru’, ’viessmann.fr’, ’benetton.com’, ’firecomm.gov
↪→ .mb.ca’, ’executedtoday.com’, ’eukn.eu’, ’fraeylemaborg.nl’,
↪→ ’verizon.com/about/news-center’, ’orthodoxalbania.org’, ’
↪→ cheapjoes.com’, ’bake-eat-repeat.com’, ’
↪→ plattformpatientensicherheit.at’, ’hifinews.com’, ’
↪→ cellsignal.com’, ’thenotariessociety.org.uk’, ’chosenfoods.
↪→ com’, ’westerndressageassociation.org’, ’pridesource.com’, ’
↪→ northtacomapediatricdental.com’, ’strade-bianche.it’, ’
↪→ pvdairport.com’, ’institute.sandiegozoo.org’, ’raintaxi.com
↪→ ’]
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You are a helpful scientific assistant categorizing tasks on the
↪→ web. You will observe a domain and web navigation task, and
↪→ you should provide a concise categorization of the task in 3
↪→ words or less. For example, if the domain is "google.com"
↪→ and the task is "find a recipe for mashed potato", you may
↪→ categorize the task as "recipe search".

## Task Format

Here is the format for the task:

[domain]: [task]

Here is what each part means:

‘[domain]‘: The domain of the website you are observing.
‘[task]‘: The task a user is trying to accomplish on the website.

## Response Format

Respond with a category name for the task in 3 words or less, and
↪→ provide only the category name, do not provide an
↪→ explanation or justification for the categorization.

Here is the next task, please follow the instructions carefully.

Figure 13: System prompt for task categorization. We employ Llama 3.1 70B to automatically
label task categories for our dataset. We prompt the LLM to assign categories in 3 words or less,
and set the sampling temperature to 0.5 to encourage predictions to use more consistent language.
Using these categories, we seek to understand agent performance by category.

human_reliability_prompt = "\n\n{host}\n\nenter a task, or respond
↪→ with ’N/A’ instead: "

E.3 AUTOMATIC TASK CATEGORIZATION

To better understand the statistics of generated tasks, we employ Llama 3.1 70B to assign task cat-
egories. We prompt Llama 3.1 70B with the system prompt in Figure 13 to assign a category in
3 words or less to encourage simple categories. Categories have 16.9 tasks on average, and 953
categories have more than the mean, while 7741 have less than the mean. There is occasional over-
lap between categories, which can be observed in Figure 14, but for the purposes of understanding
performance by category, overlap is acceptable provided categories have sufficiently large numbers
of tasks, and performance per category can be accurately calculated. We provide our task catego-
rization script in the official code release.

F UNDERSTANDING AGENT CAPABILITIES & LIMITATIONS

To complete the analyses presented in Section 5, we explore the categories of tasks that agents
succeed at most frequently. Shown in Figure 15, we plot the average judge success probability pre-
diction rT versus task category for the top 70 most successful categories that have at least 100 tasks
assigned to them. Based on the figure, top categories include search for contact information, finding
hours of operation, looking up biographical information, obtaining current weather forecasts, and
conducting health research. Based on these results, the top 22 categories are solved with more than
a 50% rate using agents based on Llama 3.1 70B running zero-shot. As stronger models are devel-
oped, the success rates for agents running in our pipeline are likely to improve, and the quality of
the data we generate will jointly improve.
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Figure 14: Largest categories for internet-scale task generation. We assign categories to 150k
web navigation tasks generated by our pipeline in Section 4, and visualize the number of tasks for
each of the largest 70 categories. Top categories include article search, news search, recipe search,
product lookup, and more. The top 12 task categories have more than 1600 tasks assigned to each
of them, the mean number of tasks per category is 16.9, and 89% of categories (7741 in total) have
fewer than the mean number of tasks.
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Figure 15: Most successful categories for internet-scale task generation. We explore the rates of
task completion for the top categories of tasks generated by our pipeline. We restrict our focus to
categories where at least 100 tasks are assigned, and plots the success rates for the top 70 of such
categories. Results show that 22 categories are solved with more than a 50% rate with agents based
on Llama 3.1 70B.
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Figure 16: Least successful categories for internet-scale task generation. Similar to the previous
figure, we explore the rates of task completion for the bottom 70 categories that have at least 100
tasks assigned to them. While the majority of the least successful categories have success rates
greater than 20%, performance drops as low as 5%. Many of the categories shown in the plot above
involve actions that are not feasible given the current limitations of the Playwright API, and may
be possible in future work that extends agents to a fully-operable virtual computer environment. In
addition, better LLM backbones are likely to improve performance.

