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Abstract

This is a supplementary material which provides additional details and experiments1

for the paper entitled: “Fitting large mixture models using stochastic component2

selection”1.3

9 Gaussian mixture models4

In this section, we provide more experiments with the GMMs presented in Section 6.1.5

9.1 Counteracting weak local optima with deterministic annealing6

The EM algorithm converges to a local optimum in a finite number of iterations [6]. In simple7

scenarios—where the number of components, K, is low—making a few attempts with different8

initial conditions may successfully lead to finding the global optimum. However, for large K, the9

likelihood surface is complicated and contains several weak local optima. To counteract this issue,10

we apply the deterministic annealing [5], which—similarly to the simulated annealing [2]—has11

its roots in thermodynamics and the maximum entropy principle. Indeed, maximizing the entropy12

term, H(θ̂), in (3) w.r.t. a variational posterior distribution, qθ̂(z|x), leads to qθ̂(z|x) ∝ pθ̂(z, x)
β ,13

where β is the inverse temperature parameter. This does not change the form of the EM objective,14

Q(θ), expect that its original posterior, pθ̂(z|x), is replaced by qθ̂(z|x). Then, it can be shown that15

β modifies the log-likelihood, L(θ), [5]. Specifically, for β → 0 (high temperature), the likelihood16

surface is nearly uniform, having a single global optimum, whereas for β → 1 (low temperature),17

qθ̂(z|x)→ pθ̂(z|x), having several local optima. Therefore, the key requirement is to change β via a18

pre-specified annealing schedule, (βt)Tt=1, such that the global optimum slowly appears and is thus19

easier to find. This principle is applicable to all the algorithms in Table 1.20

We resort to the deterministic anti-annealing [4], which improves the convergence speed over the21

deterministic annealing by admitting β > 1. Specifically, it forms (βt)
T
t=1 as follows: start with22

β1 = βmin, then increase to βτ = βmax > 1, where τ < T , and finally decrease back to βT = 1.23

Figure 3 compares the various EM algorithms in Table 1 with (right) and without (left) the anti-24

annealing schedule. We observe that the EM, SAEM and MCSAEM algorithms with the annealing25

find a better local optimum compared to the corresponding counterparts without the annealing.26

However, the annealing seems to have no effect on the poor optimum attained by the SSAEM and27

TSAEM algorithms. Similarly, there is only a slight improvement in the optimum reached by the28

MHSAEM algorithm (both U and TF proposals). Still, this is the best performance compared to all29

the other algorithms, having the estimated log-likelihood very close to the exact one. We attribute the30

1The code to reproduce all experiments in the main paper and the supplementary material is avail-
able at: https://drive.google.com/drive/folders/1foHlyCCHS8N2Odw6sXQI9bDCRTQIuwkU?usp=
sharing.
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Figure 3: The training log-likelihood, L(θt), versus the computational time (in seconds). The
algorithms either do not use (left) or use (right) the anti-annealing schedule described in Section 6.1.
Here, on the x-axis, the computational time at a current iteration, t, is obtained by accumulating the
time from the previous iterations. corresponds to L(θt95), where t95 is the iteration of reaching 95%
of maxL(θt). The projection of on the x-axis gives the time to reach L(θt95). This experiment was
performed with the following settings: (D,K,N, ω,B,M, T ) = (10, 100, 10k, 0.1, 200, 2, 20k).
The results are averaged over five repetitions.

small difference to the overlap of a small portion of less representative clusters, preventing them from31

being represented via their sufficient statistics to an adequate degree.32

Overall, albeit the annealing enhances the algorithms’ ability to find a better optimum, it is rather the33

stochastic nature of the sampling-based algorithms what provides a better fit of the model.34

9.2 The computational complexity under various operating conditions35

Recall that the computational complexity of our MHSAEM algorithm is O(BMDT ) (Section 4),36

where B is the batchsize, M is the number of samples, D is the dimension of data and T is the total37

amount of iterations. Although there is no direct dependence on K, there are certain aspects of the38

algorithm that still do depend on K, e.g. all operations associated with the memory management of39

selecting M of K sufficient statistics. Therefore, we investigate how the computational complexity40

and the training performance depend on K while changing D, M and B. We leave T , since this41

affects all algorithms in the same way. We use the performance criteria from Section 6.1.42

