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ABSTRACT

In the supplementary material, we provide the following:

• Additional motivation regarding GOODFIT (Sec. 1).
• A theoretical discussion about GOODFIT (Sec. 2).
• Detailed setup and hyper-parameters for baseline and fine-tuning experiments

(Sec. 3).
• The limitations of using GOODFIT (Sec. 4).

1 MOTIVATION

In practical deep learning use-cases, a network constantly needs to be updated using new data or tasks.
For instance, consider the case of an autonomous vehicle. As the agent operates across numerous
cities, it gathers different types of sensor data unique to each city. To re-train the network from scratch
each time quickly becomes intractable due to several reasons: (a) old data needs to be retained (i.e.,
storage costs), (b) requires extensive compute to re-train, and (c) discards validation effort required
for the “previous” model. One potential approach to overcome these issues is to freeze the backbone,
while only fine-tuning the relevant fully-connected classification layers. However, this approach
assumes that the backbone is capable of providing meaningful features, even for data from a new
domain (e.g., a new city), something which CNNs have notoriously struggled with.

While Learning Without Forgetting (LWF) Li & Hoiem (2017) aims to address some of these
challenges, it still suffers from some key challenges: (a) hyper-parameter tuning to balance old and
new task loss weights, (b) access to the previous model checkpoint, and (c) requires two model
forward passes in each iteration which may be computationally expensive. In order to address all these
challenges in literature, our key insight is that the optimization objective in previous approaches does
not leverage the structure of a well-initialized pretrained model. Concretely, we treat the pretrained
weights as a location on the optimization landscape where a random initialized model may desire to
be to get good performance on the old task.

2 ADDITIONAL THEORETICAL DISCUSSION

Here, we provide a bit more exposition on the theoretical properties of GOODFIT. In the main text
(Section 3), we proposed two properties of GOODFIT: (1) that GOODFIT updates will reduce the
loss value for the old loss on the old data, despite making no assumptions on access to the old data,
and (2) that GOODFIT has stable points on linear loss surfaces.

The implications of statement (1) are fairly straightforward, as it implies that we can train with the
settings of the old system even when that old system falls out of scope. This is the primary feature
of GOODFIT, and is the main proof that GOODFIT is a meaningful regularization method. But
the implications of (2) are more interesting. The fact that GOODFIT works despite not functioning
properly in linear loss surfaces implies that GOODFIT relies on nontrivial values of second-order
gradients and curvature within the loss surface to function. Thus, any critical point that the system
converges to while under GOODFIT updates must have been reached through a nonlinear path from
the model’s starting point. This requirement may have robustness implications for the convergence
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points found by GOODFIT, as any such convergence points must have alternative nonlinear paths
leading to it.

There is an important discussion to be had though regarding the convergence of GOODFIT. We did
not expand on this convergence in the main text because talking about convergence within a fine-
tuning setting is somewhat tricky at a fundamental level, as it is difficult to deconvolve convergence
on the new dataset with convergence on the old setting (for which we may no longer have available
data). Especially when the number of incremental training stages increases, it becomes secondary
to converge on the new (potentially small) dataset that the model is fit on and more important to
maintain the efficacy of the base model. In that case, the correctness property (1) becomes the main
property of importance.

In general, a proof of convergence of GOODFIT is difficult for two reasons: (1) The orthogonalization
procedure we use is asymmetric, versus the symmetric procedure in Yu et al. (2020), due to our
prioritization of mitigating regressions, and (2) the restoration step to the old state after steps of
O(ref) is discrete rather than treated as a separate incremental gradient step. Both of these design
decisions were made to support the main goal of regression mitigation for applications of GOODFIT.
So although we do not provide a complete proof of conditions under which GOODFIT converges in
this work, we make this omission precisely because convergence on the new data is a secondary goal
in our setting, and the majority of our important design decisions were not made in service to that
particular goal, but rather to the more difficult goal of regularization during fine-tuning.

3 EXPERIMENTS

3.1 A TOY EXAMPLE

As mentioned in Section 4.1 in the main text, our toy example ground truth is the function f(x) =
sin(10|x|) with input in R2. This function was picked due to its extreme nonlinearity and difficulty
to fit by standard neural networks. To increase the challenge even further, for training data, normal
noise of size N (0, 1) is added, while no noise is added to the test data. The “original dataset” consists
of 50000 points with both dimensions between -1 and 1, while the “fine-tune dataset” consists of
50000 points with both dimensions between 0.8 and 1.5.

The model itself is a 3-layer MLP, consisting of weight layers [2, 500], [500, 500], and [500, 1].
LayerNorm Ba et al. (2016) is applied after every layer except for the last. RMSProp is used with
default PyTorch hyperparameters (α = 0.99, ϵ = 1e− 8) and learning rate 1e− 2 for fitting to the
original distribution, with a learning rate decay of 0.9 every 500 steps. After the original distribution
has been fit to, we fine-tune on the new distribution for 1500 steps at a learning rate of 5e− 4, with a
decay factor of 0.95 every 100 steps. The GOODFIT runs are run with nref = 1.

