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ABSTRACT

Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the
synthesis of high-quality images. However, their inference process characteris-
tically requires numerous, potentially hundreds, of iterative steps, which could
exaggerate the problem of exposure bias due to the training and inference dis-
crepancy. Previous work has attempted to mitigate this issue by perturbing in-
puts during training, which consequently mandates the retraining of the DPM.
In this work, we conduct a systematic study of exposure bias in DPM and, in-
triguingly, we find that the exposure bias could be alleviated with a novel sam-
pling method that we propose, without retraining the model. We empirically and
theoretically show that, during inference, for each backward time step t and cor-
responding state x̂t, there might exist another time step ts which exhibits supe-
rior coupling with x̂t. Based on this finding, we introduce a sampling method
named Time-Shift Sampler. Our framework can be seamlessly integrated to ex-
isting sampling algorithms, such as DDPM, DDIM and other high-order solvers,
inducing merely minimal additional computations. Experimental results show our
method brings significant and consistent improvements in FID scores on differ-
ent datasets and sampling methods. For example, integrating Time-Shift Sam-
pler to F-PNDM yields a FID=3.88, achieving 44.49% improvements as com-
pared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more perfor-
mant than the vanilla DDIM with 100 sampling steps. Our code is available at
https://github.com/Mingxiao-Li/TS-DPM.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015) are a class
of generative models that has shown great potential in generating high-quality images. (Dhariwal
& Nichol, 2021; Ramesh et al., 2022; Rombach et al., 2022a; Nichol et al., 2022). DPM consists
of a forward and a backward process. In the forward process, images are progressively corrupted
with Gaussian noise in a series of time steps. Conversely, during the backward process, the trained
diffusion model generates images by sequentially denoising the white noise.

Despite its success in generating high-quality images, DPMs suffer from the drawbacks of pro-
longed inference time. Considerable interest has been expressed in minimizing the number of in-
ference steps during the sampling process to speed up generation, while preserving the quality of
generated images. Such works include generalizing DDPM (Ho et al., 2020) to non-Markovian
processes (Song et al., 2021), deriving optimal variance during sampling (Bao et al., 2022b), thresh-
olding the pixel values as additional regularization (Saharia et al., 2022a), or developing pseudo
numerical methods for solving differential equations on manifolds (Liu et al., 2022a).

Though showing promising performance, none of them have theoretically and empirically examined
the discrepancy between the training and sampling process of DPM. If we take a closer look at
the training of DPM, at each time step t, ground truth samples x0 are given to produce corrupted
samples xt with noise ϵt. The DPM takes both xt and t as input to predict the noise ϵt. During
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Figure 1: The comparison of TS-DDPM (ours) and DDPM. The orange and blue arrows denote the
time-state coupling at each denoising step of TS-DDPM and DDPM, respectively. In TS-DDPM, we
search for coupled time step within the [t− w/2, t+ w/2] window, until the cutoff time step tc.

sampling, one is required to synthesize data samples from white noise without the knowledge of the
ground truth distributions. Coupled with the prediction errors of the network, this training-sampling
discrepancy produces errors that could progressively accumulate during inference. This error arising
from the difference between training and inference resembles the exposure bias problem as identified
in autoregressive generative models (Ranzato et al., 2016; Schmidt, 2019), given that the network is
solely trained with the corrupted ground truth samples, rather than the network predicted samples.

In this work, we focus on the exposure bias problem during sampling. Ning et al. (2023) propose
to add perturbation to training samples to alleviate the exposure bias problem, which is sub-optimal
since the retraining of DPM is computationally expensive. Given that the time step t is directly
linked to the corruption level of the data samples, we theoretically and empirically show that by
adjusting the next time step t − 1 during sampling according to the approximated variance of the
current generated samples, one can effectively alleviate the exposure bias. We search for such a
time step within a window tw surrounding the current time step to restrict the denoising progress.
Furthermore, based on the error patterns that the network makes on the training samples, we propose
the use of a cutoff time step tc. For time steps larger than tc, we search for the suitable time step
within tw. While for time steps smaller than tc, we keep the original time step. Intuitively, it also
suits the nature of a DPM, since the corruption level is smaller for small time steps. We refer to
our sampling method as Time-Shift Sampler. Figure 1 presents the comparison between DDPM,
the stochastic sampling method, and its time-shift variant TS-DDPM. In summary, our contributions
are:

• We theoretically and empirically study the exposure bias problem of diffusion models,
which is often neglected by previous works.

• We propose a new sampling method called Time-Shift Sampler to alleviate the exposure
bias problem, which avoids retraining the models. Our method can be seamlessly integrated
into existing sampling methods by only introducing minimal computational cost.

• Our Time-Shift Sampler shows consistent and significant improvements over various sam-
pling methods on commonly used image generation benchmarks, indicating the effective-
ness of our framework. Notably, our method improves the FID score on CIFAR-10 from
F-PNDM (Liu et al., 2022a) by 44.49% to 3.88 with only 10 sampling steps.

2 INVESTIGATING EXPOSURE BIAS IN DIFFUSION PROBABILISTIC MODELS

In this section, we first give a brief introduction of the training and inference procedure for Diffusion
Probabilistic Models (DPMs). Then we empirically study the exposure bias problem in DPM by
diving deep into the training and inference processes.