Batchsize. All the SA-algorithms in Table 1 sub-sample data with a minibatch of size B. Each43

algorithm processes each datapoint in the minibatch w.r.t. a different number of components in a44

different way. Figure 4 shows the AE versus the computational time for various K and B. Note45

we include the EM algorithm, which does not depend on B, just for a comparison. From all the B-46

dependent variants, the SAEM algorithm has the highest computational complexity, since it processes47

all K components for each datapoint in the minibatch. The MHSAEM algorithms attain the best AE48

in the shortest time, assessing only M components for each datapoint in the minibatch. Although the49

MCSAEM algorithm provides a similar AE, its computational time grows faster with increasing B.50

This is due to that the posterior distribution has to be evaluated for all K components before the MC51

sampling. The SSAEM algorithm preserves a similar computational complexity as the MHSAEM52

algorithms for all B. However, it delivers a poor AE. The TSAEM algorithm fails to converge in this53

experiment.54

Number of samples. The number of samples (the MCSAEM and MHSAEM algorithms), or selection55

points (the SSAEM and TSAEM algorithms), M , determines the amount of components processed56

for each datapoint in the minibatch. In other words, this quantity determines the number of sufficient57

statistics to be updated at each iteration of a given algorithm. Since this feature is common across58

all M -dependent algorithms in Table 1, we can expect that the computational times will differ59

approximately by a constant factor, which is due to different sampling, or selection, mechanisms.60

Indeed, this is seen in Figure 5, where there is approximately the same distance between the MCSAEM61

and MHSAEM algorithms for all M . This can also be observed for the SSAEM algorithm, except the62

last case with M = 8. We believe that this is caused by the application of the fast stochastic sorting63
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Figure 4: The absolute error, AE = |L(θt95) − L(θ)|, versus the computational time (in seconds).
All experiments use the following settings: (D,K,N, ω,B,M, T ) = (2,K, 20k, 0.001, B, 8, 40k),
where the number of components, K, changes for different values denoted by ( , , , ) and the
batchsize is B = 200 (left), B = 300 (middle) and B = 400 (right). At each of these points (marks),
we perform an experiment as illustrated in Figure 1 (right), find L(θt95) to compute the AE, and
record the time corresponding to t95. The results are averaged over five repetitions.
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Figure 5: The absolute error, AE = |L(θt95)−L(θ)|, versus the computational time (in seconds). All
experiments use the following settings: (D,K,N, ω,B,M, T ) = (2,K, 20k, 0.001, 400,M, 40k),
where the number of components, K, changes for different values denoted by ( , , , ) and the
number of samples is M = 2 (left), M = 4 (middle) and M = 8 (right). At each of these points
(marks), we perform an experiment as illustrated in Figure 1 (right), find L(θt95) to compute the AE,
and record the time corresponding to t95. The results are averaged over five repetitions.

algorithm [3], which increases the computational time due to different initial state of the unsorted64

vector of the posterior probabilities at each iteration, t. Again, the TSAEM algorithm delivers a65

rather unsystematic behaviour. Similarly as before, we include the M -independent EM and SAEM66

algorithms for a comparison.67

Dimension. The dimension, D, has a direct impact on the computational complexity of updating68

the expected sufficient statistics, evaluating the coditional likelihood, pθ̂(x|z), and computing the69

parameter estimates, θ̂. All the algorithms in Table 1 differ in the way they perform these elementary70

operations. Therefore, in Figure 6, we compare the computational time for various choices of D.71

Unfortunately, the values, D ∈ (2, 4, 8), are too low to demonstrate clear differences among the72

algorithms. This is caused by that the time to carry out the algebraic operations with such similar low73

dimensions is too short to stand out against the overhead associated with other computational steps74

in the algorithms. This is easy to deal with by repeating the experiment for, say, D ∈ (1, 10, 100),75

or further optimizing our implementation. We will address this in future work. Nonetheless, this76

experiment shows consistent behaviour of our MHSAEM algorithm under varying D.77
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Figure 6: The absolute error, AE = |L(θt95)−L(θ)|, versus the computational time (in seconds). All
experiments use the following settings: (D,K,N, ω,B,M, T ) = (D,K, 20k, 0.001, 400, 8, 40k),
where the number of components, K, changes for different values denoted by ( , , , ) and the
dimension of data is D = 2 (left), D = 4 (middle) and D = 8 (right). At each of these points
(marks), we perform an experiment as illustrated in Figure 1 (right), find L(θt95) to compute the AE,
and record the time corresponding to t95. The results are averaged over five repetitions.

