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ABSTRACT

We study the problem of learning from truncated samples: instead of observing
samples from some underlying population p∗, we observe only the examples that
fall in some survival set S ⊂ Rd whose probability mass (measured with respect
to p∗) is at least α. Assuming membership oracle access to the truncation set S,
prior works obtained algorithms for the case where p∗ is Gaussian Daskalakis et al.
(2018) or more generally an exponential family with strongly convex likelihood
Lee et al. (2023) — albeit with a super-polynomial dependency on the (inverse)
survival mass 1/α both in terms of runtime and in number of oracle calls to the
set S. In this work we design a new learning method with runtime and query com-
plexity polynomial in 1/α. Our result significantly improves over the prior works
by focusing on efficiently solving the underlying optimization problem using a
general purpose optimization algorithm with minimal assumptions.

1 INTRODUCTION

We study the problem of inference from truncated samples: assuming an underlying population
p over data in Rd the learner has access to samples from the conditional measure pS over some
survival set S ⊆ Rd. This conditioning or truncation of the underlying population data may be the
outcome of censorship, imperfect data collection processes, measurement errors, user preferences,
etc. Inference from truncated data is a central problem in statistics going back to fundamental works
in the beginning of the previous century Galton (1898); Pearson (1902b); Pearson & Lee (1908b).
Due to its practical importance, more recently, the problem of inference from truncated data has seen
significant developments with a focus on providing computationally efficient estimation algorithms
Daskalakis et al. (2018); Kontonis et al. (2019); Ilyas et al. (2020); Daskalakis et al. (2020b;a; 2021);
Lee et al. (2023).
In this work we consider the problem of fitting a parametric model to truncated data given oracle
access to the survival set S (i.e., the set of examples that are not truncated). In this model Daskalakis
et al. (2018) was the first work that gave a computationally and statistically efficient algorithm for
learning truncated Gaussian distributions with membership oracle access to the truncation set. More
recently, the work Lee et al. (2023) extended those results and gave efficient algorithms when the
underlying population follows an exponential family. In this work we study learning truncated
exponential families with computationally and statistically efficient algorithms that perform well
even when the fraction of observed data is very small (compared to the full population).

Learning truncated exponential families An exponential family pθ, parameterized by some
k-dimensional vector θ ∈ Θ is a density of the form pθ(x) = h(x) exp(θ⊤T (x) − A(θ)),
where h(x) : Rd 7→ [0,∞) is a weight function, T (x) : Rd 7→ Rk is the sufficient statis-
tic, A(θ) = log

(∫
h(x) exp(θ⊤T (x))dx

)
is the appropriate normalization constant (aka the log-

partition function). Given an exponential family pθ and a survival set S, we define the corresponding
truncated exponential family as pSθ (x) = pθ(x)1S(x)/

∫
S
pθ(x)dx, where 1S(x) denotes the indi-

cator function of whether x belongs in S. Given samples from some truncated exponential family
pSθ∗ the goal of the learner is to identify an approximation to the (unknown) parameter θ∗. Given
some target accuracy ϵ > 0, the approximation guarantees for the learned θ can either be in some
distance over the parameter space, i.e., ∥θ−θ∗∥ ≤ ϵ (parameter recovery) or over distributions, e.g.,
that the total variation distance between pθ and pθ∗ is at most ϵ. The goal is to find a good candi-
date parameter θ with as few (i) samples from pSθ∗ ; (ii) oracle calls to 1S(x) and (iii) computational
resources as possible.
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The fraction of observed data or equivalently the probability that a sample from the underlying
population pθ∗ is truncated, captures the difficulty (both statistical and computational) of inference
from truncated data. More precisely, we define α = pθ∗(S) to be the probability assigned to the
survival set by the unknown exponential family pθ∗ . While previous works Daskalakis et al. (2018);
Lee et al. (2023) on learning truncated exponential families have polynomial dependencies on the
parameter dimension k and the accuracy parameter ϵ, their dependency on the survival probability
α is far from optimal. In particular, their runtime, sample complexity, and oracle calls all depend
super-polynomially (i.e., (1/α)poly(log(1/α))) to the survival probability α. In this work our focus
will be to provide algorithms that achieve dependencies on the dimension k and accuracy ϵ but also
on the survival mass α.

Is there a computationally efficient algorithm that can learn truncated exponential families with a
polynomial dependence on the survival mass 1/α? Can we get state of art dependencies on

dimension and accuracy parameters at the same time?

Aiming for algorithms with low sample-complexity is perhaps the most well-studied task from a
statistical perspective and is of great importance for virtually every inference task. We remark
that in the context of truncated statistics getting oracle efficient algorithms is also important as the
membership oracle may correspond to a costly or complex mechanism (e.g., we may need to find
candidates to complete a new questionaire, perform a new physical experiment, etc.).
Our main contribution is a positive answer to the above question by providing a new analysis of the
truncated negative log likelihood objective.

1.1 OUR CONTRIBUTIONS

We first formally define the class of exponential family distributions that we consider in our work.
Similarly to Lee et al. (2023), we assume that the non-truncated negative log-likelihood of the ex-
ponential family is strongly convex and smooth as a function of the parameter θ. Given some ex-
ponential family pθ parameterized by θ ∈ Rk, the negative log-likelihood (NLL) over a population
distribution q is defined as follows:

L(θ) = − E
x∼q

[log pθ(x)] . (1)

In what follows we will refer to L as “non-truncated”. Moreover, for a truncated exponential family
pSθ we define the following “truncated” version of the NLL objective as:

LS(θ) = − E
x∼q

[log pSθ (x)] = L(θ) + log pθ(S) . (2)

Definition 1.1 (Strongly convex and smooth exponential families). We assume that L(θ) is λ-
strongly convex and L-smooth as a function of θ, i.e.,

λI ⪯ Covx∼pθ
[T (x), T (x)] ⪯ LI .

Remark 1.2. Lee et al. (2023) further places strong structural assumptions on pθ. In particular,
that the underlying non-truncated exponential family is log-concave (i.e., its log-density is concave
as a function of x) and also that the sufficient statistic T (x) is a polynomial function of x. As we
will see our main learning result is quite general by providing a weaker learning guarantee (than
parameter recovery) and therefore requires no such assumptions a priori. However, given those
assumptions we can obtain similar guarantees to the prior works Daskalakis et al. (2018); Lee et al.
(2023).

We remark that, as observed in Lee et al. (2023) the above assumption is quite general and captures
many well-studied exponential families such as Gaussians, Exponentials, Weibull, (Continuous)
Poisson, etc.
Since our focus in this work is learning (as opposed to sampling from) exponential families, we treat
the sample generation process as a black-box and define the following sampling oracle that returns
samples from a given exponential family or truncated exponential family. For the truncated case, we
crucially require that the learner must give the oracle some pθ that assigns non-trivial mass to the
survival set S. This is to ensure that our sampling oracle can be readily implemented via rejection
sampling without a large number of rejected samples (that would in turn require a large number of
calls to the membership oracle to S). For example, assume that the survival set is S = [0, 1] and
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the ground-truth exponential family is a normal distribution (not necessarily with unit variance) that
assigns α mass to the set S. The learner can request samples from unit variance normal distributions
whose means are roughly within O

(√
log(1/α)

)
distance from 0 but not, for example, from a

normal centered at −1/α which puts exponentially small (i.e.,2−Ω(1/α2)) mass to S.
Definition 1.3 (Sample Oracles). Given as input an exponential family pθ ∈ F , the (non-truncated)
sample oracle returns a sample x ∼ pθ.
Moreover, given as input an exponential family pθ ∈ F , the β-truncated sample oracle over a
survival set S returns a sample x ∼ pSθ , provided that pθ(S) ≥ β. In case this constraint does not
hold the behavior of the oracle is undefined.
Remark 1.4 (Implementing a β-Truncated Sample Oracle). Given a membership oracle to the set S
and a sampler for the non-truncated exponential family pθ, one can directly implement a β-truncated
sample oracle by rejecting samples until one falls in S.

We now present our main result on learning truncated exponential families that requires roughly
k
ϵ2 poly(log(1/α)) samples from the unknown truncated density pSθ∗ and makes k

ϵ2 poly(log(1/α))
sample-oracle calls to an α-truncated sample oracle of Definition 1.3 to learn a truncated density
close to the observed truncated distribution in Kullback-Leibler (KL) divergence.
Theorem 1.5 (Truncated Exponential Families). Suppose F is an exponential family whose negative
log-likelihood (NLL), L(θ), satisfies the conditions in Definition 1.1. Then, there exists an algorithm

that uses Õ
(

k
ϵ2 log

(
1
α

))
samples from pSθ∗ , makes Õ

(
k
ϵ2 log

(
1
α

)2)
calls to an Ω(α) sample or-

acle (of Definition 1.3) runs in time poly(k, 1/ϵ, log( 1
α )) and computes an estimate θ̂, such that

KL(pSθ∗∥pS
θ̂
) ≤ ϵ with probability at least 99%.