2.1 BACKGROUND: DIFFUSION PROBABILISTIC MODELS

DPM encompasses a forward process which induces corruption in a data sample (e.g., an image)
via Gaussian noise, and a corresponding inverse process aiming to revert this process in order to
generate an image from standard Gaussian noise. Given a data distribution q(x0) and a forward
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noise schedule βt ∈ (0, 1), t = 1 · · ·T , the forward process is structured as a Markov process,
which can be expressed as:

q(x1···T |x0) =

T∏
t=1

q(xt|xt−1) (1)

with the transition kernel q(xt|xt−1) = N (xt|
√
αtxt−1, βtI), where I denotes the identity matrix,

αt and βt are scalars and αt = 1 − βt. With the reparameterization trick, the noisy intermediate
state xt can be computed by the equation below:

xt =
√
αtx0 +

√
1− αtϵt (2)

where αt =
∏t

i=1 αt and ϵt ∼ N (0, I). According to the conditional Gaussian distribution, we
have the transition kernel of backward process as:

p(xt−1|xt, x0) = N (µ̃t(xt, x0), β̃t) (3)

where β̃t =
1−αt−1

1−αt
βt and µ̃t =

√
αt−1βt

1−αt
x0 +

√
αt(1−αt−1)

1−αt
xt. Considering Equation 2, µ̃t can be

further reformulated as µ̃t =
1√
αt
(xt− 1−αt√

1−αt
ϵt). During training, a time-dependent neural network

is optimized by either learning µ̃t or ϵt. Empirically, Ho et al. (2020) observe that predicting ϵt works
better. The learning target is to optimize the variational lower bound of the negative log-likelihood,
which could also be interpreted as minimizing the KL divergence between the forward and backward
process. In practice, Ho et al. (2020) further simplify the loss function as:

Lsimple = Et,x0,ϵt∼N (0,I)[∥ϵθ(xt, t)− ϵt∥22] (4)

We present the training and sampling algorithms of the original Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020) in Algorithm 1 and 2, respectively.

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform(1, · · · , T )
4: ϵ ∼ N (0, I) Compute xt using Eq 2
5: Take gradient descent step on
6: ∇||ϵ− ϵθ(xt, t)||2
7: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, · · · , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: xt−1 = 1√

αt
(xt− 1−αt√

1−αt
ϵθ(xt, t))+σtz

5: end for
6: return x0

2.2 THE EXPOSURE BIAS IN DIFFUSION PROBABILISTIC MODELS
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Figure 2: The density distribution of the vari-
ance of 5000 samples from CIFAR-10 by dif-
ferent time steps.

In this section, we empirically demonstrate the phe-
nomenon related to the exposure bias problem in
DPM using CIFAR-10 dataset (Krizhevsky, 2009).
We first present the variance distribution of the cor-
rupted samples by different time steps in the forward
process during training. Models exposed to a wider
range of inputs during training tend to exhibit greater
robustness to noise and are consequently less suscep-
tible to exposure bias. To further study the behavior
of the network during the backward sampling pro-
cess, we also examine the evolution of prediction er-
rors during sampling. We use DDIM (Song et al.,
2021) sampler to conduct this experiment, as it gives
a deterministic sampling process.

Figure 2 presents the changes in variance of sample
distributions for different time steps. At each step,
we estimate the corrupted image samples with the network predicted noise using Equation 2. We
present the details of the figure in Appendix B. At time step 0, ground truth images serve as the
current samples. The distribution of the variance of the ground truth samples spans an approximate
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range of (0, 0.8), showing the diversity of the sample distributions. As the noise is gradually added
to the ground truth samples, the span of the variance becomes narrower and narrower. Following
400 steps, the changes in the span range of the variance become stable, and gradually shift towards a
narrow range surrounding the variance of white noise. The evolution of the sample variance across
different time steps indicates that the network exhibits a lower sensitivity to the early steps of the
forward process of DPM, as the variance of the samples can be distributed more sparsely within a
broader range. Conversely, the network can be more sensitive to the later steps (e.g., after 400 steps),
as we progressively approach white noise. The constricted variance range during the later stages
implies that minor prediction errors during sampling can significantly impact overall performance.
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Figure 3: CIFAR-10 prediction errors of training samples for different numbers of sampling steps.

In the second experiment, given a specific number of sampling steps, we compute the mean squared
errors between the predicted samples and the ground truth samples at each step, as presented in Fig-
ure 3. Details for plotting this figure are presented in Appendix B. It can be seen that the evolution
of prediction errors adheres to a consistent pattern: initially decreasing before incrementally accu-
mulating as the sampling process progresses. This phenomenon may be attributed to two possible
factors: (1) The sampling process originates from white noise, which does not contain any informa-
tion about the resultant sample distributions. In early stages, with fewer sampling steps, the error
accumulation is less serious, thus the network gradually shapes the predicted distribution into the
target distribution. (2) In the later stages, the network is more robust to the noisy inputs as discussed
above. However, due to the exposure bias, the network inevitably makes errors at each step and these
errors accumulate along the sequence, resulting in a slow but steady progress in error accumulation
and larger errors in the end.

In conclusion, the above two experiments together show that during the backward sampling process,
the accumulated prediction error, which arises from the exposure bias and the capability of the
network, could strongly impact the final results. This demonstrates the importance of alleviating
exposure bias in DPM, which could potentially lead to improved results.

3 ALLEVIATING EXPOSURE BIAS VIA TIME STEP SHIFTING

In the backward process of Diffusion Probabilistic Models (DPM), the transition kernel is assumed
to adhere to a Gaussian distribution. To maintain this assumption, the difference between two suc-
cessive steps must be sufficiently small, thereby necessitating the extensive training of DPM with
hundreds of steps. As previously discussed, the network prediction error coupled with discrepancy
between training and inference phases inevitably results in the problem of exposure bias in DPM. We
introduce C(x̃t, t)–referred to as the input couple for a trained DPM–to describe this discrepancy,
which can be expressed as:

C(x̃t, t) = e−dis(x̃t,xt) (5)

where x̃t and xt represent the network input and ground truth states at time step t, respectively, and
dis(·, ·) denotes the Euclidean distance. Consequently, during the training phase, the relationship
C(x̃t, t) = 1 holds true for all time steps, as the network always takes ground truth xt as input.
Moreover, a better coupling expressed by C(x̃t, ts) reduces the discrepancy between training and
inference, thereby alleviating exposure bias. Previous works (Zhang et al., 2023a; Ning et al., 2023)
have empirically and statistically affirmed that the network prediction error of DPM follows a nor-
mal distribution. In conjunction with Equation 2, during the backward process at time step t, the
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predicted next state denoted as x̂t−1 could be represented as:
x̂t−1 = xt−1 + ϕt−1et−1