3.2 LONG-TAILED IMAGE CLASSIFICATION

Why is this challenging? As previously discussed, we train a first-stage baseline on classes ∈ [0, 89]
on CIFAR100-LT. The second-stage long-tail fine-tuning involves training only on held-out classes
∈ [90, 99]. At first glance, this may appear an intuitive way to test our method. Consider the extreme
case of β = 10. The first-stage training on classes ∈ [0, 89] involves 19021 examples in the training
set. The second fine-tuning step on classes ∈ [90, 99] includes only 552 examples, which is ∼ 35×
fewer! For β = 5, this ratio is ∼ 22 (23784 in first-stage vs 1072 in second-stage) and for β = 2,
this ratio is ∼ 13 (33453 in first-stage vs 2576 in second-stage). Due to this extreme imbalance, the
fine-tuning step understandably results in catastrophically forgetting the baseline classes. Nonetheless,
to demonstrate the ability of GOODFIT in mitigating catastrophic forgetting while showing superior
long-tail performance, we choose these challenging settings.

Implementation Details For CIFAR100-LT experiments, we use GMLC Du et al. (2023) as our
baseline. GMLC is a state-of-the-art long-tail classification method that achieves strong performance
on CIFAR10-LT, CIFAR100-LT, and Imagenet-LT benchmarks. For each input batch, a local and
global augmentation is applied. The global augmentation used is MixUp Zhang et al. (2017), which
generates an image by mixing across two different classes. On the other hand, the local augmentation
CutMix Yun et al. (2019) replaces a patch in the image with a region from another image. The
embeddings from the encoder are fed through a projection head and the cosine similarity is maximized
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between global and local image pairs. The encoder embeddings are also fed through a classification
head which minimizes the supervised cross-entropy loss. The advantages of GMLC are that it
performs a single-stage training and does not require negative samples for contrastive training. For
further details, we refer the reader to Du et al. (2023).

For the first stage training, we use the SGD with a momentum of 0.9 and a weight decay of 5e− 3.
We train for 200 epochs with a batch size of 64 and a learning rate of 1e− 2. For the second stage, we
train the SGD counter-part for 40 epochs and GOODFIT for 60 epochs. For imbalance ratio β = 2
we use a learning rate of 1e− 3, for β = 5 we use a learning rate of 5e− 4, and for β = 10 we use a
learning rate of 1e − 4. For a fair comparison, we do not alter any other hyper-parameters during
the fine-tuning stage. In all our experiments, we use the default loss weighting parameters i.e., a
contrastive loss weight of 10 and a classification loss weight of 1.2. For GOODFIT, we use nref = 1
and λref to 1/1000 of the learning rate. All experiments are run on a single Tesla T4 GPU machine.
The first-stage training requires 3 hours, while long-tail fine-tuning takes 10 minutes.

Evaluation As mentioned in the main paper, there is a steep trade-off between baseline class vs
long-tail class performance. In order to evaluate both methods at discrete thresholds (Table 2 in the
main paper), we fit a curve and evaluate this curve at the desired thresholds (in our case, 40%, 35%,
and 30%).

3.3 LARGE-SCALE ROBOTICS MOTION PREDICTION

The motion prediction model follows a standard encoder-decoder transformer architecture, as
in Nayakanti et al. (2022).

The encoder takes multi-modal inputs as the target agent’s history, nearby agent histories, map
information, and traffic light states. Each input modality is encoded by a separate MLP to an
embedding with a dimesion of 64. The input embeddings are fused through concatenation as input
tokens to a self-attention transformer. The encoder transformer includes 2 attention layers, 8 heads,
256 hidden dimensions, and 1024 feedforward dimensions. We add learned positional embeddings,
initialized as a Gaussian vector with zero mean and standard deviation of 0.02, to each token.

The decoder is a cross-attention transformer that attends six learnable latent queries, initialized with
zero mean and standard deviation of 0.02, to encoder embeddings. The decoder transformer includes
8 attention layers, 8 heads, 256 hidden dimensions, and 1024 feedforward dimensions. The output
queries are mapped to a weighted set of six trajectory samples through an MLP. Each sample includes
(x, y) positions for the next 80 timesteps and a weight scalar.

The model is trained end-to-end by a smooth L1 loss on the trajectory predictions and a cross-entropy
loss on the predicted weights. The AdamW optimizer is used with default PyTorch hyperparameters:
learning rate = 1e− 3, βs = (0.9, 0.999), weight decay = 1e− 2. The base model is trained on the
WOMD training set for 60 epochs with a batch size of 256.

For car-to-car fine-tuning experiments, learning rate is dropped by a factor of 100 from the original
and training is performed for only 1500 steps (because the original training run already converged,
training for too long in this setting leads to overfitting). For car-to-pedestrian fine-tuning experiments,
learning rate also is dropped by a factor of 100, but training is allowed to run for the same number of
steps as the original model.

GOODFIT nref is set to 3, and λref is set to 1/10 of the learning rate. We note that the value of nref is
quite high in this setting, but training is relatively fast and you can get better results fairly early on in
training so the number of steps can be cut down considerably (see, for example, the curves in Figure
4).

4 LIMITATIONS

GOODFIT is designed exclusively for fine-tuning a pre-trained deep network and assumes access
to a good initialization. Due to this assumption, GOODFIT cannot be used for training a neural
network from scratch (i.e., randomly initialized weights) and will inexplicably perform poorly. This
can be considered a limitation in our work. In other words, if one wishes to add a new head to an
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existing model, the head would need to be pre-trained using some other optimizer from scratch before
GOODFIT can be used.

Finally, since GOODFIT instantiates 2 optimizers (a main and a reference optimizer) as part of
the update, it incurs a slightly increased memory footprint to keep track of optimizer parameters
(depending on the optimizer of choice).
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