In addition to studying the best-performing categories, we also explore the limitations of current
agents via their least successful categories. Shown in Figure 16, we select the bottom 70 categories
in terms of their average judged success probability for categories with at least 100 tasks assigned to
them. Many of these categories require agents to remember and reason about previous interactions,
such as the product comparison category. For this category, an agent must review several products,
and compare their details from memory. In these cases, access to a note-taking app may improve
performance. Additionally, certain task categories involve requests that are not feasible given the
limitations of the Playwright API, including categories for downloading reports / manuals, and
opening and playing files. While these tasks are not currently feasible, providing agents with a
fully-operable virtual computer environment could unlock these abilities in future work.

G AGENT & JUDGE SYSTEM PROMPTS

We provide the system prompt used with our agent below. This prompt is released in our official
code, alongside the observation processor that maps webpage DOM to a compact markdown
format, referenced in the system prompt.

You are a helpful assistant operating my web browser. I will show
↪→ you webpages formatted in markdown, and I want your help to
↪→ complete a web navigation task. Read the webpage, and
↪→ respond with an action in JSON to interact with the page,
↪→ and help me complete the task.

## Formatting The Response

Respond with actions in the following JSON schema:

‘‘‘json
{

"action_key": str,
"action_kwargs": dict,
"target_element_id": int

}
‘‘‘

Here is what each key means:

- ‘action_key‘: The action to perform.
- ‘action_kwargs‘: Named arguments for the action.
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- ‘target_element_id‘: The id of the element to perform the action
↪→ on.

## Available Actions

I’m using playwright, a browser automation library, to interact
↪→ with the page. I’m parsing the value assigned to ‘action_key
↪→ ‘ into a method call on the page object, or an element
↪→ object specified by the value assigned to ‘target_element_id
↪→ ‘. Here are the available actions:

### Click Action Definition

- ‘click‘: Click on an element specified by ‘target_element_id‘.

### Example Click Action

Suppose you want to click the link ‘[id: 5] Sales link‘:

‘‘‘json
{

"action_key": "click",
"action_kwargs": {},
"target_element_id": 5

}
‘‘‘

### Hover Action Definition

- ‘hover‘: Hover over an element specified by ‘target_element_id‘

### Example Hover Action

Suppose you want to hover over the image ‘[id: 2] Company Logo
↪→ image‘:

‘‘‘json
{

"action_key": "hover",
"action_kwargs": {},
"target_element_id": 2

}
‘‘‘

### Fill Action Definition

- ‘fill‘: Fill an input element specified by ‘target_element_id‘
↪→ with text.
- ‘value‘: The text value to fill into the element.

### Example Fill Action

Suppose you want to fill the input ‘[id: 13] "Name..." (Enter your
↪→ name text field)‘ with the text ‘John Doe‘:

‘‘‘json
{

"action_key": "fill",
"action_kwargs": {
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"value": "John Doe"
},
"target_element_id": 13

}
‘‘‘

### Select Action Definition

- ‘select‘: Select from a dropdown element specified by ‘
↪→ target_element_id‘.
- ‘label‘: The option name to select in the element.

### Example Select Action

Suppose you want to select the option ‘red‘ from the dropdown ‘[id
↪→ : 67] "blue" (select a color dropdown)‘:

‘‘‘json
{

"action_key": "select_option",
"action_kwargs": {

"label": "red"
},
"target_element_id": 67

}
‘‘‘

### Go Back Action Definition

- ‘go_back‘: Go back to the previous page (‘target_element_id‘
↪→ must be null).

