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A HOW TO DEAL WITH NON-DIVISIBLE CASES

In this section, we further elaborate on how to deal with the cases where the number of features D
is not divisible by the number of groups NG (or, the size of each group SG). During training, we
randomly drop some features to ensure divisibility. On the other hand, in the inference stage, we
simply repeat some randomly chosen features and augment them to the original input time series, in
order to make the total number of features divisible by NG. After finishing the forecasting procedure
with the augmented inputs, we drop augmented features from outputs. The details are delineated in
Algorithm 1.

Algorithm 1: How to deal with the non-divisible case in ESSformer
Input: # of features D, # of groups NG, # of ensembling NE , Past observations X = {Xd}Dd=1

NE = NE if is inference then else 1;
F = {0, 1, ..., D − 1}; SG = ⌈ D

NG
⌉; R = D % SG;

for i← 1 to NE do
if R ̸= 0 then

Randomly split F into F+,F−, where |F−| = R, |F+| = D −R,F+ ∩ F− = ϕ;
F = F+;
if is inference then

F++ = {fi|fiis a random sample from F+ without replacement, i = [0, SG −R) ∩ Z};
X++ = {Xb}b∈F++ ;
Augment X++ to X as the (D)-th, (D + 1)-th, ..., (D + SG −R− 1)-th features;

else
Remove F− features in X;

G = {Gg}NG−2
g=0 = Random Partition(F);

else
G = {Gg}NG−1

g=0 = Random Partition(F);

if R ̸= 0 and is inference then
G = G ∪ {F− ∪ {D,D + 1, ..., D +NG −R− 1}};
Yi = ESSformer(X, G);
Remove the (D)-th, (D + 1)-th, ..., (D + SG −R− 1)-th features from Yi;

else
Yi = ESSformer(X, G);

Y = (Y1 +Y2 + ...+YNE )/NE ;
return Predicted future observations Y;

B CODE IMPLEMENTATION OF PERIA AND R-PARTA IN PYTHON

This section provides how to implement the single-head case of PeriA and R-PartA with PYTORCH
in PYTHON. With rearrange function from einops package, they are easily implemented. The
implementation of PeriA and R-PartA are as follows:

1 from einpos import rearrange
2 def PeriA_RPartA(input_x, P, N_G, Linear_q_PeriA, Linear_q_RPartA,
3 Linear_k, Linear_v, FA):
4 """
5 input_x: segmented input tensor (size: batch_size * D * N_S * d_h)
6 P: length of one period
7 N_G: the number of groups
8 MHSA: nn.Module for vanilla multi-head self-attention
9 """

10

11 # intra-period attention in PeriA
12 x_PeriA_1 = rearrange(input_x, "b c (n p) d -> b c n p d", p = P)
13 value = MHSA(x_PeriA_1, x_PeriA_1, x_PeriA_1)
14

15 # inter-period attention in PeriA
16 x_PeriA_2 = rearrange(input_x, "b c (n p) d -> b c p n d", p = P)
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17 value = rearrange(value, "b c n p d -> b c p n d")
18 value = MHSA(x_PeriA_2, x_PeriA_2, value)
19 value = rearrange(value, "b c p n d -> b c (n p) d")
20

21 # R-PartA
22 x_RPertA = rearrange(input_x, "b (n g) s d -> b n s g d", n = N_G)
23 value = rearrange(value, "b (n g) s d -> b n s g d", n = N_G)
24 value = MHSA(x_RPertA, x_RPertA, value)
25 value = rearrange(value, "b n s g d -> b (n g) s d")
26 return value # size : (batch_size * D * N_S * d_h)

C DETAILS OF EXPERIMENTAL ENVIRONMENTS

C.1 DATASETS

We evaluate ESSformer on 7 M-LTSF benchmark datasets. The normalization and train/val/test
splits are also the same as that of the baseline segment-based Transformers (Zhang & Yan, 2023;
Nie et al., 2023). The information of each dataset is as follows:

• (1-2) ETTh1,27 (Electricity Transformer Temperature-hourly): They have 7 indicators in
the electric power long-term deployment, such as oil temperature and 6 power load features.
This data is collected for 2 years and the granularity is 1 hour. Different numbers denote
different counties in China. Train/val/test is 12/4/4 months and the number of time steps is
17,420.

• (3-4) ETTm1,2 (Electricity Transformer Temperature-minutely): This dataset is exactly
the same with ETTh1,2, except for granularity. The granularity of these cases is 15 min-
utes. The number of time steps is 69,680.

• (5) Weather8: It has 21 indicators of weather including temperature, humidity, precipita-
tion, and air pressure. It was recorded for 2020, and the granularity is 10 minutes. The ratio
of train/val/test is 0.7/0.1/0.2 and the number of time steps is 52,696.

