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Student-Oriented Teacher Knowledge Refinement for
Knowledge Distillation

Anonymous Authors

ABSTRACT
Knowledge distillation has become widely recognized for its ability
to transfer knowledge from a large teacher network to a compact
and more streamlined student network. Traditional knowledge dis-
tillation methods primarily follow a teacher-oriented paradigm that
imposes the task of learning the teacher’s complex knowledge onto
the student network. However, significant disparities in model ca-
pacity and architectural design hinder students’ comprehension
of the complex knowledge imparted by the teacher, resulting in
sub-optimal learning results. This paper introduces a novel ap-
proach that emphasizes a student-oriented perspective and refining
the teacher’s knowledge to better align with the student’s needs,
thereby improving knowledge transfer effectiveness. Specifically,
we present the Student-Oriented Knowledge Distillation (SoKD),
which incorporates a learnable feature augmentation strategy dur-
ing training to dynamically refine the teacher’s knowledge of the
student. Furthermore, we deploy the Distinctive Area Detection
Module (DAM) to identify areas of mutual interest between the
teacher and student, concentrating knowledge transfer within these
critical areas to avoid spreading irrelevant information. This tar-
geted approach ensures a more focused and effective knowledge
distillation process. Our approach, functioning as a plug-in, could be
integrated with various knowledge distillation methods. Extensive
experimental results demonstrate the efficacy and generalizability
of our method.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Model Compression, Knowledge Distillation, Feature Augmentation

1 INTRODUCTION
Knowledge distillation (KD), first introduced by [16], has attracted
significant interest in both academic and industrial research for
its effectiveness in transferring knowledge from a pre-trained and
high-performance teacher network into a more compact and lower-
capacity student network. This knowledge transfer improves the
student network’s learning performance while preserving its struc-
ture. Knowledge distillation has been applied in various tasks such
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Figure 1: This research ismotivated by the observation that al-
though a well-pretrained teacher network can precisely iden-
tify crucial regions within input data, its student counterpart,
constrained by a smaller capacity and different architectural
design, has difficulty understanding the teacher’s recognition
patterns. Our approach offers a refinement of the intricate
teacher knowledge to cater to the student’s needs, preserv-
ing the integrity of the overall teacher network knowledge.
Ultimately, this enables students to identify the recognition
patterns of the teacher network more accurately.

as classification [18, 23], object detection [6, 50], and semantic seg-
mentation [29, 40].

The original knowledge distillation [16] leverages soft labels
provided by the teacher network to guide the student network.
Subsequently, logits-based works have investigated various con-
straints through decoupled logits [52, 61] and more comprehensive
constraints [13, 18]. However, since logits only provide information
on the distribution at the class level and lack the comprehensive
structural information of the input data, feature-based knowledge
distillation [37] distills the student network through pixel-level con-
straints applied at the intermediate layers features have increasingly
gained attention [7, 44, 56].

Figure 1 utilizes Grad-CAM [39] to visualize the crucial regions
prioritized by the network, enabling an assessment of recognition
patterns across different networks. The results indicate that due to
substantial disparities in model capacity and architecture design, it
is challenging for the student to fully assimilate the recognition pat-
terns of the teacher from the intricate teacher knowledge, ultimately
leading to sub-optimal learning outcomes. Existing approaches of-
ten facilitate the student’s understanding of complex knowledge
from the teacher via surrogate representation [26, 32, 45, 53, 56],
or by implementing rigid constraint [15, 44, 51]. All these methods
adopt a teacher-oriented perspective, assuming that the teacher’s
knowledge is fully applicable and beneficial to the students, ne-
glecting the inherent differences in their capabilities and structural

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Visualization and statistical analysis of features.
(a): Visualization of features after dimensionality reduction
through PCA. (b): Box plot of features. The experiment was
conducted on a teacher-student pair of ResNet 32 × 4 and
ResNet 8 × 4 on the CIFAR100 dataset.

designs. Therefore, forcing students to learn complex knowledge
from teachers often produces a sub-optimal result. Given this criti-
cal insight, we propose shifting to a student-oriented perspective
that tailors teacher knowledge to the student’s learning capabilities
and architectural design. Therefore, a core issue in our method is:
how to appropriately adjust the teacher’s knowledge within a reason-
able scope to adapt to the needs of the student network.