We remark that the fact that our algorithm only requires an α-truncated sample oracle is what enables
us to achieve a polynomial number of oracle calls to the membership oracle to S and significantly im-
prove over the prior works Daskalakis et al. (2018); Lee et al. (2023) (that required super-polynomial
oracle calls and samples). For instances where truncated sampling can be done more efficiently than
rejection sample we even get logarithmic dependence on the mass of the survival set.
Observe that the algorithm of Theorem 1.5 returns a hypothesis pθ whose corresponding truncated
density pSθ is close in KL divergence. Typically one asks for the learned density pθ to be close to the
target non-truncated distribution p∗θ , that is to extrapolate and match the density beyond the region
of observation given by the survival set S. We phrased our result in terms of KL divergence of
the truncated distributions to keep the required assumptions on the exponential families minimal.
In particular, by making the assumptions that render the parameter θ∗ identifiable (as in the prior
works) one can readily translate the guarantee of our result to parameter recovery or (learning in KL
or total variation) with respect to the target non-truncated density. We next present some new results
for well-studied special cases of Definition 1.1 that we obtain as corollaries of Theorem 1.5.
We first present our result for learning truncated Gaussian distributions. A truncated Gaussian den-
sity is defined asN (x;µ,Σ, S) ∝ 1S(x)N (x;µ,Σ) where µ ∈ Rd, is its mean and Σ ∈ Rd×d is its
covariance.
Corollary 1.6 (Gaussians). Let q = N (µ∗,Σ∗, S) be a truncated normal density. There exists
an algorithm that draws M = d2

ϵ2 poly(log(1/α)) samples from q, makes M · poly(1/α) oracle
calls to the set indicator 1S(·), runs in poly(M,d, 1/α) and learns parameters µ̂, Σ̂ such that
dTV (N (µ,Σ),N (µ̂, Σ̂)) ≤ ϵ.

Our next corollary is on the generalization of log-concave exponential families that satify Defini-
tion 1.1 and furthermore have log-concave density and polynomial sufficient statistic (see Lee et al.
(2023)).
Corollary 1.7 (Log-Concave Exponential Families). Fix ϵ > 0. Let F be a class of log-concave
exponential families that satisfy Definition 1.1 and their sufficient statistic T (x) of each pθ ∈ F
is a polynomial of degree ℓ that maps Rd to Rk. Let q = pSθ∗ be a truncated normal density in F .
There exists an algorithm that draws M = k

ϵ2 poly(log(1/α)) samples from q, makes M ·poly(1/α)
oracle calls to the set indicator 1S(·), runs in poly(M,d, 1/α), and learns a parameter θ̂ such that
∥θ̂ − θ∗∥2 ≤ ϵ and dTV (pθ̂, pθ∗) ≤ ϵ.
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Remark: We refer the reader to Appendix A for a detailed discussion comparing our results in
Corollaries 1.6 and 1.7 with the corresponding results in the literature.

1.2 OUR TECHNICAL CONTRIBUTION

A common challenge in the line of work on truncated statistics is to ensure that during the opti-
mization phase the parameters of the distribution remain within a region that assigns significantly
large mass to the survival set. This is important for many reasons, one being to ensure that gradients
remain bounded and another being to ensure that rejection sampling works. As such all prior works
restrict the optimization in custom regions of parameters that depend on the class of distributions one
is trying to learn. For every different setting, learning Gaussian distributions, product distributions
on the hypercube, learning permutations and rankings, and log-concave exponential families, differ-
ent algorithms have been provided that focus on the specific intricacies of the setting e,g. discrete
domain, polynomial features and so on.
Our main technical contribution is offering a unified viewpoint for all those settings as exponential
families over an unrestricted domain. Our key technical tool is establishing a very simple region
for optimization that ensures the probability of the survival set is bounded and is given directly by
the non-truncated loss of the model. More specifically, given an initialization θ0, we define the
following optimization problem that we aim to solve via projected stochastic gradient descent.

min
θ∈Θ
LS(θ) s.t. L(θ) ≤ L(θ0) + log

1

α
. (3)

Given an initial point θ0 whose loss is sufficiently close to the minimum non-truncated loss
minθ∈Θ L(θ), any point θ in the feasible region is guaranteed to assign at least Ω(α) mass to the
survival set.
Beyond our novel understanding of the optimization and sampling landscape, which enables signifi-
cantly faster convergence, we introduce a much simpler algorithm that makes minimal assumptions
about the setting and the distributions involved. Unlike previous works that simultaneously bound
sample complexity, query complexity, and parameter closeness, we achieve a tighter analysis by
decoupling these terms. Specifically, we demonstrate the following:

• We show that the dependence on samples from the true distribution is limited to the esti-
mation of the mean sufficient statistic, which requires only a few samples. This is possible
due to the good concentration properties of the truncated distribution, which behaves as a
subexponential distribution.

• We adopt an optimization perspective, focusing on minimizing the given objective as ef-
ficiently as possible, rather than directly recovering the underlying parameters. Our guar-
antees are provided in terms of the closeness between the true truncated density and the
learned truncated density.

• Leveraging existing statistical results that relate the closeness of truncated densities to the
closeness of parameters and non-truncated densities, we derive parameter recovery algo-
rithms with polynomial dependence on the mass of the survival set.

1.3 RELATED WORK

The field of truncated statistics has a long history, which finds its roots in Bernoulli’s analysis of
smallpox morbidity and mortality data Bernoulli (1760), and the early works of Galton (1897);
Pearson (1902a); Pearson & Lee (1908a); Fisher (1931). Thus, we cannot do it justice here and
for an overview of the field we refer the reader to Schneider (1986); Cohen (2016); Balakrishnan
& Cramer (2014). We also refer the reader to Tobin (1958); Amemiya (1973); Hausman & Wise
(1977); Heckman (1979); Maddala (1986); Keane (1993); Hajivassiliou & McFadden (1998), and
their references, for further work in statistics and econometrics. There still remain numerous out-
standing challenges, targeting density estimation, regression and classification tasks. Many recent
works have focused on providing computationally efficient algorithms. There has been a large num-
ber of recent works dealing inference with truncated data from a Gaussian distribution Daskalakis
et al. (2018); Kontonis et al. (2019), mixtures of Gaussians Nagarajan & Panageas (2019), linear
regression Daskalakis et al. (2019); Ilyas et al. (2020); Daskalakis et al. (2020b), sparse Graphical
models Bhattacharyya et al. (2021) or Boolean product distributions Fotakis et al. (2020), non-
parametric estimation Daskalakis et al. (2021).
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The area of robust statistics Huber & Ronchetti (2009) is closely related to our work, as it also
addresses the challenge of handling biased datasets with the goal of identifying the underlying
data-generating distribution. Recently, there has been substantial theoretical progress in develop-
ing computationally efficient methods for robustly estimating high-dimensional distributions in the
presence of arbitrary corruptions affecting a small ε fraction of the samples Diakonikolas et al.
(2016); Charikar et al. (2017); Lai et al. (2016); Diakonikolas et al. (2017); Klivans et al. (2018);
Diakonikolas et al. (2019). Our work contributes to this broader field of statistical learning, specifi-
cally focusing on cases where certain impediments or biases are present.
One of the most notable works in this area is Lee et al. (2023), which introduced efficient algorithms
for learning from truncated exponential families. In the following subsection, we provide a detailed
comparison between their results and our improved approach.

1.3.1 COMPARISON TO LEE ET AL. (2023)

The work of Lee et al. (2023) presents a framework for learning from truncated samples. We outline
the key improvements of our method below:

Oracle Efficiency: A significant part of our improvement arises from requiring only α-truncated
sample oracle access (Definition 3.1) throughout our algorithm, whereas Lee et al. (2023) requires
access to an a− log(1/a)-truncated sample oracle. Furthermore, any additional improvement on our
result is unattainable, as all parameters near θ∗ necessarily require access to an α-truncated sample
oracle.

Parameter Estimation: In Lee et al. (2023), convergence requires approximately a− log(1/a) it-
erations, whereas our approach achieves convergence in polynomial time relative to 1/a. Both
Lee et al. (2023) and our work, as shown in Corollary 1.7, have iteration counts that depend on
poly(1/mass). However, our advantage stems from being able to identify regions of higher mass
more effectively.