• (6) Electricity9: In this dataset, information about hourly energy consumption from 2012
to 2014 is collected. Each feature means the electricity consumption of one client, and
there are 321 clients in total. The ratio of train/val/test is 0.7/0.1/0.2 and the number of
time steps is 26,304.

• (7) Traffic10: Traffic dataset pertains to road occupancy rates. It encompasses hourly data
collected by 862 sensors deployed on San Francisco freeways during the period spanning
from 2015 to 2016. The ratio of train/val/test is 0.7/0.1/0.2 and the number of time steps is
17,544.

C.2 SOFTWARE AND HARDWARE ENVIRONMENTS

We conduct experiments on this software and hardware environments for M-LTSF: PYTHON 3.7.12,
PYTORCH 2.0.1, and NVIDIA GEFORCE RTX 3090.

C.3 BASELINES

We select 11 baselines considering diversity and their forecasting performance. For segment-based
Transformers, we include two recent works, Crossformer and PatchTST, as baselines. As for
observation-based Transformers, there are many candidates (Zhou et al., 2021; Liu et al., 2022b;
Lim et al., 2020; Wu et al., 2022; Zhou et al., 2022; Li et al., 2020). Among them, our choices
are FEDformer, Pyraformer, and Informer, considering their performance and meaning in M-LTSF
tasks. Furthermore, we add a linear-based model as our baseline. This is because existing Trans-
formers are proven to underperform a single linear in Zeng et al. (2022), so comparing Transformers

7https://github.com/zhouhaoyi/ETDataset
8https://www.bgc-jena.mpg.de/wetter/
9https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

10http://pems.dot.ca.gov
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to linear-based models is of importance. We use TSMixer, NLinear, and NLinear-m as our baselines.
NLinear-m is modified NLinear for multivariate cases, of which the weight matrix W ∈ RT×τ is
changed into W ∈ RT ·D×τ ·D. Because NLinear doesn’t consider inter-feature dependencies, we
add NLinear-m for a fair comparison to ESSformer which is multivariate. To make baselines more
diverse, there are other types of baselines, methods based on convolution neural networks (CNNs)
and implicit neural representations (INRs). We use recent two CNN-based methods, MICN and
TimesNet, and one INR-based method, DeepTime.

• (1) Crossformer (Zhang & Yan, 2023): It uses segmentation with separate tokenization
where different features are allocated to different segments, and two types of attention, one
of which is self-attention for temporal dependencies and the other is for inter-feature rela-
tionships. It reduces the complexity of self-attention for inter-feature relationships using
routers with low-rank approximation concepts.

• (2) PatchTST (Nie et al., 2023): It use similar segmentation to Crossformer. A distinct
difference from it is that it doesn’t consider any relationship between different features.

• (3) FEDformer (Zhou et al., 2022): Using the sparsity in frequency domains, it tries to
reduce the quadratic complexity of self-attention layers to a linear one.

• (4) Pyraformer (Liu et al., 2022b): It has hierarchical structures with different resolutions,
leading to linear complexity of self-attention.

• (5) Informer (Zhou et al., 2021): By estimating KL divergence between query-key distri-
bution and uniform distribution, it discerns useful and useless information. By using only
useful information, it achieves log-linear complexity. Also, a new type of decoder was
proposed, which generates forecasting outputs at once.

• (6) TSMixer (Chen et al., 2023a): Using the concept of MLP-Mixer in vision do-
mains (Tolstikhin et al., 2021), it was devised to explore the abilities of linear layers in
M-LTSF.

• (7) NLinear (Zeng et al., 2022): A single linear layer mapping past observations into future
observations with a normalization trick that subtracts the last value of input observations
from input and adds the value to the output.

• (8) NLinear-m: a multivariate version of NLinear
• (9) MICN (Wang et al., 2023): To capture both local and global patterns from time series

efficiently, it extracts patterns with down-sampled convolution and isometric convolution.
Also, multi-scale structures are used to capture more diverse patterns.

• (10) TimesNet (Wu et al., 2023): Building upon the multi-periodicity of time series, it
regards time series as not 1d but 2d structures and aims to figure out intra-period and inter-
period relationships.

• (11) DeepTime (Woo et al., 2023): It solves the problem where INRs are hard to be gener-
alized in time-series forecasting tasks, with a meta-optimization framework.

Furthermore, we find concurrent works which are Transformer-based methods for time-series fore-
casting and include them as our baselines. Among (Chen et al., 2023b; Zhao et al., 2023; Xue et al.,
2023; Gao et al., 2023; Zhang et al., 2023; Shao et al., 2023; Yu et al., 2023; Lin et al., 2023a), we
select JTFT, GCformer, CARD, Client, PETformer as our baselines because they have the same ex-
perimental settings with ours11 or their executable codes are available to run models in our settings.