In light of this, data augmentation, known for diversifying in-
put data through various transformations—emerges as a promis-
ing approach. Its capability to produce new data instances from
the identical distribution [1] presents the possibility of refining
the teacher’s knowledge to align more closely with the student’s
learning requirements while striving to preserve the original dis-
tribution of the teacher’s knowledge to prevent any destruction of
the knowledge within the teacher. However, since enhancements
at the input level are not directly related to the distilled knowledge
(such as features from intermediate layers or logits from the final
layer), the impact of data augmentation on input data for distil-
lation remains uncontrollable. Furthermore, [4, 33] demonstrated
that feature augmentation in high-dimensional spaces offers the ad-
vantage of increased plausibility of generated data points, thereby
enhancing the likelihood of producing reasonable. Therefore, our
strategy shifts towards leveraging the potential of augmentation at
a finer level of granularity within the latent space. By implementing
an augmenting strategy at latent space, we aim to directly tailor the
teacher’s knowledge, making it more accessible and relevant for the
student network. However, the manually selected augmentation
strategies not only require a significant amount of grid search time
to find the optimal strategy, but they may also disrupt the distribu-
tion of the original teacher knowledge and cannot guarantee that
the augmented features will be suitable for the student network.
Inspired by neural network search [62], automatically searching
for the optimal augmentation strategy provides a great idea. This
automated search for feature-level augmentation strategies can
avoid introducing human biases, prevent unreasonable augmen-
tation strategies from undermining the original knowledge, and
significantly reduce the time spent on grid searches for various aug-
mentation strategies. Note that [24, 54] also uses augmentation for

knowledge distillation. However, their primary goal is to amplify
the knowledge corresponding to the non-target categories in the
label rather than achieving student-oriented knowledge adjustment.
They expanded the teacher’s knowledge, whereas this study seeks
to tailor the teacher’s knowledge to accommodate the students’
requirements.

Based on the abovementioned analysis, the core idea of our pro-
posed method is: adjust the teacher’s knowledge through a learnable
feature augmentation strategy. Specifically, we introduce Student-
Oriented Knowledge Distillation (SoKD), an innovative perspective
that dynamically tailors the pretrained teacher network’s knowl-
edge to the requirements of the student network. SoKD consists of
two key components: Differentiable Automatic Feature Augmen-
tation (DAFA) and the Distinctive Area Detection Module (DAM).
DAFA is guided by student knowledge, searching for the most suit-
able augmentation strategy within a carefully designed feature
augmentation search space. Furthermore, DAM utilizes shared pa-
rameters to identify areas of mutual interest between the teacher
and student, facilitating knowledge transfer and easing the stu-
dent’s learning process. Figure 2a visualizes the results before and
after enhancing the features, and also through the Kolmogorov-
Smirnov test calculating the KS p-value (i.e., 0.26), we can find that
the overall distribution remains unchanged after enhancement, in-
dicating no destruction of the original teacher’s knowledge. The
box plot results in Figure 2b suggest that the enhancement notably
increased the diversity of features while preserving the original
scope of knowledge and significantly reducing outlier occurrences,
simplifying the student’s task of capturing the teacher’s knowledge
and minimizing the risk of misleading information. In summary,
the main contributions of the paper are:

• From a student-oriented perspective, we proposed that SoKD
adjusts teacher knowledge to accommodate the capacity and
architectural design of the student network while preserving
the overall integrity of the original teacher’s knowledge.

• We apply DAFA to automatically learn the most suitable
enhancement strategy for adjusting the teacher’s knowl-
edge through an automated search method and utilize DAM
to identify mutual distillation areas, thereby improving in-
formation transfer efficiency and simplifying the student’s
learning process.

• SoKD can be plugged in existing knowledge distillationmeth-
ods, and extensive experiments show that SoKD can signifi-
cantly improve the performance of these methods.

2 RELATEDWORK
2.1 Knowledge Distillation
Following the original work of knowledge distillation [16], a se-
ries of studies [18, 32, 60, 61] improves the representation of logits.
These logits-based methods transfer the knowledge via minimizing
the Kullback-Leibler divergence between the predicted logits of
teachers and students. The feature-based distillation methods [37]
use features from intermediate layers. They have garnered more
attention, as the higher level logits-based methods lack structural
information. However, a substantial gap between the teacher and
student prevents the latter from fully acquiring the comprehen-
sive knowledge of the former. Studies by [7, 13, 18, 23] promote



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Student-Oriented Teacher Knowledge Refinement for
Knowledge Distillation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Shuffling Noise

Noise Mask

...