Mass and Sample Complexity: The guarantees provided in Lee et al. (2023) concern areas of
a− log(1/a) mass, which can lead to inefficiencies. Our approach, by contrast, offers sharper covari-
ance estimates for the truncated distribution, leading to initialization points that are closer to the true
truncated parameter θ∗S = Ex∼pS

θ∗
(T (x)). While Lee et al. (2023)’s analysis requires remaining

within a ball of radius log(1/a) around the true parameter θ∗, effective learning necessitates both
proximity to θ∗ within this radius and maintaining a low negative log-likelihood (NLL) L(θ). Had
we used the covariance estimates from Lee et al. (2023), our sample complexity would be poly(1/a),
but by employing our improved estimates, we achieve poly(log(1/a)), matching the sample com-
plexity seen in Lee et al. (2023).
Initialization and Convergence: While both methods use similar initialization points, our analysis
demonstrates faster convergence. Specifically, we show that the initialization point in our method
yields a lower starting value for L(θ), ensuring the algorithm focuses on high-mass regions more
effectively. In contrast, Lee et al. (2023) does not capitalize on this aspect as robustly.

Summary of Differences:
• Sharper Covariance Estimates: Our approach guarantees that initialization starts within

high-mass areas by employing refined covariance estimates.
• Higher Mass Guarantees: We emphasize maintaining low NLL values, incrementally

broadening the search radius with controlled increases in NLL, which is critical for efficient
convergence. This perspective is not as effectively addressed in Lee et al. (2023).

2 PRELIMINARIES

A distribution belongs to the exponential family if its density is expressed as

pθ(x) = h(x) exp(θ⊤T (x)−A(θ)).

For a given set S, we denote by pθ(S) the probability that the measure pθ assigns to S. The function
h(x), often referred to as the weight function, is also known by other terms in the literature, such as
the carrier measure.
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The parameter space of this family is defined as Θ = {θ ∈ Rk : A(θ) < ∞}, which is an open
set. After potentially reparameterizing, it is assumed that θ and T (x) are linearly independent. This
form of representation is known as the minimal representation. Given a minimal representation,
the function A(θ) is convex. The following properties of an exponential family are standard:

1. The gradient of A(θ), ∇A(θ), is the expected value of the sufficient statistic under the
distribution: ∇A(θ) = Ex∼pθ

[T (x)].
2. The Hessian of A(θ), ∇2A(θ), is the covariance of the sufficient statistic under the distri-

bution: ∇2A(θ) = Covpθ
[T (x)].

We include the definition of a univariate sub-exponential random variable, which can be used to
define a corresponding class for the multivariate case by taking the supremum over the unit sphere.
There are many equivalent definitions to choose from, but the most convenient for us is by using the
moment generating function (MGF). Namely,
Definition 2.1 (Moment Generating Function). The moment generating function (MGF) of a distri-
bution D, denoted by MD(t), is defined as

MD(t) = E
x∼D

[etx],

provided this expectation exists. The function MD(t) is defined for all values of t in some interval
containing t = 0.

We provide a definition of the sub-exponential distribution, which we will rely on throughout. This
definition is similar to the one in Vershynin (2010), with a minor adjustment to account for potential
restrictions that arise when scaling moves us outside the natural parameter space Θ of our model.
Note that, aside from some scaling, the definition used here aligns with that in Lee et al. (2023).
Definition 2.2 (Sub-exponential distribution). Let x be a univariate random variable with zero
mean. The random variable x is said to belong to the class SE(K2

1 , β) if the following condition
holds: E[exp(λx)] ≤ exp(K2

1λ
2), for all λ such that |λ| ≤ 1

β .

The following proposition provides an equivalent definition for the sub-exponential class, adapted
from Vershynin (2010) with slight modifications to suit our needs. However, since the proof remains
unchanged, we omit it.
Proposition 2.3 (Sub-exponential distribution). Let x be a univariate random variable with zero
mean. Fix parameters Ki > 0 for i = 1, 2, and β > 0, such that x ∈ SE(K2

1 , β). Then, the
following two properties are equivalent. Additionally, the quantities max(K1, β) and K2, which
appear in the properties, differ by a universal constant.

(a) The moment generating function (MGF) of x satisfies

E[exp(λx)] ≤ exp(K2
1λ

2)

for all λ such that |λ| ≤ 1
β .

(b) The moments of x satisfy
(E [|x|p])1/p ≤ K2p

for all p ≥ 1.

This class of functions is typically associated with a concentration inequality. The one we use, which
can also be found in Vershynin (2010), is as follows:
Fact 2.4 (Bernstein’s Inequality). Let x1, . . . , xN be independent, identically distributed, mean-
zero, sub-exponential random variables belonging in the SE(K2

1 , β). Then, for every t ≥ 0, we
have

Pr

(∣∣∣∣∣ 1N
N∑
i=1

xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cN min

(
t2

max2(K1, β)
,

t

max(K1, β)

))
,

where c > 0 is an absolute constant.

2.1 TRUNCATED STATISTICS

We begin by defining the notion of a truncated distribution. Namely, let p be a probability density
function on Rd. For a given set S ⊆ Rd, let pS be the conditional distribution of x ∼ p given that
x ∈ S, i.e. pSθ (x) =

p(x)·1S(x)
pθ(S) . Note that the relative density is pS(x)

p(x) = 1S(x)
p(S) .
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In the context of truncated statistics, we engage with an oracle, denoted by MS(x) = 1S(x), which
represents the indicator function of the set S. This setup is prevalent in scenarios where direct access
to the set S is unavailable, yet a mechanism exists to verify the membership of elements within S.
This method allows for the indirect exploration and analysis of the set through conditional access
provided by the oracle.

Non-truncated and Truncated NLL Given some exponential family pθ parameterized by θ ∈
Rk, the negative log-likelihood (NLL) over a population distribution q is defined as follows:

L(θ) = − E
x∼q

[log pθ(x)] . (4)

In what follows we will refer to L as “non-truncated”. Moreover, for a truncated exponential family
pSθ , such that the support of q is contained in S, we define the following “truncated” version of the
NLL objective as:

LS(θ) = − E
x∼q

[log pSθ (x)] = L(θ) + log pθ(S) . (5)

The gradient and Hessian of LS(·) are given below.

∇θLS(θ) = Ex∼pS
θ
[T (x)]−Ex∼q [T (x)] , ∇2

θLS(θ) = Covx∼pS
θ
[T (x)] .

3 LEARNING TRUNCATED DENSITIES

In this section we prove our main result, namely an efficient algorithm for learning truncated expo-
nential families.
Definition 3.1 (Sample Oracles). Given as input an exponential family pθ ∈ F , the (non-truncated)
sample oracle returns a sample x ∼ pθ.
Moreover, given as input an exponential family pθ ∈ F , the β-truncated sample oracle over a
survival set S returns a sample x ∼ pSθ , provided that pθ(S) ≥ β. In case this constraint does not
hold the behavior of the oracle is undefined.

Remark 3.2 (Implementing a β-Truncated Sample Oracle). Given a membership oracle to the set S
and a sampler for the non-truncated exponential family pθ, one can directly implement a β-truncated
sample oracle by rejecting samples until one falls in S.

This oracle enables us to reduce the inference problem to an optimization that use the gradients as
rewards.
Theorem 3.3 (Learning Truncated Exponential Families). Fix ϵ > 0. LetF be an exponential family
with sufficient statistic T (·) such that for any pθ ∈ F , λI ⪯ Covx∼pθ

[T (x)] ⪯ LI . Assume sample
access to an unknown distribution pθ∗ ∈ F truncated with a survival set S of mass α > 0, and
an Ω(α2)-truncated sample oracle Q over S. There exists an algorithm that uses Õ

(
k
ϵ2 log

(
1
α

))
samples from pSθ∗ , makes Õ

(
k
ϵ2 log

(
1
α

)2)
calls to the oracle Q, runs in time poly(k, 1/ϵ, log( 1

α ))

and computes an estimate θ̂, such that KL(pSθ∗∥pS
θ̂
) ≤ ϵ with probability at least 99%.

Roadmap to the Proof: To prove Theorem 3.3, we proceed as follows:

1. Setup and Definitions: Our learning algorithm outputs θ̂ by performing PSGD (Theo-
rem 3.12) starting from an initial point θ0 over a domain D. The key properties are that
θ∗ ∈ D and, for all θ ∈ D, the bound Prx∼pθ

[x ∈ S] ≥ cα−2 holds.
2. Main Argument: The parameter θ0 serves as a good approximation of Ex∼pS

θ∗
[T (x)].

This approximation is achieved through a collection of smoothness results, specifically
Lemma 3.5, Lemma 3.11, and Lemma 3.7. This good initialization is crucial for defining
D = {θ : L(θ) − L(θ0) ≤ log(1/α)} with the necessary properties. As shown in Corol-
lary 3.9, initialization from a point with sufficiently low loss L(θ0) ≤ L(θ0)+ ϵ allows the
application of Corollary 3.10, where θ0 is defined in Corollary 3.10.