• (1) JTFT (Chen et al., 2023b): Similar to Crossformer, segmentation and two types of
Transformers are employed. Before a Transformer takes input, it pre-processes input time
series. It only encodes a fixed length of recent observations into tokens and sparse fre-
quency information extracted from the whole input into tokens, rather than encodes the
whole input directly. This leads to efficient self-attention for temporal dependencies. Also,
with a low-rank approximation scheme, it reduces the complexity of self-attention for inter-
feature dependencies.

11We decide that it has the same experimental setting with ours when the scores of some baselines are the
same.
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• (2) GCformer (Zhao et al., 2023): To overcome the limitations of Transformers that they
cannot deal with long time series well, it combines a convolutional branch for global infor-
mation and Transformer-based branch for local, recent information.

• (3) CARD (Xue et al., 2023): With a dual Transformer, it can capture various dependencies
across temporal, feature, and hidden dimensions. On top of that, the author devised a robust
loss function to relieve overfitting issues in M-LTSF.

• (4) Client (Gao et al., 2023): This method has two parts, one of which is a linear model to
capture temporal trends and the other is self-attention for inter-feature dependencies.

• (5) PETformer (Lin et al., 2023a): Based on Crossformer architecture, it introduced
placeholder enhancement technique (PET). Thanks to PET, PETformer can forecast with
only encoders (i.e., without decoder).

As for evaluation metrics of baseline methods, we repeat the scores when the scores of the same
experimental settings as ours are available. Otherwise, we measure evaluation scores with their of-
ficial codes and best hyperparameters in our experimental environments. The scores of PatchTST,
FEDformer, Pyraformer, and Informer are from Nie et al. (2023), and those of TSMixer and NLin-
ear are from Chen et al. (2023a). For Crossformer12, Linear-m, MICN, TimesNet, Client13, and
DeepTime14, we measure new scores in the same experimental environments with ours, such as the
range of T . When training Crossformer, we convert a Transformer-based encoder into a linear-based
encoder for fair comparison to ESSformer, because the latter usually has better performance than
the former. For JTFT, GCformer, CARD, and PETformer out of the concurrent works, we repeat the
score reported in each paper while we re-evaluate the scores in the case of Client.

C.4 HYPERPARAMETERS

The details of hyperparameters used in the ESSformer are delineated in this section. We use 7
hyperparameters. The first hyperparameter is the length of input time steps T . We regard it as hy-
perparameters which is common in recent literature for M-LTSF (Liu et al., 2022b; Zhang & Yan,
2023). The range of T is {512, 1024} similarly to Zhang & Yan (2023). Also, the number of seg-
ments NS is in {8,16,32,64} and the dropout ratio rdropout is in {0.1, 0.2, 0.3, 0.4, 0.7}. The hidden
dimension dh is in {32,64,128,256,512}. The number of heads in self-attention nh is in {2,4,8,16}
and the number of layers L is in {1,2,3}. dff is the hidden size of the last MLP of each ESSformer
layer in equation 4 and in {32,64,128,256,512}. As for the size of each group SG in random par-
titioning, we use 3, 7, 30, and 20 for ETT, Weather, Electricity, and Traffic datasets, respectively.
Also, batch size is 128, 128, 16, and 12 for ETT, Weather, Electricity, and Traffic datasets, respec-
tively. Finally, we set the learning rate and training epochs to 10−3 and 100, respectively. The
selected best hyperparameters of ESSformer are in Table 5.

D ADDITIONAL COMPLEXITY ANALYSIS

D.1 ELABORATION ON THEORETICAL ANALYSIS OF ESSFORMER’S COSTS

This section provides how to derive the cost of two efficient attention modules, O(N1.5
S ) of PeriA

and O(DSG) of R-PartA. Because our two attention modules can be formulated by block-diagonal
self-attention, we first derive the computation cost of block-diagonal self-attention. Let’s assume
that B is the size of each block and N is the total number of tokens. Then, the attention cost of
each block is O(B2) and the number of blocks is N/B. Therefore, the computation cost of block-
diagonal self-attention is O(NB).

PeriA can be formulated by two block-diagonal self-attention modules. Given a period of P and the
number of segments (tokens) NS , the block sizes of two modules are B1 = P and B2 = NS/P . As
such, the cost of PeriA can be written as O(NSP +N2

S/P ). If we set P to
√
NS for efficiency, the

final cost becomes O(N1.5
S ).