=
√
αt−1x0 +

√
1− αt−1ϵt−1 + ϕt−1et−1

=
√
αt−1x0 + λt−1ϵ̃t−1

(6)

In this equation, λ2
t−1 = ϕ2

t−1 + (1 − αt−1), xt−1 denotes the ground truth at time step t − 1,
ϕt−1et−1 represents the network prediction errors, and et−1, ϵt−1 and ϵ̃t−1 conform to a normal
distribution. Upon observing that Equation 6 and Equation 2 share a similar structure which is the
ground truth x0 plus Gaussian noise with variable variance, we propose the subsequent assumption.

Assumption 3.1 During inference at time step t, the next state x̂t−1 predicted by the network, may
not optimally align with time step t−1 within the context of the pretrained diffusion model. In other
words, there might be an alternate time step ts, that potentially couples better with x̂t−1:

∃ts ∈ {1 · · ·T}, s.t. C(x̂t−1, ts) ≥ C(x̂t−1, t− 1) (7)
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Figure 4: The training and inference discrepancy of DDIM with 10 sampling steps on CIFAR-10.
The dashed line in each column denotes the couple of predicted x̂t and t. Points on the right side of
the dashed line mean that the corresponding time steps couple better with x̂t than time step t.

To verify our assumption, we initially conduct a statistical examination of the discrepancy between
training and inference in a pretrained diffusion model. A sample size of 5000 instances was ran-
domly selected from the CIFAR-10 training set and Equation 2 was utilized to generate ground truth
states xt for a sequence of time steps. Subsequently, we compare the C(x̂t, t) with C(x̂t, ts). Details
of plotting this figure are presented in Appendix B. Here we show the results of 10 inference steps in
the backward process and only consider time step ts within the range of t−6 to t+4. As depicted in
Figure 4, for certain backward steps, there are alternate time steps ts that display a stronger correla-
tion with the predicted next state x̂t compared to time step t. We also observe that when approaching
the zero time step, all nearby time steps converge to the same distribution. Similar findings were
observed for other pretrained DPMs on different datasets including CelebA with varying settings,
such as different numbers of inference steps and ranges of ts. See Appendix E for details.

Our empirical findings lend substantial support to Assumption 3.1. This naturally prompts the ques-
tion: How can we identify the time step that best couples with the predicted x̂t−1? By optimizing
the KL divergence between the predicted x̂t−1 and xts at time step ts, we arrive at the following
Theorem 3.1, with the complete derivation provided in Appendix J.1.

Theorem 3.1 Let x̂t represent a given state and x̂t−1 represent the predicted subsequent state. We
assume t − 1 is sufficiently large such that the distribution of x̂t−1 is still close to the initialized
normal distribution with a diagonal covariance matrix. In addition, the selected time step ts to
couple with x̂t−1 is among those time steps closely surrounding t− 1. 1 Then the optimal ts should
have the following variance:

σts ≈ σt−1 −
||e||2

d (d− 1)
(8)

where d is the dimension of the input, e represents the network prediction error, and σt−1 is the
variance of the predicted x̂t−1.

1If ts is close to t− 1, then
√
ᾱt−1 −

√
ᾱts ≈ 0. See details in Appendix J.1
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The derivation of Theorem 3.1 mainly follows two steps: Firstly, we optimize the KL divergence
between xts and x̂t−1 to obtain the variance of xts . Secondly, we establish the relationship between
the variance within a single sample of x̂t−1 and the variance of x̂t−1. 2 The results articulated in
Theorem 3.1 could be further simplified to σts ≈ σt−1, when t is large and given the assumption
that the network prediction error at the current time step is minimal. This assumption has been found
to hold well in practice.

Algorithm 3 Time-Shift Sampler

1: Input : Trained diffusion model ϵθ; Win-
dow size w; Reverse Time series {T, T −
1, · · · , 0}; Cutoff threshold tc

2: Initialize: xT ∼ N (0, I) ; ts = −1
3: for t = T, T − 1, .., 0 do
4: If ts ̸= −1 then tnext = ts else tnext = t
5: ϵt = ϵθ(xt, tnext))
6: take a sampling step with tnext to get xt−1

7: if t > tc then
8: Get variance for time steps within

the window: Σ = {1 − αt−w/2, 1 −
αt−w/2+1, · · · , 1− αt+w/2}

9: ts = argminτ ||var(xt−1)−στ ||, for
στ ∈ Σ and τ ∈ [t− w/2, t+ w/2]

10: else
11: ts = −1
12: end if
13: end for
14: return x0

Based on the findings of Theorem 3.1, we pro-
pose the Time-Shift Sampler, a method that
can be seamlessly incorporated into existing
sampling algorithms, such as Denoising Dif-
fusion Implicit Models (DDIM) (Song et al.,
2021), Denoising Diffusion Probabilistic Mod-
els (DDPM) (Ho et al., 2020) or sampling meth-
ods based on high-order numerical solvers (Liu
et al., 2022a). Moreover, in light of the ear-
lier discussion that the model’s predictions of
nearby time steps tend to converge to the same
distribution during the later stage of the in-
ference process and the condition of large t
in the derivation in Appendix J.1, we remove
the time-shift operation when the time step is
smaller then a predefined cutoff time step.3 Our
algorithm is detailed in Algorithm 3. Specifi-
cally, given a trained DPM ϵθ, we sample for
xt, t = 1, 2, . . . , T using arbitrarily any sam-
pling method. For each time step t > tc, where
tc is the cutoff threshold, we replace the next
time step tnext with the time step ts that best
couples with the variance of xt−1 within a win-
dow of size w. In the search of such ts, we first take a sampling step with the current tnext to get
xt−1, which is used to compute the variance of xt−1 as var(xt−1). Then we get the variance Σ of
the time steps within the window. The optimal ts can be obtained via argminτ ||var(xt−1), στ ||,
for στ ∈ Σ. Finally, the obtained ts is passed to the next sampling iteration as tnext. We repeat
this process until t < tc, after which we perform the conventional sampling steps from the sampling
method of choice.