Quantization Flipping

Teacher

Student
Possible	Path Selected	Path Bernoulli Sub-Policy Identity

Teacher	Feature

Adpative	
Augmentation	
Teacher	Feature

Student	Feature

DAM

Differentiable	Automatic	Feature	Augmentation

Figure 3: The overall framework of SoKD, comprising two key components: 1) DAFA, a differentiable module for augmenting
feature strategy search. This module adapts strategies during training, aiming to uncover knowledge that is more suitable
for the student network. 2) DAM, which identifies distinctive areas between the teacher and student networks. This module
focuses on areas of mutual interest for knowledge transfer, thereby avoiding unnecessary knowledge distillation.

the student to learn knowledge as accurately as possible through
more comprehensive and stringent constraints. In addition, many
works [20, 32, 48] use a progressive distillation paradigm to avoid
direct distillation when the gap between the teacher and student
networks is large. Other methods [42, 44, 51] improve the transfer of
knowledge to the student by refining the constraints. While [11, 30]
recognized that teacher knowledge might not suit the student, they
search student architectures adaptable to teacher knowledge from
the student’s perspective. However, searching for student network
architectures is time-consuming and often yields architecture un-
friendly to edge devices.

In summary, while existing knowledge distillation methods en-
hance student comprehension of teacher knowledge from student
perspective, this paper adopts the teacher’s perspective, tailoring
its knowledge to accommodate the student.

2.2 Augmentation
In the past few years, handcrafted data augmentation techniques are
widely used in training network. For example, rotation, translation,
croping, resizing, and flipping are commonly used to augment train-
ing example. Beyond these, like Cutout [19], Mixup [58], and Cut-
Mix [55]. Inspired by data augmentation [55, 58], current research
boosts the network’s representational ability by feature space aug-
mentation. It is suggested that higher-level representations amplify
the volume of credible data points in the feature space [3, 34]. Given
that features are usually well linearized [46], it is therefore feasible
to use simple vector interpolation [12] and mixing up [47]. Fea-
tures are perturbed in the directions of intra-class/cross-domain
variability [22], and instance features are directly synthesized by
leveraging semantics [8]. Although these methods achieve promis-
ing improvements on the corresponding tasks, they need expert
knowledge to design the operations and set the hyper-parameters
for specific datasets. Recently, inspired by the neural architecture

search (NAS) [62], some methods attempted to automate learning
data augmentation polices. Our approach takes a student-oriented
perspective and leverages automated strategy search at the feature
level to dynamically adjust the teacher’s knowledge to meet the
student’s needs.

3 METHODOLOGY
In this section, we will introduction our Student-Oriented Knowl-
edge Distillation (SoKD). Our method has two core components:
1) Differentiable Automatic Feature Augmentation (DAFA) in Sec-
tion 3.1, and 2) Distinctive Area Detection Module (DAM) in Sec-
tion 3.2. The overall framework of SoKD is shown in Figure 3.

3.1 Differentiable Automatic Feature
Augmentation

Our approach builds upon and improves the foundation of feature-
based knowledge distillation. For a given set of inputs 𝑥 , the general
form of the feature-based knowledge distillation is:

Lfeat = (𝑓 𝑡 (𝑥) − 𝑔(𝑓 𝑠 (𝑥)))2, (1)

where 𝑔(·) is the mapping function transforming the student’s
feature to align with the teacher’s feature, and 𝑓 𝑡 and 𝑓 𝑠 denote
the teacher and student backbone blocks respectively. The total
training objective for the student model is:

Ltrain = Ltask + 𝛾Lfeat, (2)

where Ltask is the standard task training loss for the student, and
𝛾 is the corresponding weight.

Given that the parameters in the pre-trained 𝑓 𝑡 are fixed, the
teacher network is limited to providing knowledge with its own
bias. The student may have difficulties to understand this complex
and fine-grained knowledge, and this kind of knowledge itself may
often be inappropriate for the student. In this study, we aim to
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dynamically adjust the teacher network’s knowledge F 𝑡 = 𝑓 𝑡 (𝑥)
to better suit the need of the student network.

To preserve teacher network knowledge without changing pa-
rameters, we favor feature-level over input augmentation consider-
ing the fact that higher-level representations expand the relative
volume of plausible data points within the feature space [10]. To
bypass manual enhancement’s biases and time costs, we introduce
DAFA, an NAS framework that dynamically tailors augmentation
strategies to student needs during distillation.

Feature Search Space. We design a search space focused on fea-
ture representation, for simplicity and effectiveness. By analyzing
existing state-of-the-art models, we develop a series of operations
that can significantly enhance the robustness of feature representa-
tion, such as masking and adding noise.

In order to identify an enhancement strategy that meets the
requirements within the minimum possible search time, we adopt
a procedure inspired by Fast AutoAugment [25]. Given the knowl-
edge F from the teacher, we wish to find a policy 𝑠 (F ) which
could adaptively adjust the teacher’s knowledge during the train-
ing process, thereby meeting the learning needs of the student at
the current stage.