12https://github.com/Thinklab-SJTU/Crossformer
13For MICN, TimesNet, and Client, we use the same code from https://github.com/daxin007/

Client/tree/main.
14https://github.com/salesforce/DeepTime
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Table 5: Selected hyperparameters of ESSformer.
Data τ T NS rdropout dh nh L dff

ETTh1

96 512 64 0.7 128 4 1 256
192 512 64 0.7 32 4 1 256
336 512 64 0.7 64 8 1 64
336 512 64 0.7 64 8 1 64

ETTh2

96 512 64 0.7 512 4 1 256
192 1024 64 0.7 512 2 1 256
336 1024 64 0.7 64 16 1 256
720 512 64 0.7 64 16 1 128

ETTm1

96 512 64 0.2 256 2 2 256
192 512 64 0.1 64 8 1 128
336 512 64 0.2 64 2 2 64
720 1024 64 0.7 64 4 1 128

ETTm2

96 1024 64 0.7 512 2 1 64
192 1024 64 0.7 128 4 1 32
336 1024 64 0.4 128 2 1 32
720 1024 64 0.7 256 4 1 32

Weather

96 512 64 0.2 128 8 3 256
192 512 64 0.2 128 16 3 256
336 512 64 0.4 128 16 3 512
720 512 64 0.4 128 2 1 256

Electricity

96 512 64 0.3 256 8 1 256
192 512 64 0.2 256 4 2 256
336 512 64 0.2 128 4 3 256
720 512 64 0.2 256 4 3 256

Traffic

96 512 8 0.2 512 2 3 512
192 512 8 0.1 256 4 3 512
336 512 8 0.2 256 2 3 256
720 512 8 0.2 512 4 3 512

Table 6: Complexity Comparison of ESSformer against all baselines.

Method Theoretical Complexity Avg. MSE Avg. Rank

ESSformer O(D
(
T
S

)1.5
) 0.292 1.04

Crossformer O(D
(
T
S

)2
) 0.650 7.21

PatchTST O(D
(
T
S

)2
) 0.304 2.86

FEDformer O(T ) 0.373 6.93
Pyraformer O(T ) 0.888 10.29
Informer O(T log T ) 1.170 10.43
TSMixer O(DT 2 + D2T ) 0.310 2.79
NLinear O(DT ) 0.319 4.61

NLinear-m O(D2T ) N/A N/A
MICN O(D2T ) 0.486 8.00

TimesNet O(DT ) 0.387 7.25
DeepTime O(DT ) 0.328 4.36

As for R-PartA, it can be formulated by one block-diagonal self-attention module. Given a group
size of SG and the number of entire features D, the block size is B = SG and the final cost of
R-PartA is O(DSG).

D.2 COMPLEXITY COMPARISON BETWEEN ESSFORMER AND ALL BASELINES IN TABLE 1

We provide theoretical analyses of all baselines in Table 1 about computational costs with an average
of performance scores (MSE) and rank across all datasets. T is the input historical time length and D
is the number of features. Also, S = T

NS
is the size of each segment in segment-based Transformer,

where NS is the number of segments. Table 6 shows that our ESSformer gives the best forecasting
performance with a quite low cost.

E EFFECT OF CHANGING THE LENGTH OF ONE PERIOD EVERY LAYER

In Section 3.1, we make P change per each layer. To explore the effectiveness of this design, we fix
P to P∗ every layer and compare the scores without changing P to the original one with changing
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Table 7: Test MSE and MAE comparison between ESSformer with and without changing P per
layer. ‘N/A’ denotes this experiment cannot be applicable to the setting because the number of
layers NL = 1.

Score P of multiple layers Electricity Traffic
τ = 96 192 336 720 96 192 336 720

MSE [ 12P∗, P∗, 2P∗] N/A 0.142 0.154 0.176 0.345 0.370 0.385 0.426
[P∗, P∗, P∗] N/A 0.144 0.156 0.179 0.346 0.372 0.387 0.426

MAE [ 12P∗, P∗, 2P∗] N/A 0.240 0.256 0.278 0.245 0.255 0.265 0.287
[P∗, P∗, P∗] N/A 0.242 0.256 0.280 0.246 0.256 0.266 0.287

Table 8: Test MSE of ESSformer compared to other concurrent models for M-LTSF.

Data Ours Concurrent Model Existing Baseline
ESSformer PITS ModernTCN FITS PatchTST TSMixer

ETTh1

96 0.361 0.364 0.368 0.368 0.370 0.361
192 0.396 0.398 0.405 0.404 0.413 0.404
336 0.400 0.415 0.391 0.405 0.422 0.420
720 0.412 0.425 0.450 0.425 0.447 0.463

ETTh2

96 0.269 0.269 0.263 0.255 0.274 0.274
192 0.323 0.326 0.320 0.307 0.341 0.339
336 0.317 0.354 0.313 0.306 0.329 0.361
720 0.370 0.378 0.392 0.368 0.379 0.445

ETTm1

96 0.282 0.296 0.292 0.305 0.293 0.285
192 0.325 0.321 0.332 0.339 0.333 0.327
336 0.352 0.353 0.365 0.366 0.369 0.356
720 0.401 0.395 0.416 0.414 0.416 0.419