3. PSGD Specifications: We apply Theorem 3.12 with f = LS . The smoothness parameter
LS is L(1 + log2(1/α)) over the domain D, owing to the smoothness of the truncation
(Lemma 3.5) and the sufficient mass within D. Similarly, as shown in Lemma 3.13, the
gradient variance of LS is of order kL log6(1/α) on D.
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Using the same techniques as in Theorem 3.3, we can demonstrate that an Ω(α)-truncated sample
oracle Q over S is feasible. Note that since the parameter θ∗ assigns mass α to S, we cannot
hope to achieve something more efficient than an Ω(α)-truncated sample oracle. The main idea
for this improvement in Theorem 3.3 is to incrementally expand the exploration domain to avoid
overshooting and inadvertently ending up in a low-mass region. We include the theorem statement
below; for a detailed proof, along with the necessary apparatus, look at the appendix Appendix C.
Theorem 3.4 (Learning Truncated Exponential Families ). Fix ϵ > 0. Let F be an exponential
family with sufficient statistic T (·) such that for any pθ ∈ F , λI ⪯ Covx∼pθ

[T (x)] ⪯ LI . Assume
sample access to an unknown distribution pθ∗ ∈ F truncated with a survival set S of mass α > 0,
and an Ω(α)-truncated sample oracleQ over S. There exists an algorithm that uses Õ

(
k
ϵ2 log

(
1
α

))
samples from pSθ∗ , makes Õ

(
k
ϵ2 log

(
1
α

)2)
calls to the oracle Q, runs in time poly(k, 1/ϵ, log( 1

α ))

and computes an estimate θ̂, such that KL(pSθ∗∥pS
θ̂
) ≤ ϵ with probability at least 99%.

3.1 FINDING A GOOD INITIALIZATION

To demonstrate that a good initialization can be found with Õ
(

k
ϵ2 log

(
1
α

))
samples from pSθ∗ , we

leverage the concentration properties of the distribution pSθ∗ . This is a threefold process, and our end
goal is to find in which sub-exponential class x ∼ pSθ∗ belongs. In order to accomplish that, we have

to bound Covx∼pS
θ∗
(T (X)), and in order to do that we need ∥EpS

θ
[T (x)] − µ∥2 ≲ log

(
1

pθ(S)

)
.

The next lemma will deal with those two latter stepping stones.
Lemma 3.5 (Moment preservation after truncation). Assume that Ex∼pθ

[T (x)] = µ,

Covx∼pθ
(T (x)) ⪯ LI , and pθ(S) > 0. Then, ∥Ex∼pS

θ
[T (x)]− µ∥2 ≲ log

(
1

pθ(S)

)
. Similarly, we

have the following covariance estimate: Covx∼pS
θ
(T (x)) ⪯

(
O
(
log2

(
1

pθ(S)

))
+ L

)
I .

The previous lemma gives us a bound on how much the smoothness is affected by the trunca-
tion. Hence, tighter bounds guarantee needing fewer samples since the truncated distribution enjoys
stronger concentration properties. The analysis is achieved by performing a worst-case analysis.
Next, we see how truncation affects the sub-exponential property that the non-truncated distribution
possesses. For the proof we refer to Appendix B.
Lemma 3.6 (Truncated density is sub-exponential). Let F be an exponential family with sufficient
statistic T (·) such that for any pθ ∈ F , we have λI ⪯ Covx∼pθ

[T (x)] ⪯ LI . Let x follow
the truncated distribution: pSθ (x) = pθ(x)1S(x)

pθ(S) , where pθ(x) = hS(x) exp(θ
⊤T (x) − AS(θ))

and pθ(S) is the normalization constant. Then, the random variable T (x), under this truncated
distribution, is sub-exponential, denoted SE(K2, β), with parameters K2 = (1 + log2(1/α))L
as K appears in Definition 2.2, and β is the reciprocal of the largest radius r of the ball B(θ, r),
centered at θ, that is contained in B(θ, r) ⊂ Θ.

Now, we have developed all the tools necessary to find a sharp estimate of the samples needed for
the empirical truncated distribution to approximate its mean.
Lemma 3.7 (Empirical estimation of the truncated sufficient statistic). Fix ϵ > 0. Let pθ∗ be some
exponential family such that pθ∗(S) = α. Moreover, let θ∗S = Ex∼pS

θ∗
[T (x)] be the expected

sufficient statistic of the truncated exponential family pSθ∗ . Moreover, let θ̂ = 1
N

∑N
i=1 T (x

(i))

be the corresponding empirical statistic for x(1), . . . , x(N) i.i.d. samples from pSθ∗ . Using N =

O
(
kL
ϵ2 log

(
1
δ

)
log2

(
1
α

))
samples, with probability at least 1− δ, it holds ∥θ̂ − θ∗S∥2 < ϵ .

Proof. Our estimator is θ̂ = 1
N

∑N
i=1 T (xi), where xi ∼ pSθ∗ . We have shown that, for any unit

vector u, Yi = uTT (xi) − uT Exi∼pS
θ∗
[T (xi)] belongs in the sub-exponential class with K2 =

O
(
L+ log2

(
1
α

))
We fix t = ϵ > 0, now by using Bernstein’s inequality, as seen in Fact 2.4, we

obtain

pSθ∗

(∣∣∣∣∣ 1N
N∑
i=1

Yi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cN min

(
t2

max2(K,β)
,

t

max(K,β)|

))
= 2 exp

(
−c Nϵ2

max2(K,β)

)

8
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Since the previous inequality holds for all u, and by the superposition property of sub-exponential
random variables, we obtain the previously mentioned bound for the norm, namely:

pSθ∗

(∣∣∣∣∣∣θ̂ −Exi∼pS
θ∗

(T (xi))
∣∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c Nϵ2

max2(K,β)

)
Since b, L is a constant independent of α, we have the following bound:
max2(K,β) = O

(
log2

(
1
α

))
. Therefore, for N ≥ O

(
k
ϵ2 log

2
(
1
α

)
log
(
1
δ

))
, we get,

pSθ∗

(∥∥∥θ̂ −Exi∼pS
θ∗

(T (xi))
∥∥∥ ≥ t

)
≤ δ.

3.2 THE FEASIBLE REGION AROUND INITIALIZATION

To ensure feasiblity we will use the following simple observation.

Observation 3.8 (Mass along the sub-level sets). Let pθ be some exponential family and define θ′

to be a minimizer of the constrained objective {minθ LS(θ) : s.t.L(θ) ≤ L̄} for some L̄. For any θ
such that L(θ) ≤ L̄, it holds Prθ[S] ≥ Prθ′ [S] exp(L(θ′)− L(θ)).

Proof. This holds as LS(θ
′) ≤ LS(θ) which directly gives the required bound.

Using Observation 3.8 we readily obtain the following corollary.

Corollary 3.9 (Mass monotonicity along sub-level thresholds). Let θ∗ be the minimizer of the trun-
cated NLL objective LS for some exponential family pθ. Denote by α = Prθ∗ [S] the mass as-
signed to the survival set S. Define the following constrained optimization problem: {minθ LS(θ) :
s.t.L(θ) ≤ L̄} and denote by θ1 its solution with L̄ = L1 and by θ2 its solution of the same opti-
mization problem with L̄ = L2, where L2 > L1.

1. (Monotonicity) The mass assigned to S is decreasing as a function of L̄: Prθ1 [S] ≥
Prθ2 [S] ≥ α.

2. (Exponential decrease) The mass assigned to S by θ2 drops exponentially fast, i.e., it holds
that Prθ2 [S] ≤ Prθ1 [S] e

−(L2−L1).

Proof. Notice that by definition of θ1, θ1 ∈ {minθ LS(θ) : s.t.L(θ) ≤ L2}. Hence, Prθ1 [S] ≥
Prθ2 [S] exp(L2 − L1) ≥ Prθ2 [S]. It only remains to show that Prθ2 [S] ≥ α. Since, the
{minθ LS(θ) : s.t.L(θ) ≤ L2} decreases as L2 increases, L(θ∗) = {minθ LS(θ) : s.t.L(θ) <
∞} = min{LS(θ) : s.t.L(θ) ≤ L(θ∗)}. Which means for θ′ that is the solution to a constrained
optimization problem with lower L = L2, we have θ′ ∈ {LS(θ) : s.t.L(θ) ≤ L(θ∗)}. Hence,
L ≤ L(θ∗) and from the previous part this implies α = Prθ∗ [S] ≤ Prθ′ [S]. Hence, we con-
clude.

Given the exponential decrease, i.e. Corollary 3.9 we obtain the following corollary. Which is
ensuring that our initialization of PSGD is close in LLN distance, and that all our parameters inside
our projection domain give poly(1/α) to the survival set S.