4 EXPERIMENTAL SETUP

We integrate our Time-Shift Samplers to various sampling methods including DDPM (Ho et al.,
2020): the stochastic sampling method; DDIM (Song et al., 2021): the deterministic version of
DDPM; S-PNDM (Liu et al., 2022a): the sampling method based on second-order ODE solver; and
F-PNDM (Liu et al., 2022a): the sampling method based on fourth-order ODE solver. We term our
Time-Shift Sampler as TS-{·} with respect to the baseline sampling methods. For example, the time
shift variant of DDIM is referred to as TS-DDIM. Following DDIM, we consider two types of time
step selection procedures during sampling, namely uniform and quadratic. For ti < T : (1) uniform:
we select time steps such that ti = ⌊ci⌋, for a constant value c. (2) quadratic: we select time steps
such that ti = ⌊ci2⌋, for a constant value c.

We report main results using pre-trained DDPM on CIFAR-10 (Krizhevsky, 2009) and CelebA
64×64 (Liu et al., 2015). Moreover, based on DDIM sampler, a comparison to ADM-IP (Ning
et al., 2023) is made, which uses ADM (Dhariwal & Nichol, 2021) as the backbone model. More
experiments can be found in the appendix. We conduct experiments for varying sampling time steps,
namely 5, 10, 20, 50, and 100. We use the Frechet Inception Distance (FID) (Heusel et al., 2017)
for evaluating the quality of the generated images. We further discuss the influence of window sizes
and cutoff values in Sec. 5.4. More details can be found in Appendix C.

2The latter refers to the variance computed by considering corresponding elements across samples of x̂t−1.
3We discuss the influence of the window size and the cutoff value in Sec. 5.4.
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5 RESULTS

5.1 MAIN RESULTS

Dataset Sampling Method 5 steps 10 steps 20 steps 50 steps 100 steps

CIFAR-10

DDIM (quadratic) 41.57 13.70 6.91 4.71 4.23
TS-DDIM(quadratic) 38.09 (+8.37%) 11.93 (+12.92%) 6.12 (+11.43%) 4.16 (+11.68%) 3.81 (+9.93%)
DDIM(uniform) 44.60 18.71 11.05 7.09 5.66
TS-DDIM(uniform) 35.13 (+21.23%) 12.21 (+34.74%) 8.03 (+27.33%) 5.56 (+21.58%) 4.56 (+19.43%)
DDPM (uniform) 83.90 42.04 24.60 14.76 10.66
TS-DDPM (uniform) 67.06 (+20.07%) 33.36 (+20.65%) 22.21 (+9.72%) 13.64 (+7.59%) 9.69 (+9.10%)
S-PNDM (uniform) 22.53 9.49 5.37 3.74 3.71
TS-S-PNDM (uniform) 18.81(+16.40%) 5.14 (+45.84%) 4.42 (+17.69%) 3.71 (+0.80%) 3.60 (+2.96%)
F-PNDM (uniform) 31.30 6.99 4.34 3.71 4.03
TS-F-PNDM (uniform) 31.11 (+4.07%) 3.88 (+44.49%) 3.60 (+17.05%) 3.56 (+4.04%) 3.86 (+4.22%)

CelebA

DDIM (quadratic) 27.28 10.93 6.54 5.20 4.96
TS-DDIM (quadratic) 24.24 (+11.14%) 9.36 (+14.36%) 5.08 (+22.32%) 4.20 (+19.23%) 4.18 (+15.73%)
DDIM (uniform) 24.69 17.18 13.56 9.12 6.60
TS-DDIM (uniform) 21.32 (+13.65%) 10.61 (+38.24%) 7.01 (+48.30%) 5.29 (+42.00%) 6.50 (+1.52%)
DDPM (uniform) 42.83 34.12 26.02 18.49 13.90
TS-DDPM (uniform) 33.87 (+20.92%) 27.17 (+20.37%) 20.42 (+21.52%) 13.54 (+26.77%) 12.83 (+7.70%)
S-PNDM (uniform) 38.67 11.36 7.51 5.24 4.74
TS-S-PNDM (uniform) 29.77 (+23.02%) 10.50 (+7.57%) 7.34 (+2.26%) 5.03 (+4.01%) 4.40 (+7.17%)
F-PNDM (uniform) 94.94 9.23 5.91 4.61 4.62
TS-F-PNDM (uniform) 94.26 (+0.72%) 6.96 (+24.59%) 5.84 (+1.18%) 4.50 (+2.39%) 4.42 (+4.33%)

Table 1: Quality of the image generation measured with FID ↓ on CIFAR-10 (32×32) and CelebA
(64×64) with varying time steps for different sampling algorithms.

In Table 1, we compare four sampling methods, namely DDIM, DDPM, S-PNDM and F-PNDM, and
their Time-Shift variants on two datasets, where we vary the time steps and the time step selection
procedures. We take larger window sizes for fewer sampling steps. The cutoff value is within
the range of [200, 400], and is dependent to the number of time steps we take. As expected, our
Timer-Shift Sampler consistently improves the quality of the generated images with respect to that
of the baseline sampling methods. We observe that for time steps less than 20 with uniform time
step selection, the performance improvements are extremely significant as compared to the original
sampling methods. To our surprise, even for very strong high-order sampling methods, our Time-
Shift Sampler can still bring significant improvements. Notably, we obtain FID=3.88 with TS-F-
PNDM on CIFAR-10 using 10 sampling steps, which is better than DDIM on CIFAR-10 for 100
sampling steps. Our method also manages to improve the performance of the baseline sampling
methods for both uniform and quadratic time selection, showing the versatility of our method.