ETTm2

96 0.160 0.163 0.166 0.164 0.166 0.163
192 0.213 0.213 0.222 0.217 0.223 0.216
336 0.262 0.263 0.272 0.269 0.274 0.268
720 0.336 0.337 0.351 0.347 0.361 0.420

Weather

96 0.142 0.149 0.149 0.145 0.149 0.145
192 0.185 0.195 0.196 0.188 0.194 0.191
336 0.235 0.244 0.238 0.236 0.245 0.242
720 0.305 0.312 0.314 0.308 0.314 0.320

Electricity

96 0.125 0.129 0.129 0.135 0.129 0.131
192 0.142 0.144 0.143 0.142 0.147 0.151
336 0.154 0.160 0.161 0.163 0.163 0.161
720 0.176 0.197 0.191 0.200 0.197 0.197

Traffic

96 0.345 0.373 0.368 0.381 0.360 0.376
192 0.370 0.388 0.379 0.381 0.379 0.379
336 0.385 0.401 0.397 0.404 0.392 0.413
720 0.426 0.436 0.440 0.446 0.432 0.444

Avg. Rank 1.357 3.071 3.536 3.500 4.393 4.250

P , in Table 7. In almost all cases, ESSformer with changing P achieves better performance. In spite
of the small margin, consistent improvement by changing P proves the efficacy of our design.

F COMPARISON TO OTHER CONCURRENT WORKS IN MAIN FORECASTING
EXPERIMENTS

In addition to the concurrent models in Table 2, We found other concurrent models which have
similar experimental settings to ours (Anonymous, 2023c;b;a). Accordingly, we provide Table 8 for
comparison. Our ESSformer still outperforms the very recent works by a large margin.

G THE PERFORMANCE OF ESSFORMER WITHOUT THE TEST-TIME
ENSEMBLE METHOD

In Table 9, we conduct the main M-LTSF task including ESSformer without the test-time ensemble
method. By setting NE to 1, we obtain ESSformer without the test-time ensemble method. In this
experiment, we include some baselines showing decent forecasting performance. As Table 9 shows,
although the test-time ensemble method is removed, ESSformer without the test-time ensemble
method still gives better results than baselines.
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Table 9: MSE scores of main forecasting results including ESSformer without the test-time ensem-
ble method.

Data ESSformer w/o ensembling PatchTST FEDformer TSMixer DeepTime

ETTh1

96 0.361 0.370 0.376 0.361 0.372
192 0.393 0.413 0.423 0.404 0.405
336 0.404 0.422 0.444 0.420 0.437
720 0.412 0.447 0.469 0.463 0.477

ETTh2

96 0.270 0.274 0.332 0.274 0.291
192 0.321 0.341 0.407 0.339 0.403
336 0.317 0.329 0.400 0.361 0.466
720 0.371 0.379 0.412 0.445 0.576

ETTm1

96 0.286 0.293 0.326 0.285 0.311
192 0.328 0.333 0.365 0.327 0.339
336 0.354 0.369 0.392 0.356 0.366
720 0.403 0.416 0.446 0.419 0.400

ETTm2

96 0.160 0.166 0.180 0.163 0.165
192 0.213 0.223 0.252 0.216 0.222
336 0.262 0.274 0.324 0.268 0.278
720 0.336 0.361 0.410 0.420 0.369

Weather

96 0.142 0.149 0.238 0.145 0.169
192 0.186 0.194 0.275 0.191 0.211
336 0.236 0.245 0.339 0.242 0.255
720 0.305 0.314 0.389 0.320 0.318

Electricity

96 0.127 0.129 0.186 0.131 0.139
192 0.145 0.147 0.197 0.151 0.154
336 0.158 0.163 0.213 0.161 0.169
720 0.181 0.197 0.233 0.197 0.201

Traffic

96 0.347 0.360 0.576 0.376 0.401
192 0.372 0.379 0.610 0.397 0.413
336 0.387 0.392 0.608 0.413 0.425
720 0.430 0.432 0.621 0.444 0.462

Avg. Rank 1.107 2.679 4.821 2.500 3.786

H MORE ANALYSIS ON SG AND NE

Along the way we conduct additional experiments to analyze the behavior of R-PartA, we find three
empirical rules of thumb which can give help to selecting SG and NE before training.

A large number of distinct partitions tends to perform well. As shown in Figure 4(b), we found
that it is better to select the size of each group in R-PartA, SG, as what makes the available number
of distinct partitions NP large because ESSformer benefits from the diversity of partitioning during
training and inference. Note that NP is formulated by SG as follows:

NP =

⌊ D
SG

⌋∏
i=0

(
n− iSG

SG

)
/⌊ D

SG
⌋! (8)

In Figure 9, we further extend this experiment to four datasets (ETTm1, Weather, Electricity, and
Traffic) where all datasets differ in feature size and originate from different domains. The experi-
mental results well verify that SG leading to large NP tends to perform well.