Corollary 3.10 (Feasibility of θ0). Suppose that θ0 is θ0 = Ex∼pS
θ∗
[T (x)]. Then, L(θ∗) ≤

L(θ0) + log
(
1
α

)
. Furthermore, if for any θ such that L(θ) ≤ L(θ0) + log

(
1
α

)
+ ϵ, then

pθ(S) ≥ pθ0(S)αe−ϵ ≥ α2e−ϵ.

Proof. From Corollary 3.9 it holds that pθ0(S) > α. Hence, by the exponential decrease, provided
by the same corollary, we find that L(θ∗) ≤ L(θ0) + log

(
1
α

)
. The second part is an immediate

consequence of the Observation 3.8.

3.3 PSGD CONVERGENCE

We prove the following lemma show that the truncated densities are sub-exponential, see Ap-
pendix B.

Lemma 3.11 (Sub-exponential Property for the Truncated Distribution). Let x follow the truncated
distribution: pSθ (x) =

pθ(x)1S(x)
pθ(S) , where pθ(x) = h(x) exp(θ⊤T (x) − A(θ)) and Prx∼pθ

[x ∈ S]

9
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is the normalization constant. Then the random variable T (x) under this truncated distribu-
tion is sub-exponential. More specifically, it belongs to the family SE(K2, β) where K2 =
L+ log2

(
1
α

)
, β−1 = inf∥u∥=1 sup{γ : γu+ θ ∈ Θ}.

The result for PSGD we will use is the following. Its proof is standard, see, .e.g, Shalev-Shwartz &
Ben-David (2014) or Appendix B for a proof.
Theorem 3.12 (Convergence of Projected Stochastic Gradient Descent). Consider the Projected
Stochastic Gradient Descent (PSGD) algorithm for minimizing a convex function f over a convex
set K. Assume the following:

1. Lipschitz Continuous Gradients: There exists a constant M > 0 such that for all x and y,
∥∇f(x)−∇f(y)∥ ≤M∥x− y∥.

2. Bounded Variance: The variance of the stochastic gradients is bounded, i.e., there exists a
constant b2 such that E[∥g(t)∥2] ≤ b2, where g(t) = ∇f(xt).

Then, for w̃ = 1
T

∑T
i=1 w

(i) where the {w(i)} are generated by the PSGD algorithm with step size

ht =
1

Mt , it holds E [f(w̃)]− f(w∗) ≤ ∥w(0)−w∗∥2

2MT + b2π2

12M2T .

To apply Theorem 3.12 we first show that our unbiased gradients have bounded second moment.
The proof can be found in Appendix B.
Lemma 3.13 (Bounded variances of stochastic gradients ). Let T (z) : Rd 7→ Rk be the sufficient
statistic of a truncated exponential family pSθ∗ . We have that v = T (z) − T (x), where z ∼ pSθ and
x ∼ pSθ∗ is an unbiased estimator of ∇LS(θ). Moreover, v has bounded second moment, namely,
E[∥v∥2] = Ez∼pS

θ
Ex∼pS

θ∗

[
∥T (z)− T (x)∥2

]
≲ kL log6(1/α) .

3.4 THE PROOF OF THEOREM 3.3

We are now ready to prove our main result. Apply Theorem 3.12 (PSGD) to the optimization
problem Equation (3) for f = LS and w(0) = θ0, with projecting region D = {θ : L(θ) ≤
L(θ0) + log 1

α }. Here, θ0 = 1
N

∑N
i=1 T (xi) for N ≥ O

(
kL3

ϵ2 log
(
1
δ

)
log2

(
1
α

))
. We also set

θ0 = Ex∼pS
θ∗
[T (x)]. Then, by applying Lemma 3.7 with ϵ = ϵ

L , we obtain
∥∥θ0 − θ0

∥∥
2
≤ ϵ

L .
Observe now, that by the L smoothness of L and the fact that ∇L(θ0) = 0, we have the bound
∥∇L(θ)∥ ≤ L · r for all θ ∈ {θ :

∥∥θ − θ0
∥∥ ≤ r}, hence |L(θ0)− L(θ0)| ≤ ϵ.

Furthermore, by Corollary 3.10 we get θ∗ ∈ D ⊂ {θ : L(θ)− L(θ0) ≤ log( 1
α ) + ϵ}, and pθ(S) ≥

α2e−ϵ for all θ ∈ D. By strong convexity of L(θ), we have that λ
2

∥∥θ0 − θ∗
∥∥2
2
≤ O

(
log
(
1
α

))
.

Hence, Theorem 3.12 in our setup gives an upper bound C log(1/α)
2(L+log2(1/α))T

+ bπ2

12(L+log2(1/α))2T
. So, for

T ≥ 1
ϵ

(
6C log2(1/α)(L+log2(1/α))2+π2

12(L+log2(1/α))2

)
, Theorem 3.12 gives us an θ such that E

[
f(θ)

]
−f(θ∗) ≤ ϵ.

From Markov’s inequality, we get Pr
[
f(θ)− f(θ∗) ≥ 3ϵ

]
≤ 1

3

We can easily amplify this probability by repeating this process independently and hence obtaining
a sequence of θ1, θ2, . . . , θm and then choosing θ = argminθi

f(θi). Set θ̂ := θ and observe that

Pr
[
f(θ̂)− f(θ∗) ≥ 3ϵ

]
≤
(
1
3

)m
. Hence by choosing m ≥ log(δ)/ log(1/3), we obtain a θ̂ that

satisfies Pr
[
f(θ̂)− f(θ∗) ≥ 3ϵ

]
≤ δ. To accomplish this, however, we need access to the value

of LS(si) = L(si) + log(Prsi [S]). Since we have access to S only through its oracle, in order
to calculate Prwi

[S], we use concentration for a Bernoulli random variable. More specifically,
by Hoeffding’s inequality, we need O

(
1
ϵ log

(
1
α

))
samples to estimate log (Prwi

[S]), ϵ-close with
probability at least 1− δ.

Therefore, we obtain a θ̂ with high probability that achieves high precision, namely LS(θ̂) −
LS(θ

∗) < ϵ or equivalently KL(pSθ∗∥pS
θ̂
) < ϵ.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work has been partially supported by project MIS 5154714 of the National Recovery and Re-
silience Plan Greece 2.0, funded by the European Union under the NextGenerationEU Program.

REFERENCES

Takeshi Amemiya. Regression analysis when the dependent variable is truncated normal. Econo-
metrica: Journal of the Econometric Society, pp. 997–1016, 1973.

N Balakrishnan and Erhard Cramer. The art of progressive censoring. Springer, 2014.

Daniel Bernoulli. Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des
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A COMPARISON WITH PREVIOUS WORK

In this appendix, we present the main results from prior research on learning truncated distributions,
specifically those Daskalakis et al. (2018) on truncated Gaussian distributions and Lee et al. (2023)
on truncated exponential families. We then compare these results with ours to highlight improve-
ments in oracle complexity and dependence on the truncation parameter α.

A.1 RESULTS FROM DASKALAKIS ET AL. (2018)

Daskalakis et al. (2018) investigated the problem of learning a Gaussian distribution truncated to a
measurable set. Their main result can be summarized as follows:
Theorem A.1 (Learning Truncated Gaussians Daskalakis et al. (2018)). Let q = N (µ∗,Σ∗, S) be
a Gaussian distribution truncated to a measurable set S ⊆ Rd, with mean µ∗ ∈ Rd and covariance
Σ∗ ∈ Rd×d. Set α = Px∼N (µ∗,Σ∗)[x ∈ S]. Then, there exists an algorithm that:

• Requires a number of samples M = d2

ϵ2 poly(log(1/α)) and makes M · α−poly(log(1/α))

oracle calls to the set indicator 1S(·).
• Runs in poly(M,d, α−poly(log(1/α))).

The algorithm computes estimates µ̂ and Σ̂ such that, with high probability,

dTV (N (µ̂, Σ̂),N (µ∗,Σ∗)) < ϵ

The super-polynomial dependence on 1
α arises because the mass assigned to the truncation set S

within the optimization domain used in their analysis becomes super-polynomially small.

A.2 RESULTS FROM LEE ET AL. (2023)

Lee et al. (2023) extended the analysis to general exponential families truncated to a measurable set
S. Their main result is as follows:
Theorem A.2 (Learning Truncated Exponential Families Lee et al. (2023)). Let F be a class of
log-concave exponential families that satisfy Definition 1.1 and their sufficient statistic T (x) of each
pθ ∈ F is a polynomial of degree ℓ that maps Rd to Rk. Suppose pθ∗ is the target distribution, and
q = pSθ∗ is its truncation to a set S. Set α = Px∼pθ∗ [x ∈ S]. Then, there exists an algorithm that:

• Requires a number of samples M = k
ϵ2 poly(log(1/α)) and makes M · poly(α− log(1/α))

oracle calls to the set indicator 1S(·).
• Runs in poly(M,k, α− log(1/α)).