### Example Go Back Action

‘‘‘json
{

"action_key": "go_back",
"action_kwargs": {},
"target_element_id": null

}
‘‘‘

### Goto Action Definition

- ‘goto‘: Navigate to a new page (‘target_element_id‘ must be null
↪→ ).
- ‘url‘: The URL of the page to navigate to.

### Example Goto Action

Suppose you want to open google search:

‘‘‘json
{

"action_key": "goto",
"action_kwargs": {

"url": "https://www.google.com"
},
"target_element_id": null

27



}
‘‘‘

### Stop Action Definition

- ‘stop‘: Stop the browser when the task is complete, or the
↪→ answer is known.
- ‘answer‘: Optional answer if I requested one.

### Example Stop Action

‘‘‘json
{

"action_key": "stop",
"action_kwargs": {

"answer": "I’m done!"
},
"target_element_id": null

}
‘‘‘

Thanks for helping me perform tasks on the web, please follow the
↪→ instructions carefully. Start your response with an
↪→ explanation in 50 words, and choose exactly one action you
↪→ would like to perform.

We also provide the system prompt used with out LLM judge. The system prompt instructs the
judge to predict a json-formatted dictionary that contains a “success” key, and an “on right track”
that represent the estimated probability that the task is successful, and that the agent is on the right
track towards solving the task, respectively. These distinctions are adapted from Koh et al. (2024b),
and help us filter for high-quality training data by distinguishing trajectories that were solved by the
agent’s own actions from trajectories that were solved by chance.

You are a helpful assistant providing feedback on a web automation
↪→ script. I will show you a list of previous actions, the
↪→ current webpage formatted in markdown, and the proposed next
↪→ action. I want your help evaluating the proposed action, to
↪→ determine if the desired task is complete, or if we are on
↪→ the right track towards future completion.

## Reading The Action Schema

You will see actions in the following JSON schema:

‘‘‘json
{

"action_key": str,
"action_kwargs": dict,
"target_element_id": int

}
‘‘‘

Here is what each key means:

- ‘action_key‘: The action to perform.
- ‘action_kwargs‘: Dictionary of arguments for action.
- ‘target_element_id‘: The id of the element to perform the action

↪→ on.
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## Available Actions

I’m using playwright, a browser automation library, to interact
↪→ with the page. I’m parsing the value assigned to ‘action_key
↪→ ‘ into a method call on the page object, or an element
↪→ specified by the value assigned to ‘target_element_id‘. Here
↪→ is an example action:

### Example Click Action

Here is an example where the script clicked the link ‘[id: 5]
↪→ Sales link‘:

‘‘‘json
{

"action_key": "click",
"action_kwargs": {},
"target_element_id": 5

}
‘‘‘

### Example Select Action

Here is an example where the script selected the option ‘red‘ from
↪→ the dropdown ‘[id: 67] "blue" (select a color dropdown)‘:

‘‘‘json
{

"action_key": "select_option",
"action_kwargs": {

"label": "red"
},
"target_element_id": 67

}
‘‘‘

### Example Goto Action

Here is an example where the script opened google search:

‘‘‘json
{

"action_key": "goto",
"action_kwargs": {

"url": "https://www.google.com"
},
"target_element_id": null

}
‘‘‘

### Example Stop Action

Here is an example where the script stopped with the message "I’m
↪→ done!":

‘‘‘json
{

"action_key": "stop",
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"action_kwargs": {
"answer": "I’m done!"

},
"target_element_id": null

}
‘‘‘

## Formatting The Response

Think step by step, and start your response with an explanation of
↪→ your reasoning in 50 words. Then, provide an evaluation in
↪→ the following JSON schema:

‘‘‘json
{

"success": float,
"on_right_track": float,

}
‘‘‘

Here is what each key means:

- ‘success‘: What is the probability the desired task has been
↪→ completed successfully, rated from 0.0 (not possible) to 1.0
↪→ (absolutely certain)?