Suppose the policy 𝑠 (F ), denoted by 𝑠 for short, has 𝑃 sub-
policies. Each sub-policy 𝑠𝑖 , 1 ≤ 𝑖 ≤ 𝑃 , has 𝑘 operations 𝑂𝑠𝑖

𝑗
with

the probability 𝑝𝑠𝑖
𝑗
for 𝑗 = 1, · · · , 𝑘 , or do not do any operation, i.e.,

keep F unchanged. Combing these two cases, each 𝑠𝑖 corresponds
to 𝑘 operations

𝑂
𝑠𝑖
𝑗

(
F ;𝑝𝑠𝑖

𝑗
,𝑚

𝑠𝑖
𝑗

)
=

𝑂
𝑠𝑖
𝑗

(
F ;𝑚𝑠𝑖

𝑗

)
with 𝑝

𝑠𝑖
𝑗
,

F with 1 − 𝑝
𝑠𝑖
𝑗
,

(3)

for 𝑗 = 1, · · · , 𝑘 , where𝑚𝑠𝑖
𝑗
is the magnitude of the operation. Thus,

the complete sub-policy 𝑠𝑖 (F ) can be represented by

𝑠𝑖 (F ) = 𝑂𝑘 ◦𝑂𝑘−1 ◦ · · · ◦𝑂1 (F ), (4)

for 𝑖 = 1, · · · , 𝑃 .

Feature Search Strategy. After describing the operations in the
feature search space, we now focus on the feature search strategy.
Given that the selection of sub-policies is a discrete process, to
facilitate the end-to-end training, we should make the search space
continuous. Specially, the sub-policy selection and operations are
sampled from Categorical and Bernoulli distributions, respectively.
To select a specific sub-policy 𝑠 (F ) and make the search space con-
tinuous, we relax the the categorical choice of a particular operation
to a softmax

𝑠 (F ) =
∑︁
𝑠∈𝑆

exp (𝛼𝑠 )∑
𝑠′∈𝑆 exp (𝛼𝑠′ )

𝑠 (F ) (5)

over all possible operations, where S is the set of all candidate sub-
policies, and 𝜶 = (𝛼1, · · · , 𝛼 |S | ) is a vector. At the end of search,
a discrete feature augmentation strategy can be obtained with the
most likely operation, i.e., 𝑠 (F ) = arg max

𝑠∈S
𝛼𝑠 .

Consequently, the task of searching for feature augmentation is
simplified to learning a set of variables 𝜶 whose components are
continuous.

After selecting a specific sub-policy using the above step, within
this sub-policy we determine whether this operation is executed by

Adapter

Conv

Distinctive	Area	Detection	Module
Flatten

Concat
Adpative

Augmentation
Teacher	FeatureStudent	Feature

Conv

Conv

DAM

Figure 4: DAM in SoKD. Utilizing three head branches, DAM
individually predicts the heatmap, size, and offset, thereby
identifying the important areas of the feature. The teacher
and student features are inputted into the corresponding
DAM which with an identical structure and shared parame-
ters, aiming at identifying distinctive areas that are ofmutual
interest to both the teacher and student networks.

sampling from a Bernoulli distribution. Essentially, this introduces
a stochastic process, assigning a probability of execution or non-
execution to each operation. The feature operation 𝑂 with the
application probability 𝛽 and magnitude𝑚 can be represented as:

𝑠 (F ) = 𝑏 ·𝑂 (F ;𝑚) + (1 − 𝑏) · F , 𝑏 ∼ Bernoulli(𝛽). (6)

After the relaxation process, the next step is to jointly optimize
the feature augmentation strategy parameters𝛾 = {𝜶 , 𝜷,𝑚} and the
student network weights𝑤 . We define Ltrain (𝑤,𝛾) and Lval (𝑤,𝛾)
as the training and validation losses, respectively. The aim is to
find 𝛾∗ that minimizes the validation loss Lval, with the optimal
weights 𝑤∗ being derived by minimizing the training loss 𝑤∗ =

arg min
𝑤

Ltrain (𝑤,𝛾∗):

min
𝛾

Lval (𝑤∗ (𝛾), 𝛾)
s.t.𝑤∗ (𝛾) = arg min

𝑤
Ltrain (𝑤,𝛾). (7)

To estimate the gradient of Lval with respect to parameters 𝜶 , 𝜷,𝑚,
the Gumbel-Softmax reparameterization trick is utilized to repa-
rameterize the parameters 𝜶 , 𝛽 , making the gradient differentiable.
With the Gumbel-Softmax reparameterization, Eq. (5) could be rep-
resented as:

𝑠 (F ) =
∑︁
𝑠∈𝑆

exp ((log(𝛼𝑠 ) + 𝑔𝑠 )/𝜏)∑
𝑠′∈𝑆 exp ((log(𝛼𝑠′ ) + 𝑔𝑠′ )/𝜏)

𝑠 (F ), (8)

where 𝑔 = − log(− log(𝑢)) with 𝑢 ∼ Uniform(0, 1), and 𝜏 is the
temperature of Softmax function.