The algorithm outputs an estimate θ̂ such that, with high probability, dTV (pθ̂, pθ∗) ≤ ϵ.

Again, the super-polynomial dependence on 1
α is due to the small probability mass assigned to S,

which adversely impacts the optimization landscape.

A.3 COMPARISON AND DISCUSSION

The primary difference between these prior results and our work lies in the dependence on the
truncation parameter α. In both Daskalakis et al. (2018) and Lee et al. (2023), the algorithms
require a number of oracle calls, and computational time that are super-polynomial in 1

α . This is
mainly because the probability mass assigned to the truncation set S as it becomes small it negatively
affects the smoothness and strong convexity properties needed for efficient optimization.
In contrast, our algorithms achieve similar estimation guarantees while requiring a number of calls
to the indicator of the truncation set 1S that depends polynomially on 1

α . Specifically, we ensure that
for all parameters θ in the domain D of our algorithm, the probability mass assigned to S satisfies

Px∼pθ
[x ∈ S] ≥ poly(α).

13



Published as a conference paper at ICLR 2025

This lower bound prevents the mass from becoming negligibly small as α decreases. Consequently,
the strong convexity constant of the truncated negative log-likelihood LS(θ) (Equation (3)) depends
polynomially on α, enabling efficient optimization.

A.4 CONCLUSION

By carefully analyzing the distribution of the mass assigned to the truncation set S, we have devel-
oped algorithms that reduce the dependence on α from super-polynomial to polynomial in 1

α . This
improvement makes our methods more efficient for small values of α by optimizing the computa-
tional landscape and reducing the complexity of implementing the required oracle.

B OMMITED PROOFS

B.1 THE PROOF OF LEMMA 3.11

The truncated exponential family distribution can be written as:

pSθ (x) = hS(x) exp(θ
⊤T (x)−AS(θ)),

where:
• hS(x) = h(x)1S(x) is the modified base measure, zero outside the set S,
• AS(θ) = A(θ) + log pθ(S) is the modified log-partition function reflecting truncation.

Define the truncated log-partition function:

AS(θ) = log

∫
S

h(x) exp(θ⊤T (x)) dx.

The expected value and covariance under truncation are given by:

µS = ∇AS(θ),

Covt∼pS
θ
(T (x)) = ∇2AS(θ).

Consider the moment generating function (MGF): To simplify the calculations deal with the push-
forward measure induced by the mapping x → T (x) and we denote the corresponding density as
pSθ (t) = hS(t) exp(θt−AS(θ)).

Et∼pS
θ
[eγu

⊤(t−µS)] = e−γu⊤µS
ZS(γu+ θ)

ZS(θ)
,

and to establish subexponentiality, we need to establish an inequality of the form:

ZS(γu+ θ)

ZS(θ)
· e−γu⊤µS ≤ eγ

2K2

for γ such that both θ + γu and θ + γu belong in our parameter space. Using the
(
L+ log2

(
1
α

))
-

smooth property of AS(θ) we find:

AS(γu+ θ)−AS(θ) ≤ γu⊤µS +

(
L+ log2

(
1

α

))
γ2.

Hence,

Et∼pS
θ
[eγu

⊤(t−µS)] = e−γu⊤µS
ZS(γu+ θ)

ZS(θ)
≤ exp

(
γ2

(
L+ log2

(
1

α

)))
Therefore, T (x) is SE(K2, β) with

K2 =

(
L+ log2

(
1

α

))
, β−1 = min (sup{γ : γu+ θ ∈ Θ}, sup{γ : −γu+ θ ∈ Θ}) .
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B.2 THE PROOF OF LEMMA 3.5

First, for convenience, suppose that pθ(S) = α. To establish the bound, we will show that for any
vector u ∈ Rd, the following holds:∣∣∣Ex∼pS

θ
[uTT (x)]−Ex∼pθ

[uTT (x)]
∣∣∣ ≤ O

(
log

(
1

α

))
.

Indeed, for all vectors w and all norms ∥ · ∥, there is a linear functional f such that f(w) = ∥w∥.
Since every linear functional is of the form w → uT · w, we can be sure that, after choosing the
proper u, we can get a bound for any norm that may be of use.
Define CR = {x : uTT (x) > R}. We change the measure in the first expectation, so we can
compare them more readily, namely,

∣∣Ex∼pS
θ
[uTT (x)]−Ex∼pθ

[uTT (x)]
∣∣

=
∣∣Ex∼pθ

[
pS

p
uTT (x)

]
−Ex∼pθ

[
uTT (x)

] ∣∣
=
∣∣Ex∼pθ

[(
1S − α

α

)
uTT (x)

] ∣∣
=
∣∣Ex∼pθ

[(
1S − α

α

)
uTT (x)1CR

]
+Ex∼pθ

[(
1S − α

α

)
uTT (x)1CR

c

] ∣∣
≤
∣∣Ex∼pθ

∣∣ (1S − α

α

)
uTT (x)1CR

∣∣+ ∣∣Ex∼pθ

[(
1S − α

α

)
R

] ∣∣
≤
∣∣Ex∼pθ

[(
1S − α

α

)
uTT (x)1CR

] ∣∣+ ∣∣Ex∼pθ

[(
1S − α

α

)
R

] ∣∣
≤ 1

α
Ex∼pθ

[
uTT (x)1CR

]
+Ex∼pθ

[∣∣∣∣1S − α

α

∣∣∣∣R]
≤ 1

α
Ex∼pθ

[
uTT (x)1CR

]
+R

It remains to work on the term Ex∼pθ

[
uTT (x)1CR

]
:

Ex∼pθ

[
uTT (x)1CR

]
= Ex∼pθ

[
uTT (x)|CR

]
pθ(CR)

= Ex∼pθ

[
log(expuTT (x)|CR)

]
pθ(CR)

= log
(
Ex∼pθ

[expuTT (x)|CR)]
)
pθ(CR)

≤ log

(
Ex∼pθ

[expuTT (x)1CR
])

1

pθ(CR)

)
pθ(CR)

≤ log

(
Ex∼pθ

[expuTT (x)1CR
])

1

pθ(CR)

)
pθ(CR)

≤ log
(
Ex∼pθ

[expuTT (x)1CR
])
)
pθ(CR)− log (pθ(CR)) pθ(CR)

We switch our focus to the term log
(
Ex∼pθ

[expuTT (x)1CR
]
)

log
(
Ex∼pθ

[expuTT (x)1CR
)]
)
≤ 1

2
log
(
Ex∼pθ

[
exp(2uTT (x))

]
Ex∼pθ

[1CR
)]
)

≤ 1

2
log
(
Ex∼pθ

[
exp(2uTT (x))

])
· log (Ex∼pθ

[1CR
)])

≤ 1

2
log
(
Ex∼pθ

[
exp(2uTT (x))

])
· log (pθ(CR))

≤ 1

2
log

(
exp

(
4L+ 2uT E

x∼pθ

[T (x]

))
· log (pθ(CR))

≤ 1

2

(
4L+ 2uTEx∼pθ

[T (x)]
)
· log (pθ(CR))
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For convenience, we set pθ(CR) = c(R), and by putting everything together, we obtain∣∣∣Ex∼pS
θ
[uTT (x)]−Ex∼pθ

[uTT (x)]
∣∣∣ ≤ 1

2α

(
4L+ 2uTEpθ

[T (x)]
)
· log (c(R)) c(R)

− 1

α
log(c(R)) · c(R) +R

Since uTT (x) is subexponential, we have that pθ(CR) ≤ C exp(−cLR). Where the constant
C = O (logEx∼pθ

[p(x)]), which is paid since p(x) is not centered. Substituting back into the
original inequality, we get a bound of the form

O

(
1

α
exp (−cL ·R)

)
+R.