A large number of instances for ensembling tends to give better results. As shown in in Figure 5
and Figure 8, the larger the number of instances for ensembling (NE) is, the better ESSformer
performs. Therefore, to achieve better forecasting results, large NE is required.

The effect of NE tends to be smaller, as SG increases. We think that because ESSformer with
small SG can capture relationships within very small groups, it might need large NE to recover the
entire relationships from small ones. To prove this statement, we additionally conduct the exper-
iments in Figure 10 where we measure performance gain of increasing NE in various SG. This
figure shows that the effect of NE tends to be smaller, as SG increases, supporting our statement.
Therefore, this fact helps to select efficient but effective NE given SG.
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Figure 8: Sensitivity to NE (additional results for Figure 5)
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Figure 9: Sensitivity to SG (additional results for Figure 4(b))

I ADDITIONAL EXPERIMENTS

I.1 ADDITIONAL EXPERIMENTAL RESULTS IN TABULAR FORMS

In this section, we provide additional results for existing experiments, such as experiments with
other datasets and MAE evaluation metrics. Table 11 and Table 10 are additional results for Table 1
and Table 3, respectively.

I.2 ADDITIONAL VISUALIZATION

Like Appendix I.1, this section provides additional visualizations with other datasets or models for
existing ones. Figure 11 is for Figure 2, Figure 12 and Figure 9 for Figure 4, Figure 8 for Figure 5,
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Figure 10: Changes in the effect of NE when SG increases. The y axis shows the performance
difference between Test MSEs when NE ∈ {1, 2, 4, 8, 16, 32, 64, 128} and NE = 128.

Table 10: Test MSE and MAE of ablation study for PeriA and R-PartA by substituting vanilla multi-
head full self-attention (MHSA) for them. Also, the univariate ESSformer denotes a case where
R-PartA is removed, not considering inter-feature dependencies. ’M’ denotes multivariate cases and
’U’ denotes univariate cases (additional results for Table 3)

Score ESSformer
Variants PeriA R-PartA

ETTh1 (7) ETTh2 (7) ETTm1 (7) ETTm2 (7)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

M
SE

Original (M) PeriA R-PartA 0.361 0.396 0.400 0.412 0.269 0.323 0.317 0.370 0.282 0.325 0.352 0.401 0.160 0.213 0.262 0.336

Ablated (M)
MHSA R-PartA 0.361 0.393 0.404 0.421 0.273 0.328 0.319 0.373 0.288 0.333 0.359 0.403 0.161 0.214 0.263 0.337
PeriA MHSA 0.361 0.395 0.401 0.413 0.269 0.325 0.318 0.371 0.299 0.350 0.377 0.402 0.161 0.213 0.265 0.338

Ablated (U) PeriA N/A 0.361 0.393 0.404 0.420 0.272 0.325 0.318 0.371 0.288 0.335 0.358 0.403 0.161 0.213 0.265 0.338

M
A

E

Original (M) PeriA R-PartA 0.390 0.414 0.421 0.442 0.332 0.369 0.378 0.416 0.340 0.365 0.385 0.408 0.253 0.290 0.325 0.372

Ablated (M)
MHSA R-PartA 0.390 0.410 0.419 0.446 0.334 0.374 0.380 0.418 0.343 0.367 0.387 0.409 0.253 0.291 0.326 0.374
PeriA MHSA 0.390 0.413 0.420 0.442 0.332 0.371 0.380 0.416 0.353 0.382 0.396 0.408 0.253 0.290 0.327 0.374

Ablated (U) PeriA N/A 0.390 0.410 0.419 0.446 0.334 0.373 0.380 0.418 0.344 0.371 0.386 0.409 0.253 0.290 0.328 0.376

Score ESSformer
Variants PeriA R-PartA

Weather (21) Electricity (321) Traffic (862)
96 192 336 720 96 192 336 720 96 192 336 720

M
SE

Original (M) PeriA R-PartA 0.142 0.185 0.235 0.305 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426

Ablated (M)
MHSA R-PartA 0.142 0.185 0.236 0.305 0.125 0.144 0.156 0.178 0.348 0.373 0.391 0.430
PeriA MHSA 0.146 0.192 0.244 0.307 0.129 0.147 0.163 0.204 0.363 0.383 0.394 0.441

Ablated (U) PeriA N/A 0.141 0.186 0.237 0.308 0.128 0.146 0.163 0.204 0.368 0.388 0.404 0.441

M
A

E

Original (M) PeriA R-PartA 0.193 0.237 0.277 0.328 0.222 0.240 0.256 0.278 0.245 0.255 0.265 0.287

