Choosing hyperparameters Α

Table 7: ROC-AUC on	Table 8:	ROC-AUC on	Table 9: Different m	nethods of embed-
ogbg-molhiv for various	ogbg-molhiv	for various hid-	ding the angle for	chemical distance
numbers of DeeperGCN	den layer s	sizes in Deep-	bounds (ROC-AUC	on ogbg-molhiv).
layers. We use 12 layers.	erGCN. W	e choose the	Jointly using all 3 pro	posed components
Layers AUC-ROC	largest, i.e. 256.		(Min+Max+Center) works best.	
$7 0.754 \pm 0.028$	Hidden size	AUC-ROC	Angle mode	MAE
12 0.756 ± 0.026	64	0.764 ± 0.009	Min	0.754 ± 0.048
$15 0.742 \pm 0.028$	128	0.760 ± 0.026	Max	0.754 ± 0.013
	256	0.756 ± 0.026	Center	0.744 ± 0.012
			Min+Max	0.745 ± 0.018
			Center+Min+Max	0.756 ± 0.026

rameters per message passing step for the second layer ("Mixed") performs slightly better.

Embedding method MAE Local 0.754 ± 0.010 Global 0.753 ± 0.025 Mixed 0.756 ± 0.026

Table 10: ROC-AUC on ogbg- Table 11: Different bottleneck and basis sizes for embedding molhiv. Different parameter sharing the distance and angle (ROC-AUC on ogbg-molhiv). We variants for the two layers used for choose a 4-dimensional bottleneck, a 16-dimensional distance embedding the distance and angle. and a 18-dimensional angle embedding. Note that the latter Sharing the parameters of the first numbers are the sum of all components, i.e. we use 8 dimenlayer globally and using separate pa- sions for the minimum and 8 for the maximum distance.

		Basis	size	
	Bottleneck	Distance	Angle	MAE
		4	6	$\overline{\textbf{0.762}\pm\textbf{0.021}}$
	2	8	9	$\textbf{0.766} \pm \textbf{0.019}$
		16	18	0.751 ± 0.031
		4	6	0.743 ± 0.016
	4	8	9	0.756 ± 0.026
		16	18	$\textbf{0.767} \pm \textbf{0.016}$
-		4	6	0.741 ± 0.024
	8	8	9	$\textbf{0.771} \pm \textbf{0.015}$
		16	18	0.743 ± 0.012

In this section we highlight the best results as well as the chosen hyperparameters and model variants via bold font. We tune DeeperGCN on ogbg-molhiv to prevent selection bias and overfitting. Tables 7 and 8 show its performance for various choices of depth and width. Many of these results are not statistically significant. We chose a depth of 12 layers and a hidden size of 256.

Table 9 compares the three ways of representing the angle bounds described in Sec. 4. We see that simply using all three of them performs the best. Note that we keep the total basis size constant, i.e. we either use one 18-dimensional, two 9-dimensional, or three 6-dimensional angle bases.

We embed the information provided by synthetic coordinates using two linear layers with a small "bottleneck" layer in between and without non-linearities. Table 10 compares using separate local layers per message passing step against using a single global layer, i.e. sharing these parameters. Mixing these two variants by using one global and one local layer performs best. Table 11 furthermore compares different bottleneck and basis sizes for representing the distances and angles. A 4- or even 2-dimensional bottleneck performs best — which is surprisingly small compared to the used hidden size of 256. The basis size on the other hand is similar to the size used e.g. by Gasteiger et al. (2020b).