We used the big O notation to suppress any constants, which we may eliminate by paying only
log(constant). Therefore, since the above holds true for all R, we may minimize it or choose an R
that is satisfactory for our purposes. We may choose R = O(log(1/α)). Therefore,

O

(
1

α
exp (−cL ·R)

)
+R = O

(
log

(
1

α

))
,

so we conclude the first part.
For the second part we use a similar analysis. To establish the bound, we will bound the correspond-
ing quadratic form of the matrix Covx∼pS

θ
(T (x)). It suffices to bound∣∣∣Ex∼pS

θ

[
uTT (x) · TT (x)u

]
−Ex∼pθ

[
uTT (x) · TT (x)u

]∣∣∣ .
To simplify the expression we set uT · T (x) = p(x) where p(x) is a polynomial of degree k.∣∣Ex∼pS

θ

[
uTT (x) · TT (x)u

]
−Ex∼pθ

[
uTT (x) · TT (x)u

] ∣∣
=
∣∣Ex∼pS

θ

[
p2
]
−Ex∼pθ

[
p2(x)

] ∣∣
=
∣∣Ex∼pθ

[(
1S − α

α

)
p2(x)

] ∣∣
≤
∣∣Ex∼pθ

[(
1S − α

α

)
p2(x)1CR

]
+Ex∼pθ

[(
1S − α

α

)
R2

] ∣∣
≤ 1

α
Ex∼pθ

[
p21CR

]
+R2

The term Ex∼pθ

[
p2(x)1CR

]
can be bounded using Cauchy-Schwarz as follows

Ex∼pθ

[
p2(x)1CR

]2 ≤ Ex∼pθ

[
p4(x)

]
·Ex∼pθ

[1CR
] ≤ C exp(−cLR),

where C is a constant. To obtain the constant C, we use Proposition 2.3 (b), which gives

Ex∼pθ

[
p4
]
≤ (4K2)

4

Substituting back into the original inequality, we get a bound of the form

O

(
1

α
exp

(
− cL

2R

))
+R2.

We used the big O notation to suppress any constants, which we may eliminate by paying only
log(constant). Therefore, since the above holds true for all R, we may minimize it or choose an R
that is satisfactory for our purposes. We may choose R = O(log2(1/α)). Therefore,

O

(
1

α
exp

(
−cL

2
·R
))

+R2 = O
(
log2

(
1

α

))
,

so we conclude.
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B.3 THE PROOF OF THEOREM 1.5

Proof. We aim to show that the sequence {w(t)} generated by the algorithm converges to an optimal
point w∗.
We use the non-expansiveness of the projection operator. Namely, the projection operator onto a
convex set is non-expansive, meaning for any x and y,

∥ΠK(x)−ΠK(y)∥ ≤ ∥x− y∥.

Using the convexity and smoothness properties, and the non-expansiveness of the projection opera-
tor, we can see the progress achieved after each iteration.

∥w(t) − w∗∥2 ≤ ∥w(t−1) − htg
(t) − w∗∥2.

Expanding the right-hand side, we get:
∥w(t) − w∗∥2 ≤ ∥w(t−1) − w∗∥2 − 2ht⟨g(t), w(t−1) − w∗⟩+ h2

t∥g(t)∥2.

Since f is convex, we have:
f(w(t−1))− f(w∗) ≤ ⟨∇f(w(t−1)), w(t−1) − w∗⟩.

Taking expectations conditioned on w(t−1), and noting that E
[
g(t) | w(t−1)

]
= ∇f(w(t−1)), we

get:
E
[
f(w(t−1))

]
− f(w∗) ≤ E

[
⟨∇f(w(t−1)), w(t−1) − w∗⟩

]
.

Combining everything together, taking expectations, and summing over t = 1 to T ,
T∑

t=1

E
[
f(w(t−1))

]
− Tf(w∗) ≤

T∑
t=1

E
[
⟨∇f(w(t−1)), w(t−1) − w∗⟩

]
≤

T∑
t=1

E
[
⟨g(t), w(t−1) − w∗⟩

]
≤ 1

2L

T∑
t=1

E
[
∥w(t−1) − w∗∥2 − ∥w(t) − w∗∥2

]
+ h2

t E
(
∥g(t)∥2

)
.

Using the boundedness of E
[
∥g(t)∥2

]
≤ b, and that ht =

1
Lt , we have:

T∑
t=1

h2
t∥g(t)∥2 ≤ b

T∑
t=1

1

L2t2
≤ b

L2

T∑
t=1

1

t2
≤ b

L2

(
π2

6

)
.

So,
1

T

T∑
t=1

E
[
f(w(t−1))

]
− f(w∗) ≤ ∥w

(0) − w∗∥2

2LT
+

bπ2

12L2T
.

Finally, from convexity we obtain

E

[
1

T

T∑
t=1

f(w(t−1))

]
≤ 1

T

T∑
t=1

E
[
f(w(t−1))

]
,

hence we conclude.

B.4 THE PROOF OF LEMMA 3.13

Let v denote the output of the rejection sampling procedure to find an unbiased estimate of the
gradient. We have

E[∥v∥2]
= E

z∼pS
θ

E
x∼pS

θ∗

[
∥T (z)− [T (x)] ∥2

]
= E

z∼pS
θ

E
x∼pS

θ∗

[
∥T (z)∥2 − 2T (z)⊤T (x) + ∥ [T (x)] ∥2

]
= Tr(Cov[T (z)]) + (E[∥T (z)∥])2 + Tr(Cov[T (x)]) + (E[∥T (x)∥])2 − 2⟨E[T (z)],E[T (x)]

= Tr(Cov[T (z)]) + Tr(Cov[T (x)]) + ∥Ex∼pS
θi

[T (z)]−Ex∼pS
θ∗
[T (x)]∥2
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≤ k(L+ log
(
1
α

)
) + kL+O

(
λ−1(L+ log2

(
1

α

)))2

log2
(
1

α

)
.

Since,

∥Ex∼pS
θi

[T (z)]−Ex∼pS
θ∗
[T (x)]∥ = ∥∇LS(θi)−∇LS(θ

∗)∥

≤ O

((
L+ log2

(
1

α

)))
∥θi − θ∗∥

≤ O

(
λ−1

(
L+ log2

(
1

α

)))
log

(
1

α

)
where we used Lemma 3.5 in combination with the assumption of strong convexity of L(θ) and the
upper bound of the smoothness of LS(θ).

C PROOF FOR THEOREM 3.4

To minimize the number of queries to the oracle, our approach cautiously progresses towards the
optimal parameter θ∗. Specifically, we incrementally explore increasingly larger convex sets, ensur-
ing each set assigns sufficient probability mass to the set S. To this end, for a given threshold L, we
formulate and solve the following constrained optimization problem:

θ∗ = argmin
θ
LS(θ)

s.t.L(θ) ≤ L
(6)

Proposition C.1 (Progress of the Truncated Loss along Sublevel Sets). Suppose θ∗m is the minimizer
of the optimization problem {minθ LS(θ) : s.t.L(θ) ≤ L̄} for L̄ := L′ +m, where m ∈ N. More-
over, let l be the smallest integer, such that θ∗ is the solution of the same constrained minimization
problem for L̄ := L′ + l. Then, for m ≤ l − 1

(a) LS(θ
∗
m)− LS(θ

∗
m+1) ≥

LS(θ∗
m)−LS(θ∗)
l−m

(b) so, particularly, for all m, LS(θ
∗
m)− LS(θ

∗
m+1) ≥

LS(θ∗
m)−LS(θ∗)

log( 1
α )

.

Proof of Proposition C.1

Proof. Suppose u =
θ∗−θ∗

m

∥θ∗−θ∗
m∥

2
. Then, the functions

g(t) = LS(θ
∗
m + tu), w(t) = L(θ∗m + tu),

are convex. Furthermore, the functions g and w are decreasing and increasing, respectively, for
t ∈ [0, ∥θ∗ − θ∗m∥2]. Denote by tk the points such that w(tk) = L′ + mb + kb, where k =
0, . . . , l− k− 1 and tl−m = ∥θ∗ − θ∗m∥2. Since the function w is convex and increasing, the length
of the line segments [tk−1, tk] is decreasing. Also, since g is convex and decreasing,

g(tk)− g(tk−1) ≤ g(tk−1)− g(tk−2), for m = 1, . . . , l.

Consequently,

LS(θ
∗
m)− LS(θ

∗) = g(0)− g(∥θ∗ − θ∗m∥2)

=

l−m∑
i=1

(g(ti−1)− g(ti))

≤ (l −m) (g(t0)− g(t1))

≤ (l −m)
(
LS(θ

∗
m)− LS(θ

∗
m+1)

)
.

Hence, we divide by l −m and obtain the first part. Also, since l −m ≤ log
(
1
α

)
, we conclude.

18



Published as a conference paper at ICLR 2025

C.1 ALGORITHMS INVOLVED IN COMPUTING THE OUTPUT θ̂ WITH PROPERTIES FROM
THEOREM 3.4

In this subsection, we include the algorithms used to obtain the output θ̂, which satisfies the proper-
ties outlined in the statement of Theorem 3.4. The purpose is twofold: first, to simplify the exposi-
tion of the proof of Theorem 3.4; and second, to make the implementation of the procedures more
accessible for reproduction.