Similarly, we apply the same reparameterization trick to the
Bernoulli distribution

Dis(𝜆, 𝛽) = 𝜎

((
log

𝛽

1 − 𝛽
+ log

𝑢

1 − 𝑢

)
/𝜆
)
,

𝑢 ∼ Uniform(0, 1),
(9)

such that the sigmoid function 𝜎 is differentiable with respect to 𝛽 .
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Table 1: Results of top-1 accuracy (%) for homogeneous architectures on CIFAR-100.

Teacher ResNet56 ResNet110 ResNet32 × 4 WRN-40-2 WRN-40-2 VGG13
72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8 × 4 WRN-16-2 WRN-40-1 VGG8
69.06 71.14 72.50 73.26 71.98 70.36

Logits
KD [16] 70.66 73.08 73.33 74.92 73.54 72.98
DKD [61] 71.97 74.11 76.32 76.24 74.81 74.68
MLKD [18] 72.19 74.11 77.08 76.63 75.35 75.18
ND∗ [43] 72.33 74.32 78.28 76.95 75.56 75.22

Feature

FitNet [37] 69.21 71.06 73.50 73.58 72.24 71.02
+DFKD 71.54 (+2.33) 72.21 (+1.15) 74.41 (+0.91) 74.63 (+1.05) 73.02 (+0.78) 71.91 (+0.89)

CRD [44] 71.16 73.48 75.51 75.48 74.14 73.94
+DFKD 71.73 (+0.57) 73.81 (+0.33) 76.54 (+1.03) 76.54 (+1.06) 74.62 (+0.48) 74.37 (+0.43)

AT [56] 70.55 72.31 73.44 74.08 72.77 71.43
+DFKD 70.98 (+0.43) 72.93 (+0.62) 74.31 (+0.87) 75.15 (+1.07) 73.09 (+0.32) 71.64 (+0.21)

ReviewKD [7] 71.89 73.89 75.63 76.12 75.09 74.84
+DFKD 72.61 (+0.72) 74.63 (+0.74) 77.41 (+1.78) 77.02 (+0.90) 75.63 (+0.54) 75.31 (+0.47)

Since some operations in the search space are non-differentiable,
we employ straight-through gradient estimator [2] to optimize the
augmentation magnitude𝑚. For a feature F̂ = 𝑠 (F ) augmented
by sub-policy 𝑠 , the influence of the augmentation operation on

each pixel (𝑖, 𝑗) of the image is uniform, specifically, 𝜕 F̂𝑖,𝑗𝜕𝑚 = 1, the
gradient of the magnitude can be calculated as:

𝜕Lval
𝜕𝑚

=
∑︁
𝑖, 𝑗

𝜕Lval

𝜕F̂𝑖, 𝑗

𝜕F̂𝑖, 𝑗
𝜕𝑚

=
∑︁
𝑖, 𝑗

𝜕Lval

𝜕F̂𝑖, 𝑗
. (10)

Through the aforementioned reparameterization trick, we have
transformed the non-differentiable feature search into a differen-
tiable operation, hence making it possible to optimize parameters
through gradient updates.

3.2 Distinctive Area Detection Module
DAM is the second module of SoKD. As shown in the right part of
Figure 3, both the student’s feature and the teacher’s feature after
DAFA are fed into DAM, and DAM outputs the distinctive areas.
The purpose of DAM is to address the challenge that even when
the bias in the knowledge provided by the teacher is alleviated by
DAFA, fully replicating the teacher’s comprehensive information
remains difficult.

DAM aims to decouple the feature, thereby enabling the separa-
tion of distinctive areas for the transmission of knowledge in these
distinctive areas. Specifically, we first employ an adapter to facili-
tate the mapping of the student and teacher features into a common
semantic space. Following this, we use a multi-branch detection
head to pinpoint distinctive areas. The DAM module is composed
of three branches, each consisting of consecutive convolutional
layers, i.e., 3 × 3, and 1 × 1. The output of DAM is:

𝐴 = D(conv𝑖 (Φ𝑠 (F 𝑠 ))), (11)

where conv𝑖 (𝑖 = 1, 2, 3) represents the three branches of the DAM
module, Φ𝑠 aligns the input between the teacher and the student,

andD stands for the decode part of DAM, which is used to generate
distinctive areas. During the training process, the features of both
the student and teacher are passed through a shared-parameter
DAM module to predict the distinctive areas independently. The
predicted results are then supervised using 𝐿2 loss, facilitating the
alignment of distinctive areas between the student and teacher. The
final training loss for the DAM module is:

L𝐷 =
(
conv𝑖 (Φ𝑠 (F 𝑠 )) − conv𝑖 (𝑠 (F 𝑡 ))

)2
. (12)

After distinctive areas are filtered using DAM, Eq. 1 is modified
to the following representation:

LDA
(
F 𝑠 , F 𝑡 ) = 𝑁∑︁

𝑖=1

(
M(𝐴𝑖 )Φ𝑠 (F 𝑠 ) −M(𝐴𝑖 )𝑠 (F 𝑡 )

)2
, (13)

where 𝑁 is the number of the distinctive areas, and M is a mask
operation that generates the corresponding mask based on the
distinctive areas 𝐴𝑖 .

3.3 Objectives for Optimization
For Lval in Eq. (7), to ensure that the enhanced feature provides
suitable knowledge for the student, we use a consistency loss to
make the features as close as possible to F 𝑠 after applying the
corresponding sub-policy 𝑠 . Therefore, the searched strategy can
adjust the teacher’s knowledge to fit the student network:

Lcon =
1
2
(𝑠 (𝑓 𝑡 (𝑥)) − 𝑓 𝑠 (𝑥))2 . (14)

For the distillation of the student network, in addition to the loss
related to the original task and the distillation loss at the feature
level, we also carry out more coherent knowledge distillation based
on DAM in Sec. 3.2. Thus, the final loss function can be expressed
as:

min
𝛾

Lcon (𝑤∗ (𝛾), 𝛾)
s.t. 𝑤∗ (𝛾) = arg min

𝑤
(Ltask + 𝛼LD + 𝛽LDA),

(15)

where 𝛼 , 𝛽 represent corresponding weights.
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Table 2: Results of top-1 accuracy (%) for heterogeneous architectures on CIFAR-100.

Teacher ResNet32 × 4 WRN-40-2 VGG13 ResNet50 ResNet32 × 4
79.42 75.61 74.64 79.34 79.42

Student ShuffleNetV1 ShuffleNetV1 MobileNetV2 MobileNetV2 ShuffleNetV2
70.50 70.50 64.60 64.60 71.82

Logits
KD [16] 74.07 74.83 67.37 67.35 74.45
DKD [61] 76.45 76.70 69.71 70.35 77.07
MLKD [18] 77.18 77.44 70.57 71.04 78.44
ND∗ [43] 77.01 77.25 70.94 71.19 78.76

Features

FitNet [37] 73.59 73.73 64.14 63.16 73.54
+DFKD 74.93 (+1.34) 75.65 (+1.92) 66.32 (+2.18) 67.12 (+3.96) 74.21 (+0.67)

AT [56] 71.73 73.32 69.40 68.58 72.73
+DFKD 73.24 (+1.51) 75.09 (+1.77) 69.64 (+0.24) 68.75 (+0.17) 73.43 (+0.70)

ReviewKD [7] 77.45 77.14 70.37 69.89 77.78
+DFKD 78.12 (+0.67) 77.32 (+0.18) 70.79 (+0.42) 71.10 (+1.21) 78.64 (+0.86)

CRD [44] 75.11 76.05 69.73 69.11 75.65
+DFKD 75.73 (+0.62) 77.29 (+1.24) 70.44 (+0.71) 69.57 (+0.46) 76.24 (+0.59)

Table 3: Top-1 and Top-5 accuracy (%) of student networks on ImageNet validation set.

Teacher Student AT +DFKD CRD +DFKD ReviewKD +DFKD

ResNet34 as the teacher, ResNet18 as the student

top-1 73.31 69.75 70.69 72.13 (+1.44) 71.17 71.86 (+0.69) 71.61 72.53 (+0.92)
top-5 91.42 89.07 90.01 91.34 (+1.33) 90.13 90.71 (+0.58) 90.51 91.32 (+0.81)

ResNet50 as the teacher, MobileNetV1 as the student

top-1 76.16 68.87 69.56 69.83 (+0.27) 71.37 71.60 (+0.23) 72.56 73.02 (+0.48)
top-5 92.86 88.76 89.33 89.58 (+0.25) 90.41 90.69 (+0.28) 91.00 91.22 (+0.22)

Through the optimization of the aforementioned bi-level prob-
lem, we can determine the optimal feature augmentation strategy,
thereby optimizing the student network under the proposed distil-
lation framework.