Ablated (M)
MHSA R-PartA 0.194 0.236 0.280 0.328 0.222 0.241 0.256 0.280 0.246 0.256 0.269 0.287
PeriA MHSA 0.199 0.243 0.286 0.331 0.228 0.246 0.259 0.297 0.257 0.269 0.276 0.303

Ablated (U) PeriA N/A 0.195 0.239 0.279 0.333 0.223 0.242 0.260 0.297 0.257 0.265 0.277 0.299

and Figure 13 for Figure 7. Furthermore, Figure 14 shows the forecasting results of three segment-
based models including ESSformer. Our method captures temporal dynamics better than baselines.
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Figure 11: Periodic properties on attention matrices of self-attention layers capturing temporal de-
pendencies in segment-based transformer. For ESSformer cases, we replace PeriA with full self-
attention. (additional results for Figure 2)
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Figure 12: Sensitivity to NP (additional results for Figure 4(a))
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Figure 13: Increasing rate of test MSE by dropping n% features in ESSformer with or without R-
PartA (additional results for Figure 7)
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Table 11: MSE and MAE scores of main forecasting results. ‘former’ included in some model names
is abbreviated to ‘f.’. Seg.T and Obs.T denote segment-based and obeservation-based transformers,
respectively. (addtional results for Table 1)

Scores Data Seg.T Obs.T Linear Others
ESSf. Crossf. PatchTST FEDf. Pyraf. Inf. TSMixer NLinear NLinear-m MICN TimesNet DeepTime

MSE

E
T

T
h1

τ = 96 0.361 0.427 0.370 0.376 0.664 0.941 0.361 0.374 0.463 0.828 0.465 0.372
192 0.396 0.537 0.413 0.423 0.790 1.007 0.404 0.408 0.535 0.765 0.493 0.405
336 0.400 0.651 0.422 0.444 0.891 1.038 0.420 0.429 0.531 0.904 0.456 0.437
720 0.412 0.664 0.447 0.469 0.963 1.144 0.463 0.440 0.558 1.192 0.533 0.477

E
T

T
h2

96 0.269 0.720 0.274 0.332 0.645 1.549 0.274 0.277 0.347 0.452 0.381 0.291
192 0.323 1.121 0.341 0.407 0.788 3.792 0.339 0.344 0.425 0.554 0.416 0.403
336 0.317 1.524 0.329 0.400 0.907 4.215 0.361 0.357 0.414 0.582 0.363 0.466
720 0.370 3.106 0.379 0.412 0.963 3.656 0.445 0.394 0.460 0.869 0.371 0.576

E
T

T
m

1 96 0.282 0.336 0.293 0.326 0.543 0.626 0.285 0.306 0.322 0.406 0.343 0.311
192 0.325 0.387 0.333 0.365 0.557 0.725 0.327 0.349 0.365 0.500 0.381 0.339
336 0.352 0.431 0.369 0.392 0.754 1.005 0.356 0.375 0.392 0.580 0.436 0.366
720 0.401 0.555 0.416 0.446 0.908 1.133 0.419 0.433 0.445 0.607 0.527 0.400

E
T

T
m

2 96 0.160 0.338 0.166 0.180 0.435 0.355 0.163 0.167 0.191 0.238 0.218 0.165
192 0.213 0.567 0.223 0.252 0.730 0.595 0.216 0.221 0.260 0.302 0.282 0.222
336 0.262 1.050 0.274 0.324 1.201 1.270 0.268 0.274 0.330 0.447 0.378 0.278
720 0.336 2.049 0.361 0.410 3.625 3.001 0.420 0.368 0.416 0.549 0.444 0.369

W
ea

th
er 96 0.142 0.150 0.149 0.238 0.896 0.354 0.145 0.182 0.162 0.188 0.179 0.169

192 0.185 0.200 0.194 0.275 0.622 0.419 0.191 0.225 0.213 0.231 0.230 0.211
336 0.235 0.263 0.245 0.339 0.739 0.583 0.242 0.271 0.267 0.280 0.276 0.255
720 0.305 0.310 0.314 0.389 1.004 0.916 0.320 0.338 0.343 0.358 0.347 0.318

E
le

ct
ri

ci
ty 96 0.125 0.135 0.129 0.186 0.386 0.304 0.131 0.141 OOM 0.177 0.186 0.139

192 0.142 0.158 0.147 0.197 0.386 0.327 0.151 0.154 OOM 0.195 0.208 0.154
336 0.154 0.177 0.163 0.213 0.378 0.333 0.161 0.171 OOM 0.213 0.210 0.169
720 0.176 0.222 0.197 0.233 0.376 0.351 0.197 0.210 OOM 0.204 0.231 0.201