The first Algorithm 1 generates the desired output, θ̂, while incorporating all subsequent algorithms.
The algorithm terminates at line 4 when the successive outputs for Equation (6), corresponding to
the sublevel sets L1 and L2 (with L2 − L1 = g), differ by no more than ϵ′′. The parameter ϵ′′ is
chosen to be small enough such that, at termination, we are within ϵ of the minimizer of LS(θ). This
comparison is justified by Proposition C.1, which compares the successive distances to the distance
from the global minimum.

Algorithm 1 Algorithm for Minimizing L-Constrained Function

1: for L ∈ {Lmin + 1, Lmin + 2, . . . , Lmin +
([
log( 1

α )
]
+ 2
)
} do

2: Execute projected stochastic gradient descent Algorithm 2 {For sublevel set L}
3: Take the output θL̄ of Algorithm 2 and calculate LS (θL̄)
4: if |LS

(
θL̄−1

)
− LS (θL̄) | ≤ ϵ′′ then

5: Stop and return θL̄
6: end if
7: end for

Next, we have the projected stochastic gradient descent (PSGD) algorithm that is performed at each
sublevel set.

Algorithm 2 Projected SGD Algorithm Given Truncated Samples and Sublevel Set

Require: L̄, {xi}ni=1, each xi ∼ pSθ∗ , Initial θ0 ∈ Rk, where θ0 = 1
n

∑n
i=1 T (xi), step size

parameter L
1: for t = 1, . . . , N do
2: Sample x(t) from the data distribution
3: ht ← 1

Lt

4: g(t) ← Sample Gradient(θt, x(t))
5: θt+1 ← θt − htg

(t)

6: Project θt+1 onto {θ : L(θ) ≤ L̄}
7: end for
8: return θN

Finally, we have the process where rejection sampling is performed.

Algorithm 3 Sample Gradient

Require: x, θ
1: while True do
2: Sample z ∼ pθ
3: if MS(z) = 1 where MS is the membership oracle then
4: return T (z)− T (x)
5: end if
6: end while

C.2 THE PROOF OF THEOREM 3.4

Proof. The parameter θ that will satisfy the properties of the theorem will be the output of the Algo-
rithm 1. However, before handling this, we first show that there is a way to amplify the probability
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of the output θL̄ as it appears on line 3, by running the PSGD independently and then choosing the
best output among all the trials.
Apply Theorem 3.12 (PSGD) to the optimization problem in Equation (6) for the sublevel sets
L̄ = Lmin+m+ϵS , where m ∈ [0, log

(
1
α

)
+2], Lmin = L

(
Ex∼pS

θ∗
[T (x)]

)
, θ0 = 1

N

∑N
i=1 T (xi),

and ∥θ0 −Ex∼pS
θ∗
[T (x)]∥2 ≤ ϵS .

Choose ϵS = ϵ
L , which holds for N ≥ O

(
kL3

ϵ2 log
(
1
δ

)
log2

(
1
α

))
. Given the L-smoothness of L

and the fact that ∇L(Ex∼pS
θ∗
[T (x)]) = 0, we obtain the bound ∥∇L(θ)∥ ≤ L · r for all θ ∈ {θ :

∥θ −Ex∼pS
θ∗
[T (x)]∥ ≤ r}.

Therefore, with this choice of ϵS , we have L(θ0)− Lmin ≤ ϵ, and thus the following bound holds:

∥w(0) − w∗∥2 = ∥θ0 − θ∗∥2 ≤ 2

λ
(L(θ∗)− L(θ0)) ≤ O

(
1

λ
log

(
1

α

))
.

Hence, Theorem 3.12 in our setup gives an upper bound:

C log2(1/α)

2(L+ log(1/α))T
+

bπ2

12(L+ log(1/α))2T

So, for:

T ≥ 1

ϵ

(
C log2(1/α) + 6(L+ log(1/α))bπ2

12(L+ log(1/α))2

)
Theorem 3.12 gives us a θ such that:

E
[
f(θ)

]
− f(θ∗) ≤ ϵ.

From Markov’s inequality, we get:

Pr
[
f(θ)− f(θ∗) ≥ 3ϵ

]
≤ 1

3

We can easily amplify this probability by repeating this process independently and hence obtaining
a sequence of w1, w2, . . . , wm, and then choosing:

w = argmin
wi

f(wi).

Since θ := w satisfies:

Pr
[
f(θ)− f(θ∗) ≥ 3ϵ

]
≤
(
1

3

)m

,

by choosing m ≥ log(δ)/ log(1/3), we obtain an w that satisfies:

Pr
[
f(θ)− f(θ∗) ≥ 3ϵ

]
≤ δ.

To accomplish this, however, we need access to the value of:

LS(wi) = L(wi) + log
(
Prx∼pwi

[x ∈ S]
)
.

Since we have access to S only through its oracle, in order to calculate Prx∼pwi
[x ∈ S], we use

concentration for a Bernoulli random variable. More specifically, by Hoeffding’s inequality, we need
O
(
1
ϵ log

(
1
α

))
samples to estimate log

(
Prx∼pwi

[x ∈ S]
)
ϵ-close with probability at least 1− δ.

Therefore, for each sublevel set Lmin + m + ϵS , when we perform PSGD, we have an output θm
such that, with high probability, it achieves high precision:

LS(θm)− LS(θ
∗
m) < ϵ′

where θ∗m is the solution to the optimization problem Equation (6) for the sublevel set Lmin+m+ϵS .
Suppose Algorithm 1 is terminated when the if statement on line 4 is verified. Then, the θL̄ generated
on line 3 satisfies

∣∣LS(θL̄−1)− LS(θL̄)
∣∣ ≤ ϵ′′. Fix ϵ > 0, and set ϵ′′ = ϵ

log(1/α) . We claim that for
this choice of ϵ′′, Algorithm 1 gives output θf with high probability, such that LS(θf )−LS(θ

∗) ≤ ϵ.
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Observe that Algorithm 1 terminates. By Corollary 3.10, and we have

θ∗ ∈
{
L(θ)− Lmin ≤ log

(
1

α

)}
⊆
{
L(θ)− L(θ0) ≤ log

(
1

α

)}
Consequently, there are at least two distinct sublevel sets within the range of Algorithm 1 that contain
θ∗. Therefore, for each of these optimization problems, if we run PSGD with an accuracy of ϵ′ = ϵ′′

2 ,
the stopping criterion on line 4 of Algorithm 1 will be triggered, as both sublevel sets approximate
the same minimizer with high probability and accuracy ϵ′′

2 .
Now that we have established that Algorithm 1 terminates we distinguish two cases, namely θ∗ is
either in {θ : L(θ)−L(θ0) ≤ m} or it is not. Suppose the first case, i.e. θ∗ ∈ {θ : L(θ)−L(θ0) ≤
m}. Since θ∗ is the minimizer of the convex functionLS(θ), and it is inside the optimization domain
{θ : L(θ)−L(θ0) ≤ m} it implies that θm the output of the PSGD satisfies LS(θm)−LS(θ

∗) ≤ ϵ′.
We deal now with the other case, i.e. when θ∗ /∈ {θ : L(θ)− L(θ0) ≤ m}. From Proposition C.1

LS(θ
∗
m)− LS(θ

∗
m+1) ≥

LS(θ
∗
m)− LS(θ

∗)

log
(
1
α

)
And suppose we get θf = θm+1. From our assumption, recall that

|LS(θm+1)− LS(θm)| ≤ ϵ′′,

where ϵ′′ is our threshold value for stopping Algorithm 1.

LS(θ
∗
m)− LS(θ

∗
m+1) ≤ |LS(θm)− LS(θm+1)|+

2ϵ

log(1/α)

≤ ϵ′′ +
2ϵ

log(1/α)

Therefore, by our choice of ϵ′′, ϵ′′ = ϵ
log(1/α) , we get that

LS(θ
∗
m)− LS(θ

∗)

log
(
1
α

) ≤ 3ϵ

log(1/α)
.

LS(θf )− LS(θ
∗) ≤ LS(θ

∗
m)− LS(θ

∗) ≤ 3ϵ.

In the previous case, when termination, of Algorithm 1, occurred at line 4, we obtained a suitable
output by virtue of identifying a threshold value ϵ′′ so small that if the difference in the values of
the approximated minima between two successive sets was bounded by ϵ′′, then even if we had
continued our search, our progress in terms of reducing the value of LS would have been negligible.
Finally, it remains to show that throughout the process, we always maintain a linear mass in terms
of α. This follows directly, since upon termination of Algorithm 1, the output parameter θ lies in the
sublevel L̄ = L(θ0) +m, which satisfies L̄ ≤ L(θ∗) + ϵS + 2. Therefore, by Observation 3.8, we
conclude that all parameters θ′ accessed by Algorithm 1 possess at least αe−ϵS−2 mass.
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