9.3 Efficiency of the proposal distribution78

The proposal distribution is the key factor influencing the performance of the MH sampler. There-79

fore, we compare the proposal distributions discussed in Section 4.3. To demonstrate the impact80

of introducing the forgetting factor in the TF proposal, we define another tabular proposal, here81

abbreviated with T, which is given by qαi(zi) := C(αi), where αi is computed via the maximum82

likelihood estimate, αi,t = 1
t

∑t
τ=1 ezi,τ , see Section 4.3 for details. Indeed, this is similar to83

the TF proposal, expect it does not use the forgetting factor, γt, specified by the Robbins-Monro84

sequence, (γt)Tt=1. In the following experiments, we use γt = 1 for t = 1, . . . , 500 and γt = 0.185

otherwise. We do not use annealing in the following experiments. To evaluate the proposal distribu-86

tions, we compute the average acceptance ratio (AAR) over all i ∈ (1, . . . , N) at each iteration, t, i.e.87

AARt := 1
N

∑N
i=1 α(zi,t−1, zi,t).88

Figure 7 shows that, as one may expect, the acceptance ratio of the O-proposal converges close to one,89

and the corresponding log-likelihood quickly converges near to the exact value. The acceptance ratio90

of the U-proposal converges towards 1
K , as the uniform proposal has exactly 1

K probability to sample91

the most representative component for a given datapoint. However, this proposal is less efficient, as92

can be seen from slower convergence of the corresponding log-likelihood. The TF-proposal improves93

the performance over the U-proposal by having a higher acceptance ratio and quicker convergence94

of the log-likelihood. However, the T-proposal fails to learn a sufficiently close representation of95

the exact posterior distribution pθ(z|x), as seen from high acceptance ratio and poor log-likelihood.96

This result demonstrates that introducing the Robbins-Monro schedule is crucial for improving the97

performance of the T-proposal.98

The experiments presented in Section 6.1, Section 9.1 and Section 9.2 show that the U-proposal and99

the TF-proposal have similar performance. This indicates that the TF-proposal looses its efficiency100

for high K. We plan to address this in future work. Nonetheless, from all these results, we observe101

that even the simple U-proposal achieves a substantial speed-up compared to the other algorithms in102

Table 1. Designing a better proposal distribution will further decrease the computational time of our103

MHSAEM algorithm.104

10 Sum-product-transform networks and mixtures of real NVP flows105

This section extends experiments with the SPTNs and the mixtures of real NVP flows given in Section106

6.2 and Section 6.3, respectively.107
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Figure 7: The average acceptance ration, AARt := 1
N

∑N
i=1 α(zi,t−1, zi,t), (left) and the training

log-likelihood, L(θt), (right) versus the computational time (in seconds). This experiment was
performed with the following settings: (D,K,N, ω,B,M, T ) = (2, 10, 10k, 0.1, 200, 1, 20k). The
results are averaged over ten repetitions. The solid line is the median and the shaded area is the
inter-quartile range.

10.1 Computational complexity for a fixed architecture108

In Table 2, we have compared the computational times and the test log-likelihoods for the best109

architectures (SPTNs) and the best models (mixtures of real NVP flows) selected based on the110

validation log-likelihood. This experiment allows to find the algorithm that trains the most suitable111

model in the shortest time. One the one hand, it reveals clear cases where the MHSAEM algorithm112

outperforms the SGD algorithm in terms of the test log-likelihood and the speed-up (e.g. waveform).113