5.2 DISCUSSION ON EFFICIENCY AND PERFORMANCE
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Figure 5: Sampling time VS FID on CIFAR-10
using DDPM as backbone with various sampling
methods. We report the results of {5,10,20,50}
sampling steps from left to right for each sampler,
denoted with ”×” symbol.

Our Time-Shift Sampler involves searching for
suitable time steps using computed variance
of the generated samples, which inevitably
brings additional computation during sampling.
To compare the efficiency of different sam-
pling methods, we present the average sampling
time4 in Figure 5 by running each sampling
method 300 times on CIFAR-10 using DDPM
as backbone model. For all three sampling
methods, the additional computation time dur-
ing sampling with 5,10 and 20 sampling steps
is negligible. The additional computation time
is visually larger for 50 sampling steps. Yet, the
actual additional computation time remains ac-
ceptable for a small backbone like DDPM. For
example, TS-S-PNDM requires 9.71% more
sampling time on average than S-PNDM for
5,10 and 20 steps. For 50 steps, TS-S-PNDM

4Test conducted on an AMD EPYC7502 CPU and a RTX 3090 GPU using Pytorch time estimation API.
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requires 9.86% more sampling time than S-PNDM. We report the detailed sampling time in Ap-
pendix F. The additional computation time is also dependant to the choice of the backbone, which
we further elaborate in Sec. 5.3.

5.3 COMPARISON WITH TRAINING-REQUIRED METHOD ADM-IP

Model Sampling Method 5 steps 10 steps 20 steps 50 steps
ADM DDIM 28.98 12.11 7.14 4.45
ADM-IP DDIM 50.58 (-74.53%) 20.95 (-73.00%) 7.01 (+1.82%) 2.86 (+35.73%)
ADM TS-DDIM 26.94 (+7.04%) 10.73 (+11.40%) 5.35 (+25.07%) 3.52 (+20.90%)

Table 2: Performance comparison on CIFAR-10 with ADM and ADM-IP as backbone models.

50 100 150 200 250 300 350 400

Sampling Time (ms)
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30
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ADM w/ DDIM

ADM w/ TS-DDIM

Figure 6: Sampling time VS FID on CIFAR-
10 with ADM as backbone using DDIM and
TS-DDIM for sampling.

Our method is also proven to be effective on al-
ternative model architectures than DDPM. In this
section we present the results on ADM (Dhariwal
& Nichol, 2021), and the variant of ADM named
ADM-IP (Ning et al., 2023), which tries to allevi-
ate exposure bias in DPM by retraining ADM with
added input perturbation. We conduct our Time-
Shift Sampler using ADM as backbone model to
show the merits of our method as compared to
ADM-IP. We present the comparison on FID scores
in Table 2 and the comparison on sampling time in
Figure 6. The results indicate that when employ-
ing a small sampling step, which is favored in prac-
tice, ADM-IP performs much worse than the original
ADM. As the number of sampling steps increases,
the performance of ADM-IP improves. We manage
to improve the performance of the ADM model with our method by a large margin. Note that we
achieve these significant improvements without retraining the model as is required by ADM-IP. We
also obtain roughly the same sampling time for DDIM and TS-DDIM with ADM as the backbone
model. It makes our method more favorable in practice given merely zero additional cost for com-
putation and significant performance improvements.

5.4 INFLUENCE OF WINDOW SIZES AND CUTOFF VALUES

(a) (b)
Figure 7: FID of generated CIFAR-10 images using TS-DDIM (uniform) with (a) various win-
dow sizes using cutoff value=300; (b) various cutoff values using window size= {40;30;8;2} for
{10;20;50;100} steps.

We first conduct a study on the effect of window sizes. The results are presented in Figure 7 (a),
where we fix the cutoff value=300, and vary the window sizes for different numbers of sampling
steps. In the assessment of 10 and 20 sampling steps, larger window sizes are evaluated to ensure an
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adequate search space for a suitable time step. And we adopt smaller window sizes for more sam-
pling steps, given the limitation of step sizes. Figure 7 (a) illustrates that the Time-Shift algorithm
is not sensitive to the selection of window size when using 10, 20 and 50 sampling steps. While
when the number of sampling step is increased, such as 100 steps, the algorithm become more sen-
sitive to the window size, which could be attributed to the enhanced accuracy of per-step predictions
achievable with smaller step sizes.

The influence of different cutoff values on the image generation performance on CIFAR-10 are
presented in Figure 7 (b). From the density distribution plot of the sample variance as discussed in
Sec. 2.2, we can have a good estimation of the range of the cutoff values to be within [200, 400].
While sampling with 10 steps, a smaller cutoff value (200) is preferred as compared to the scenarios
with more sampling steps. One possible reason is that fewer sampling steps lead to larger step size,
which makes more time-shift operations beneficial.

6 RELATED WORK

Denoising Diffusion Probabilistic Model. The denoising diffusion probabilistic model (DDPM)
was first introduced by Sohl-Dickstein et al. (2015) and further advanced by Nichol & Dhariwal
(2021), where they include variance learning in the model and optimize it with a new weighted vari-
ational bound. Song et al. (2020) further connect DDPMs with stochastic differential equations by
considering DDPMs with infinitesimal timesteps. They also find that both score-based generative
models (Song & Ermon, 2019) and that DDPMs can be formulated by stochastic differential equa-
tions with different discretization. Some variants of DDPMs are recently introduced, including the
variational diffusion model (VDM) Kingma et al. (2021) that also learns the forward process, and
consistency model (Song et al., 2023) and rectified flow model (Liu et al., 2022b), both of which
aim to learn to generate natural images in one inference step.