- ‘on_right_track‘: What is the probability the script is on the
↪→ right track towards a future success, rated from 0.0 (not
↪→ possible) to 1.0 (absolutely certain)?

Thanks for helping me evaluate the script, please follow the
↪→ instructions carefully. Start your response with a step by
↪→ step explanation. Then, provide an evaluation in the JSON
↪→ schema above.

H DETAILS FOR TRAINING AGENTS

To understanding the utility of the generated data for training agents, we filter the data, and com-
pare our filtered data to human demonstrations on the WebLINX (Lù et al., 2024) and Mind2Web
(Deng et al., 2023) benchmarks. In particular, we sweep over different sizes of random subsets of
human actions, from 32 to 256, which helps us understand the value of synthetic data generated
from the InSTA pipeline versus different scales of human data. We then fine-tune models based on
google/flan-t5-large for Mind2Web, and meta-llama/Llama-3.1-8B-Instruct
for WebLINX using official fine-tuning code released with corresponding benchmarks. We em-
ploy identical training hyperparameters to those used in Lù et al. (2024) and Deng et al. (2023)
to ensure that our results are comparable to previous work. Section H reports performance on the
official test web split of the WebLINX benchmark, and the official test website split of the
Mind2Web benchmark, where agents are tested on previously unobserved websites.

In order to prepare our data, we employ three filtering rules. In the first rule, we filter for data where
the agent was predicted to have succeeded at the task with conf = 1, and was predicted to be on
the right track with conf = 1. This filtering rule is motivated by our findings in Section 5, where
we found that our LLM judge based on Llama 3.1 70B has an accuracy up to 93.1% at detecting
successful trajectories for its predictions with conf = 1. Filtering based on both “success” and
“on right track” conditions is essential to obtain data where the agent directly caused the task to
be solved, rather than the task being solved by external conditions. The next filtering rule we use
is to select trajectories with at least three actions, which helps create training data that is not too
easy (i.e. not solved after just one or two actions). Finally, we select tasks where the agent did
not encounter any errors during execution. These include being presented with server errors such
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as 404 Not Found, and 403 Forbidden, encountering a captcha, and being blocked, even if just
temporary, from the target website. These filtering steps produce an automatically curated set of
7, 463 demonstrations from our pipeline where agents successfully completed tasks generated by
the InSTA pipeline. We reserve 500 demonstrations from this pool for our test set, and the rest for
training agents in Figure 10. The original Mind2Web dataset contains 2, 350 tasks.

I ADDITIONAL RELATED WORKS

While writing this paper, concurrent work was released that introduces a Proposer-Agent-Evaluator
framework for web navigation agents (Zhou et al., 2024c). There are several key differences between
our work and theirs, and the most important difference is scale. We generate tasks for 1M sites on
the internet, whereas their work considers just 85 real-world sites, 5 sites from WebArena (Zhou
et al., 2024b), and 13 sites from WebVoyager (He et al., 2024). The second difference is evaluation.
Safety and reliability play crucial roles when gathering data, and we conduct an analysis on the safety
and reliability of data generated by our method on 100 real-world sites. Another major difference
pertains to offline learning. Offline learning should be used when scaling agents because current
agent capabilities are low, and training them online risks polluting the internet with noisy LLM
outputs, while taking bandwidth away from real users. The final difference pertains to the train-
test split. We train agents on diverse internet data, and transfer to target benchmarks, while the
agents presented in Zhou et al. (2024c) train on sites from target benchmarks using synthetic tasks.
Our train-test split is stronger, and evaluates the ability for agents trained on our synthetic data to
generalize to novel websites, domains, and tasks.