4 EXPERIMENTS
In this section, we first provide a detailed introduction to the im-
plementations of our experiments. Subsequently, we conduct com-
parisons with mainstream methods on various datasets and tasks.
We also provide an analysis for further insights.

4.1 Experimental Settings
Baselines. We conducted extensive comparative experiments

on teacher-student pairs across various neural network architec-
tures [14, 17, 31, 38, 41, 57, 59] to validate the effectiveness of our
method.

Ourmethod can be integrated as a plug-in techniquewith various
feature-based knowledge distillation approaches to enhance their
performance. We applied our SoKD to existing distillation frame-
works including FitNet [37], CRD [44], AT [56] and ReviewKD [7].

Datasets. We employed three prominent datasets to evaluate
our methodologies. The first dataset is the CIFAR-100 [21], which

includes 60,000 images in 100 unique classes. Each image is 32x32
pixels in resolution. The dataset is partitioned into two sections: a
training subset with 50,000 images and a test subset with 10,000
images. The second dataset is the ImageNet [9], an essential dataset
for benchmarking in image classification. It contains approximately
1.3 million training images and 50,000 validation images, spread
across 1,000 different classes. The ImageNet dataset is notable for
its high-resolution images. Finally, the MS-COCO dataset [28] was
also utilized, predominantly used for object detection tasks. This
dataset includes images categorized into 80 different classes, with a
training set of 118,000 images and a validation set of 5,000 images.

Implementation Details. For experiments on CIFAR-100, we ad-
here to the basic settings of the original experiments [7, 37, 61].
We set the batch size to 64, the learning rate to 0.05, and use the
SGD [5] optimizer. The training is conducted on NVIDIA-A100 for
240 epochs. For ImageNet, we adopt the same training strategy as
previous methods, with a batch size of 512, an initial learning rate of
0.1, and a total of 100 training epochs. Furthermore, the learning rate
is decreased at epochs 30, 60 and 90. For COCO, we use the object
detection framework of Detector2 [49] and conduct comparative
experiments. All codes are implemented based on PyTorch [35].
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Table 4: Object detection results on MS-COCO. We take Faster-RCNN with FPN as the backbones.

AP AP50 AP AP50 AP AP50

ResNet101 & ResNet18 ResNet101 & ResNet50 ResNet50 & MobileNetV2

Teacher 42.04 62.48 42.04 62.48 40.22 61.02
Student 33.26 53.61 37.93 58.84 29.47 48.87

FitNet 34.13 54.16 38.76 59.62 30.2 49.8
+DFKD 35.09 (+0.96) 54.93 (+0.77) 39.43 (+0.67) 60.08 (+0.46) 31.43 (+1.23) 50.85 (+1.05)

FGFI 35.44 55.51 39.44 60.27 31.16 50.68
+DFKD 36.32 (+0.88) 56.32 (+0.81) 39.78 (+0.34) 60.64 (+0.37) 32.02 (+0.86) 51.23 (+0.55)

ReviewKD 36.75 56.72 40.36 60.97 33.71 53.15
+DFKD 37.21 (+0.46) 57.52 (+0.80) 40.43 (+0.07) 61.86 (+0.89) 34.24 (+0.53) 54.29 (+1.14)

4.2 Main Results
CIFAR-100. To fully demonstrate the efficacy of our method, we

conducted extensive comparative experiments with various teacher-
student pairs on CIFAR-100. Tables 1 and 2 present the experimental
results for homogeneous and heterogeneous architectures, respec-
tively. The results indicate that SoKD significantly enhances the
performance of original knowledge distillation in structurally simi-
lar teacher-student pairs (e.g., an improvement of 2.33 percentage
points on FitNet for the ResNet56-ResNet20 pair). Moreover, it ef-
fectively transfers knowledge from the teacher to the student even
in pairs with larger structural differences (e.g., an improvement of
3.96 percentage points on FitNet for the ResNet50-MobileNetV2
pair).

ImageNet. The results shown in Table 3 illustrate that SoKD
can still achieve satisfactory performance on the more challenging
dataset ImageNet. When employing ResNet34 as the teacher and
ResNet18 as the student, out method improves the top-1 accuracy of
AT from 70.69% to 72.13%. Notably, SoKD also significantly improves
performance over the current state-of-the-art ReviewKD, increasing
top-1 accuracy from 71.61% to 72.53%.

Object Detection. We extend our experiments to object detec-
tion, another fundamental computer vision task. Using Faster-
RCNN [36]-FPN [27] as the backbones and adopting average preci-
sion (AP), AP50 as evaluation metrics, the results in Table 4 indi-
cate a comprehensive enhancement of existing distillation methods
through the combination with SoKD. This also effectively demon-
strates the generalizability of out method.