DDPMs are initially applied in the pixel space achieving impressive success in generating images of
high quality, however, they suffer from the significant drawbacks such as prolonged inference time
and substantial training cost. Rombach et al. (2022b) propose to use a diffusion model in the latent
image space, which drastically reduces the computational time and training cost. DDPMs have been
widely used in different fields, for example controllable image generation (Rombach et al., 2022b;
Choi et al., 2021; Zhang & Agrawala, 2023; Mou et al., 2023), language generation (Zhang et al.,
2023b; Ye et al., 2023; Lin et al., 2022), image super-resolution (Saharia et al., 2022b) and video
generation (Hu et al., 2023; Karras et al., 2023; He et al., 2022).

DDPM Accelerator. Though diffusion models have shown powerful generation performance, it
normally takes hundreds of steps to generate high-quality images (Ho et al., 2020). To accelerate the
generation speed, Song et al. (2021) propose the denoising diffusion implicit model (DDIM) which
derives ordinary differential equations for the diffusion model showing the possibility of generating
high-quality images in much less steps. Liu et al. (2022a) introduce numerical solvers to further
reduce the number of generation steps. Bao et al. (2022b) find that the variance in the backward
process can be analytically computed and improve the quality of the generated images. Bao et al.
(2022a) further remove the diagonal variance matrix assumption and boost the image generation
performance. Lu et al. (2022) leverage a high-order ordinary differential equations solver to reduce
the generation steps of a diffusion model to 10, while maintaining the image quality. We follow this
line of research and propose a method to better select time steps.

7 CONCLUSION

In this paper, we have proposed a novel method to alleviate the exposure bias problem in diffusion
probabilistic models. Different from previous work, which tries to reduce exposure bias by retrain-
ing the diffusion model with extra noisy inputs, we demonstrate that this bias can be mitigated by
identifying the timestep that most aligns with the subsequent predicted step. Furthermore, we theo-
retically derive the variance of this optimal next timestep. Leveraging these insights, we introduce a
novel and training-free inference algorithm, the Time-Shifted Sampler, to alleviate exposure bias in
diffusion models. Our algorithm can be seamlessly incorporated into existing sampling algorithms
for diffusion models including DDPM, DDIM, S-PNDM and F-PNDM. Extensive experimental re-
sults prove the effectiveness of our method.
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A LIMITATION AND FUTURE WORK

In this work, we introduce the Time-Shift Sampler, a training-free mechanism devised to mitigate
the exposure bias problem inherent to the diffusion model, thereby enhancing the quality of gen-
erated images. Despite its efficacy, our sampler suffers from the limitation that it introduces two
parameters, i.e., window size and cutoff value. We estimate their values based on the statistical anal-
ysis of training data. However, more advanced methods to analytically derive the optimal value of
these two parameters might be possible since both the cutoff value and the window size are related
to the noise level of each step. We leave this further exploration to future work. We also foresee
possibilities to use the concept of the Time-Shift Sampler in other Markovian processes where a
reduction in processing steps is desired.

B FIGURE DETAILS

In this section, we present the detailed procedures to plot Figures 2, 3, and 4.

To plot Figure 2, we compute the variance at the instance level so that we can measure how much
the variance of each sample varies as time progresses. Specifically, suppose we obtain a sample x

of size 3 × 32 × 32, we first flatten it to 3072. Then we compute the variance of x as
∑n

i (xi−x̄)2

n−1 ,
where x̄ is the mean of x. Thus, for each sample we obtain a variance of its own, which leads to the
density plot in Figure 2.

Figure 3 shows the mean square error (MSE) between the prediction and ground truth at each step
in the backward process. Given an image denoted as x0, by applying Equation 2 we could obtain a
sequence of xt, t = 1, 2, · · · , T − 1. Taking each xt and the paired time step t to run the backward
process, we would obtain a sequence of predicted x̂t

0, t = 1, 2, · · · , T − 1. Ideally, we would expect
all these predicted x̂t

0, t = 1, 2, · · · , T − 1, to be exactly equal to the ground truth x0, as they are
generated using the given x0. However, this is not the case in practice. In our experiments, we
found that only when t < ts (around 650 steps in our experiment using DDIM) we could obtain the
original x0 by running the backward process with paired (xt, t). For t > ts, the image created using
(xt, t) differs from the original x0. This observation also reveals that the image generation process
of diffusion models basically contains two stages. In the first stage, the model moves the Gaussian
distribution towards the image distribution and no modes are presented at this stage, which means
we can not know which images will be generated. In the second stage, the prediction shows that
clear patterns and modes are presented. We can predict which images will be generated following
the backward process. This observation led us to divide the error computation into two stages. The
full explanation, including the equations, is shown in Figure 8

To plot Figure 4, we follow the method used in plotting Figure 3 to generate the ground truth example
for each step and compute the MSE between predicted x̂t and the ground truth xt and xts .

C ADDITIONAL EXPERIMENTAL SETUP

Instead of generating many samples of xt−1 to estimate var(xt−1), which brings additional compu-
tational workload, we find that under some assumption (see derivation of Theorem 3.1 in Section J.1)
the var(xt−1) could be estimated using the inter variance of a single xt−1, Thus during sampling,
we compute the variance within each xt−1.

Following DDIM (Song et al., 2021), we use two types of time step selection procedures, namely
uniform and quadratic. For comparing different sampling methods, the architecture of our models
follows the one of DDPM (Ho et al., 2020). For all datasets, we use the same pretrained models for
evaluating the sampling methods. For CIFAR-10 and LSUN-bedroom, we obtain the checkpoints
from the original DDPM implementation; for CelebA, we adopt the DDIM checkpoints. To carry
out the comparison between ADM (Dhariwal & Nichol, 2021), ADM-IP (Ning et al., 2023) and our
method, we choose the ADM architecture and the checkpoints from ADM-IP.
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Figure 8: The detailed procedure for computing the MSE.