Tr
af

fic

96 0.345 0.481 0.360 0.576 2.085 0.733 0.376 0.410 OOM 0.489 0.599 0.401
192 0.370 0.509 0.379 0.610 0.867 0.777 0.397 0.423 OOM 0.493 0.612 0.413
336 0.385 0.534 0.392 0.608 0.869 0.776 0.413 0.435 OOM 0.496 0.618 0.425
720 0.426 0.585 0.432 0.621 0.881 0.827 0.444 0.464 OOM 0.520 0.654 0.462

Avg. Rank 1.036 7.214 2.857 6.929 10.286 10.429 2.786 4.607 N/A 8.000 7.25 4.357

MAE

E
T

T
h1

96 0.390 0.448 0.400 0.415 0.612 0.769 0.392 0.394 0.486 0.607 0.466 0.398
192 0.414 0.520 0.429 0.446 0.681 0.786 0.418 0.415 0.530 0.575 0.479 0.419
336 0.421 0.588 0.440 0.462 0.738 0.784 0.431 0.427 0.533 0.621 0.473 0.442
720 0.442 0.612 0.468 0.492 0.782 0.857 0.472 0.453 0.552 0.736 0.525 0.493

E
T

T
h2

96 0.332 0.615 0.337 0.374 0.597 0.952 0.341 0.338 0.418 0.462 0.423 0.350
192 0.369 0.785 0.382 0.446 0.683 1.542 0.385 0.381 0.470 0.528 0.445 0.427
336 0.378 0.980 0.384 0.447 0.747 1.642 0.406 0.400 0.473 0.556 0.422 0.475
720 0.416 1.487 0.422 0.469 0.783 1.619 0.470 0.436 0.499 0.667 0.424 0.545

E
T

T
m

1 96 0.340 0.387 0.346 0.390 0.510 0.560 0.339 0.348 0.375 0.434 0.381 0.353
192 0.365 0.419 0.370 0.415 0.537 0.619 0.365 0.375 0.399 0.500 0.403 0.369
336 0.385 0.449 0.392 0.425 0.655 0.741 0.382 0.388 0.414 0.549 0.438 0.391
720 0.408 0.532 0.420 0.458 0.724 0.845 0.414 0.422 0.447 0.560 0.488 0.414

E
T

T
m

2 96 0.253 0.393 0.256 0.271 0.507 0.462 0.252 0.255 0.293 0.331 0.307 0.259
192 0.290 0.519 0.296 0.318 0.673 0.586 0.290 0.293 0.345 0.374 0.352 0.299
336 0.325 0.732 0.329 0.364 0.845 0.871 0.324 0.327 0.390 0.478 0.407 0.338
720 0.372 1.170 0.394 0.420 1.451 1.267 0.422 0.384 0.442 0.554 0.450 0.400

W
ea

th
er 96 0.193 0.224 0.198 0.314 0.556 0.405 0.198 0.232 0.239 0.258 0.237 0.227

192 0.237 0.267 0.241 0.329 0.624 0.434 0.242 0.269 0.285 0.295 0.279 0.266
336 0.277 0.328 0.282 0.377 0.753 0.543 0.280 0.301 0.328 0.337 0.310 0.304
720 0.328 0.363 0.334 0.409 0.934 0.705 0.336 0.348 0.380 0.399 0.353 0.357

E
le

ct
ri

ci
ty 96 0.222 0.234 0.222 0.302 0.449 0.393 0.229 0.237 OOM 0.294 0.290 0.239

192 0.240 0.262 0.240 0.311 0.443 0.417 0.246 0.248 OOM 0.306 0.301 0.253
336 0.256 0.283 0.259 0.328 0.443 0.422 0.261 0.265 OOM 0.324 0.314 0.270
720 0.278 0.328 0.290 0.344 0.445 0.427 0.293 0.297 OOM 0.317 0.329 0.300

Tr
af

fic

96 0.245 0.265 0.249 0.359 0.468 0.410 0.264 0.279 OOM 0.317 0.325 0.280
192 0.255 0.277 0.256 0.380 0.467 0.435 0.277 0.284 OOM 0.319 0.332 0.285
336 0.265 0.291 0.264 0.375 0.469 0.434 0.290 0.290 OOM 0.317 0.332 0.292
720 0.287 0.325 0.286 0.375 0.473 0.466 0.306 0.307 OOM 0.326 0.348 0.312

Avg. Rank 1.214 7.214 2.786 7.321 10.393 10.464 2.786 3.679 N/A 8.071 6.786 5.000
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Figure 14: Forecasting results of various segment-based transformers (Crossformer, PatchTST, and
ESSformer). Dotted lines and dotted-dashed lines denote baselines, dashed lines denote ESSformer,
and solid lines denote ground truth. τ denotes the length of time steps in future outputs and d denotes
a feature index.
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