4.3 Ablation Study
SoKD primarily comprises two crucial modules: DAFA and DAM.
Additionally, we enhance the training process of DAFA through a
consistency loss Lcon. We validate the effect of each component
using a one-by-one approach, and conduct experiments with ResNet
32 × 4-ResNet 8 × 4 and VGG13-MobileNetV2, using ReviewKD as
the baseline. The results in Table 5 demonstrate that each module
within SoKD exhibits significant effectiveness.

Table 5: Ablation for different modules in DFKD. R-324 and
R-84 respectively denote ResNet 32 × 4 and ResNet 8 × 4.

Teacher & Student DAFA Lcon DAM Accuracy (%)

R-324 & R-84

- - - 75.63
✓ ✗ ✗ 76.85
✓ ✓ ✗ 77.01
✓ ✓ ✓ 77.41

VGG13 & MV2

- - - 70.37
✓ ✗ ✗ 70.52
✓ ✓ ✗ 70.67
✓ ✓ ✓ 70.79

Table 6: Influence of search epoch number in DAFA.

Search Epochs R110 & R32 VGG13 & MV2
10 74.21 70.43
20 74.63 70.79
25 74.49 70.71
30 74.52 70.59

4.4 More Analysis
Search epochs. Since excessive feature augmentation may cause

potential undermine of original knowledge, we also identify the
optimal balance. This balance is crucial for effectively enhancing
the knowledge provided by the teacher model, thereby offering
more robust guidance for the student model. Table 6 presents the
comparative results between different numbers of search epochs
for two sets of teacher-student pairs on CIFAR-100: ResNet110-
ResNet32 and VGG13-MobileNetV2. The results indicate that we
actually need only a few epochs for searching to determine the most
suitable feature augmentation strategy to adjust the knowledge in
the teacher network. Strategies searched with more epochs are not
only time-consuming but also prone to overfitting.

Comparison of Manually Designed Augmentation Strategies. To
fully demonstrate the superiority of our approach, we compared it
with manually designed augmentation strategies, including direct
data augmentation on the input and several simple combinations
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Figure 5: In the distillation process on ImageNet, with ResNet34 serving as the teacher and ResNet18 as the student, the
evolution of crucial regions within features. The final results are compared against FitNet and DKD.

FitNet FitNet	+	DFKD

ReviewKD ReviewKD	+	DFKD

Figure 6: Difference of student and teacher outputs. SoKD
leads to a significantly smaller difference than baseline.

Table 7: Experimental comparison results of different types
of augmentations based on FitNet for various teacher-student
pairs.

Method ResNet56
ResNet20

ResNet32x4
ResNet8x4

WRN-40-2
ShuffleNetV1

Data Aug 67.50 72.25 69.27
Feature Aug 69.72 73.28 72.52
Aug Search (Ours) 71.54 74.41 75.65

of augmentation strategies on features (e.g., adding noise, masking,
and channel shuffling). The results in Table 7 indicate that aug-
mentation on features performs better than direct augmentation
on input data, which aligns with our expectations. Additionally,
the results show that mere augmentation does not yield signifi-
cant improvements. The core of our method lies in adjusting the
teacher’s knowledge based on the student’s actual needs rather
than relying solely on augmentation. The significant performance
enhancement achieved by our method underscores its rationality
and effectiveness.

Visualization. Figure 5 uses Grad-CAM visualizations to show
how the student network’s focus areas change during the train-
ing process for ResNet34-ResNet18 distillation on ImageNet. The
results show that the student gradually learns the teacher’s recogni-
tion patterns. Compared to other methods, SoKD achieves a closer
recognition pattern to the teacher.

Figure 6 compares the final logits of the teacher and student
models, highlighting differences. Previous feature-based methods,
focusing only on intermediate layer features, often led to notable
logit disparities due to latent space complexity. This disparity made
imitating the teacher challenging for the student. However, with
SoKD adjusting the teacher’s intermediate knowledge, the student
better understands and aligns this knowledge, achieving similar
logit outputs crucial for the final task.

5 CONCLUSION
In this paper, we argue that the current teacher-oriented knowl-
edge distillation often imposes the challenging task of learning
complex teacher knowledge on the student network, frequently
leading to sub-optimal outcomes. Therefore, we introduce a novel
student-oriented knowledge distillation approach that employs
automatically searched feature augmentation strategies. Without
undermining the original knowledge of the teacher, this method
appropriately adjusts the teacher’s knowledge to accommodate the
student network’s model capacity and architectural design require-
ments. As a plug-in, SoKD significantly improves the performance
of existing knowledge distillation methods on various datasets.
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