D ERROR ANALYSIS

We provide here more examples of prediction errors on training samples for different sampling steps
for the different datasets. Figure 9 presents the prediction errors obtained in the CelebA dataset,
which show similar patterns as those of the CIFAR-10 dataset as dipicted in Figure 3.
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Figure 9: CelebA prediction errors of training samples for different numbers of sampling steps.

E TRAINING-INFERENCE DISCREPANCY

We provide more examples on the training-inference discrepancy for the different datasets in Figure
10, 19 and 20. For varying numbers of time steps, the same training-inference discrepancy pattern
can be observed as in Figure 4. Specifically, for a certain backward step t, given a time step window
[t − w, t + w] surrounding t, there exists a time step ts that might couple better with the predicted
next state x̂t−1. And as sampling progresses, the coupling effects for x̂t−1 become identical for
surrounding time steps.
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Figure 10: The training and inference discrepancy of DDIM with 10 sampling steps for window
size=20: Left: CelebA dataset; Right: CIFAR-10 dataset.

F SAMPLING TIME COMPARISON

We report a detailed comparison of sampling time using different sampling methods in Table 3 and
4.

Sampling Method 5 steps 10 steps 20 steps 50 steps
DDIM 19.57 ms 43.46 ms 90.90 ms 232.47 ms
TS-DDIM 22.30 ms (+13.9%) 47.53 ms (+9.4%) 101.01 ms (+11.1%) 271.25 ms (+16.7%)
S-PNDM 24.35 ms 48.32 ms 93.69 ms 235.93 ms
TS-S-PNDM 26.44 ms (+8.5%) 52.08 ms (+7.78%) 105.72 ms (+12.84%) 259.19 ms (+9.86%)
F-PNDM 63.93 ms 86.23 ms 132.03 ms 268.65 ms
TS-F-PNDM 64.39 ms (+0.7%) 92.61 ms (+7.39%) 141.38 ms (+7.08%) 302.88 (+12.74%)

Table 3: Sampling time comparison for different sampling methods on CIFAR-10 using DDPM as
backbone.

Sampling Method 5 steps 10 steps 20 steps 50 steps
ADM w/ DDIM 39.26 ms 79.30 ms 157.43 ms 393.77 ms
ADM w/ TS-DDIM 40.09 ms (+2.10%) 82.26 ms (+3.70%) 160.45 ms (+1.92%) 394.95 ms (+0.29%)

Table 4: Sampling time comparison for DDIM and TS-DDIM on CIFAR-10 with ADM as backbone.

G CASE STUDY

Figure 11: Example of generation process of TS-DDIM and DDIM on CIFAR-10. We use the
horizontal black arrow to represent the time line, with the DDIM generation chain above it, TS-
DDIM generation chain underneath it. We sample 10 steps with window [t− 20, t+ 20] and cutoff
value=200.
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The proposed novel sampling method is motivated by the theoretical and empirical analysis of the
exposure bias problem in DDPM. Experimental results show that our sampling method can effec-
tively improve the quality of the generated images compared to images generated with the original
DDIM/DDPM models quantatively measured with the FID score. We present the comparison of the
generation chain of TS-DDIM (our method) and DDIM in Figure 11. It can be seen that TS-DDIM
shifted most of the time steps before reaching the cutoff value, which yields a much better generation
quality of the image of a horse. Additional qualitative examples will be presented in the Appendix I.

We also visualize the selected timestep trajectory in Figure 12. Before the cutoff value 200, time
shift happens to all the timesteps. This is especially visible for the time steps within the range of
(300, 600), where more time shifts happen, and time steps can shift to both larger or smaller time
steps within the window. Figure 12 demonstrates that most of the time shifting happens in the
intermediate range of the backward process. This phenomenon might be due to the fact that at the
initial stage (when t is large), the samples are predominantly influenced by the initialized normal
distribution, leading to minimal variance change. Conversely, in the later stage (when t is small),
the samples are predominantly composed of image data, containing most of the image information.
This makes it easier for the model to make accurate predictions.
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Figure 12: Comparison of timestep trajectory for TS-DDIM and DDIM on CIFAR-10 with DDPM
as backbone using 10 sampling steps and uniform time selection. We use the red dashed line and
blue line to present the time step trajectories for the original DDIM and our TS-DDIM, respectively.
To improve visibility, we also zoom in for the time steps between 300 to 600.

H QUALITATIVE EXAMPLES

In this section we present the example images generated using different sampling methods with
uniform time selection procedure for varying sampling time steps. Generated examples can be found
in Figure 13, 14, 15, 16, 17 and 18. It can be seen that we can generate images with good quality
for less than 10 sampling steps.

I ADDITIONAL RESULTS

We present more results obtained with the LSUN-bedroom dataset (Yu et al., 2016) in Table 5.
Limited by computational resources, we do not properly tune the parameters, i.e., window size and
cutoff values, for the LSUN-bedroom. We leave the exploration of a more efficient tuning strategy
on high-resolution images for future work.

In Table 6 we compare our method with Analytic-DPM (Bao et al., 2022b). The results of Analytic-
DPM are directly taken from the paper.
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Figure 13: CIFAR-10 samples for varying time steps using TS-DDPM.

Figure 14: CIFAR-10 samples for varying time steps using TS-DDIM.

Figure 15: CelebA samples for varying time steps using TS-DDPM.
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Figure 16: CelebA samples for varying time steps using TS-DDIM.

Figure 17: LSUN-bedroom samples for varying time steps using TS-DDPM.