J HYPERPARAMETERS

We provide a list of the hyperparameters used in this work in Table 1. Values are selected to mir-
ror prior work in synthetic data (Trabucco et al., 2024), and to employ standard hyperparameters
for training agents on WebLINX (Lù et al., 2024), and Mind2Web (Deng et al., 2023). On the
Mind2Web benchmark, we did not observe a loss in performance for training longer on few-shot
experiments, and kept training iterations fixed between few-shot and all-available-data experiments.
This is likely due to the FLAN-T5 model used in Mind2Web being too small to overfit to the data.
For experiments on WebLINX, we found that performance for models trained on just human data
degrades if models are trained for the full 10, 000 steps, so a smaller 2, 000 steps was chosen.

K COST ANALYSIS FOR LLAMA 3.1 70B

To contextualize how Llama 3.1 70B is important for a project at this scale, we analyze the number
of tokens processed by the LLM, and compute an expected cost if this were served using proprietary
models. As the analysis shows, using Llama 3.1 70B is most feasible option for running agents at this
large scale, and results in the paper show that this choice of LLM backbone does not compromise
in accuracy and performance. We have deep gratitude for the Llama team at Meta working to make
developments in language modeling available to the research community at no cost.
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Hyperparameter Name Value

OpenAI Model Name gpt-4o
Google Model Name gemini-1.5-pro
Llama Model Name meta-llama/Llama-3.1-70B-Instruct

CommonCrawl PageRank Revision cc-main-2024-apr-may-jun-host-ranks.txt.gz
Number of sites before filtering 1, 000, 000
Number of tasks after filtering 146, 746
Max Tokens Per Observation 4, 096
Max Tokens Per Action 2, 048
Max Tokens Per Judgement 2, 048
Max Tokens Per Task 64
Max Observations Per Agent Context 5
Max Actions Per Agent Context 5
Max Observations Per Judge Context 1
Max Actions Per Judge Context 5

OpenAI Inference API Sampling Temperature 0.5
OpenAI Inference API Sampling Top P 1.0

Mind2Web HuggingFace Model Name google/flan-t5-large
Mind2Web Few-Shot Training Iterations 11, 505
Mind2Web Training Iterations 11, 505
Mind2Web Batch Size 32
Mind2Web Learning Rate 5e-5

WebLINX HuggingFace Model Name meta-llama/Llama-3.1-8B-Instruct
WebLINX Few-Shot Training Iterations 2, 000
WebLINX All Training Iterations 10, 000
WebLINX Batch Size 16
WebLINX Learning Rate 5e-5

Filtering Success Threshold 1.0
Filtering On Right Track Threshold 1.0
Few-Shot preal 50%
All Human Data preal 80%

Table 1: Hyperparameters used in our paper. We organize hyperparameters into five sections,
including names of language model backbones, parameters of the data generation pipeline, sampling
parameters for the OpenAI inference API, training parameters used by corresponding benchmarks,
and filtering parameters used to prepare our data for training agents in Section 6.
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Variable Name Value

Number of tasks 146, 746
Typical tokens per observation 1, 024
Max observations per agent context window 5
Typical agent / judge response size 128
Max tokens per system prompt 1, 024
Max steps per task 10

Estimated tokens processed by the agent
146, 746 ∗ (((1, 024 + 128) ∗ 5 + 1, 024) ∗ 10− (1, 024 + 128) ∗ 15) = 7, 419, 477, 760
Tokens processed by the judge
146, 746 ∗ (1, 024 + 1, 024 + 128 ∗ 10) = 488, 370, 688
Total tokens processed 7, 907, 848, 448

Expected API cost for GPT-4o $ 39, 539.24
Expected API cost for Gemini 1.5 Pro $ 9, 489.42
Expected AWS compute cost for serving Llama 3.1 70B

(14 days for two 8-gpu v100 spot instances) $ 6, 622.56

Percent saved using Llama 3.1 70B [30.2, 83.3] %

Table 2: Cost analysis for different LLM models in the fully-scaled pipeline. This table provides
statistics for the number of tokens that were processed by our pipeline, and why serving using a
local LLM engine like vLLM is important for bringing down costs.
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