In some situations this holds for the same architecture selected by both the SGD and MHSAEM114

algorithms (e.g. wine). We also see that using the SGD algorithm to fit an SPTN with K = 1024115

takes longer time than using our MHSAEM algorithm to fit an SPTN with K = 16384, which is,116

however, not beneficial due to the lower values of the test log-likelihood (e.g. pendigits). On the117

other hand, there are situations showing no speed-up on small architectures, despite having a better118

log-likelihood (e.g. pima-indians). Here, the implementation of the SGD algorithm simply beast119

the one of the HMSAEM algorithm.120

In those lines where K is substantially different for the SGD and MHSAEM algorithms, it may be121

difficult to recognize the maximal achievable speed-up of the MHSAEM algorithm. Therefore, we122

compare these algorithms also for a fixed architecture (and model) in Table 3. For all datasets, our123

MHSAEM algorithm delivers a speed-up ranging approximately from 11 to 186 for SPTNs and from124

1.3 to 38.6 for the mixtures of real NVP flows.125

10.2 Overfit of the mixtures of real NVP flows126

Certain models can be too complex for small and simple datasets. To consider this in our context,127

we present Table 4, which extends Table 2 by additionally presenting the training and validation128

log-likelihoods. Here, we observe that some instances of the mixtures of real NVP flows deliver too129

high training log-likelihoods. If we were select these models based on their validation log-likelihoods,130

the resulting test log-likelihood would be rather poor. This indicates a clear overfit. The results131

achieved by the SPTNs are more consistent in this respect, being less prone to the model overfit. Note,132

too, that the mixtures of real NVP flows and the SPTNs deliver comparable results in some cases.133
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Table 3: The speed-up and test log-likelihood, Ltest, for the SGD and MHSAEM-U algorithms. The
test log-likelihood (higher is better) is computed for the SPTN with K = 1024 and the mixture of
real NVP flows with K = 128. The speed-up is computed as the ratio of MHSAEM-U to SGD, i.e.
their time to reach 95% of the training log-likelihood. The results are averaged over five repetitions.
Then, the higher test log-likelihood is highlighted with bold blue. The average rank is computed as
the standard competition (“1224”) ranking [1] on each dataset (lower is better).

Sum-product transform networks Mixtures of real NVP flows
SGD MHSAEM-U SGD MHSAEM-U

dataset speed-up Ltest Ltest speed-up Ltest Ltest

breast-cancer-wisconsin 16.72 -24.01 0.2 2.62 -112.63 -39.31
cardiotocography 17.93 45.81 31.04 27.45 45.99 56.08
magic-telescope 24.21 -4.41 -5.21 20.41 -6.01 -4.96

pendigits 15.5 -0.58 -5.96 17.82 -1.78 -3.7
pima-indians 17.69 -20.18 -8.3 1.35 -20.09 -16.33

wall-following-robot 16.96 -6.05 -16.98 22.21 -14.26 -17.56
waveform-1 101.37 -39.16 -23.94 19.09 -39.06 -40.41
waveform-2 92.73 -38.87 -23.95 20.32 -39.42 -40.79

yeast 12.41 4.29 5.18 14.49 6.61 9.59
ecoli 29.45 -14.02 -0.22 2.15 -11.37 -10.64

ionosphere 13.78 -30.25 -7.35 2.74 -87.01 -42.75
iris 52.62 -12.5 -1.76 1.45 -16.34 -9.45

page-blocks 16.68 11.98 6.84 26.04 17.13 17.27
parkinsons 16.64 -35.75 -1.15 3.22 -566.58 -33.0

sonar 11.5 -98.43 -88.33 2.52 -622.2 -88.81
statlog-satimage 14.52 3.33 3.74 25.31 -7.38 -17.89
statlog-segment 16.35 40.81 25.73 38.68 35.84 36.8
statlog-vehicle 23.43 -22.52 -5.45 33.71 -31.21 -26.43

wine 186.25 -26.53 -13.5 2.05 -171.58 -25.57
rank 1.68 1.32 1.74 1.26
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Table 4: 95% of the maximal training log-likelihood, L(θt95), validation log-likelihood, Lval, and test
log-likelihood, Ltest, for the SGD and MHSAEM-U algorithms (higher is better). The lines in this
table correspond to those in Table 2, except we add the training and validation log-likelihoods and
do not repeat the speed-up and the number of components, K (see Table 2 for completeness). The
results are averaged over five repetitions. Then, the higher log-likelihood is highlighted with bold
blue. The average rank is computed as the standard competition (“1224”) ranking [1] on each dataset
(lower is better).
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