Figure 18: LSUN-bedroom samples for varying time steps using TS-DDIM.
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Dataset Sampling Method 5 steps 10 steps 20 steps 50 steps

LSUN-bedroom

DDIM(uniform) 52.29 16.90 8.78 6.74
TS-DDIM(uniform) 51.57 16.66 8.29 6.90
DDPM (uniform) 85.60 42.82 22.66 10.79 -
TS-DDPM (uniform) 79.05 32.47 15.40 10.20

Table 5: Quality of the image generation measured with FID ↓ on LSUN-bedroom (256×256) with
varying time steps for different sampling algorithms.

Dataset Sampling Method 10 steps 50 steps 100 steps

CIFAR-10 Analytic-DPM(DDIM) 14.00 4.04 3.55
TS-DDIM 11.93 4.16 3.81

CelebA Analytic-DPM(DDIM) 15.62 6.13 4.29
TS-DDIM 9.36 4.20 4.18

Table 6: Comparison of TS-DDIM with Analytic-DPM on CIFAR-10 (32×32) and CelebA (64×64)

Following (Xiao et al., 2022), we present the precision and recall results from our TS-DDIM and
DDIM with ADM as backbone on CIFAR10. As shown in Table 7, our TS-DDIM tends to achieve
much higher recall while maintaining the level of the precision obtained by DDIM.

Sampling Method 5 steps 10 steps 20 steps 50 steps
Precision Recall Precision Recall Precision Recall Precision Recall

ADM w/ DDIM 0.59 0.47 0.62 0.52 0.64 0.57 0.66 0.60
ADM w/ TS-DDIM 0.57 0.46 0.62 0.55 0.64 0.60 0.65 0.62

Table 7: Comparison of precision and recall for DDIM and TS-DDIM on CIFAR-10 with ADM as
backbone.

We also evaluate our method on the ImageNet dataset as presented in Table 8. We adopt ADM as
the backbone model with classifier guidance.

Sampling Method 5 steps 10 steps 20 steps
DDIM 67.63 13.74 6.83
TS-DDIM 39.47(+41.64%) 13.45(+2.11%) 6.57(+3.81%)

Table 8: Performance comparison with DDIM on ImageNet (64×64) with classifier guidance.

We further integrate our method into the DPM-solver (Lu et al., 2022) and DEIS (Zhang & Chen,
2023 ) to showcase its versatility. The results are presented in Table 9. Our model can still improve
the performance of both the DPM-solver and DEIS samplers. However, in comparison to DDIM,
our method again provides substantial improvements although the improvements for these samplers
are a bit smaller than for the other tested samplers.This could be attributed to the fact that both the
DPM-solver and DEIS utilize the particular structure of the semi-linear ODE, which already largely
reduces the error of estimating xt.

Sampling Method 5 steps 10 steps 20 steps
DPM-solver-2 32.30 10.92 4.30
TS-DPM-solver-2 31.02(+3.96%) 9.82(+10.07%) 4.11(+4.42%)
DEIS-order-2-tAB 24.64 5.88 4.13
TS-DEIS-order-2-tAB 22.57(+8.40%) 5.41(+8.00%) 3.62(+12.30%)

Table 9: Performance comparison with DPM-solver and DEIS obtained on CIFAR-10 (32×32).

Finally, in Table 10, we report the performance of our method performed on text-to-image generation
on MSCOCO val2017.

19



Published as a conference paper at ICLR 2024

Sampling Method 10 steps 20 steps
DDIM 27.80 25.47
TS-DDIM 26.32 (+5.32%) 24.80 (+2.63%)

Table 10: Performance comparison with DDIM for text-to-image generation obtained on MSCOCO
val2017.

J DERIVATION

J.1 DERIVATION OF THEOREM 3.1

In this section, we prove Theorem 3.1.

proof. We first find the optimal time step ts by minimizing the KL divergence between x̂t−1 and xts .
As q(xts |x0) = N (xts |

√
αtx0, (1− αt)I) and assume p(x̂t−1|x̂t) is a probability density function

of the distribution for x̂ with mean ût−1 and covariance matrix Σ̂t−1, then according to Lemma 2.
of Bao et al. (2022b), we have:

DKL(p(x̂t−1|x̂t)||q(xts |x0))

= DKL(N (x|µ̂t−1, Σ̂t−1)||N (µts ,Σts)) +H(N (x|µ̂t−1, Σ̂t−1))−H(p(x̂t−1|x̂t))

=
1

2
(log(|Σts |) + Tr(Σ−1

ts Σ̂t−1) + (µ̂t−1 − µts)Σ
−1
ts (µ̂t−1 − µts)

T ) + C

=
1

2
(d log(1− αts) +

d

1− αts

Tr(Σ̂t−1) +
1

1− αts

||µ̂t−1 − µts ||2) + C

(9)

where C = 1
2d+H(N (x|µ̂t−1Σ̂t−1))−H(p(x̂t−1|x̂t))− 1

2 log(
1

|Σ̂t−1|
) and d is the dimension of

x0. Denoted µt−1 as the ground truth of the mean of the distribution of q(xt−1) and according to
Equation 2, we have µt−1 =

√
αt−1x0. µ̂t−1 can be rewritten as :

µ̂ = µt−1 + e =
√
αt−1x0 + e (10)

Here, e is the network prediction error. Since µts =
√
αtsx0, Equation 9 can be rewritten as:

DKL(p(x̂t−1|x̂t)||q(xts |x0))

=
1

2
(d log(1− αts) +

d

1− αts

Tr(Σ̂t−1) +
1

1− αts

||(
√
αt−1 −

√
αts)x0 + e||2) + C

(11)

if ts is close to t− 1, then
√
ᾱt−1 −

√
ᾱts ≈ 0. We have

DKL(p(x̂t−1|x̂t)||q(xts |x0)) ≈
1

2
(d log(1− αts) +

d

1− αts

Tr(Σ̂t−1) +
1

1− αts

||e||2) + C

(12)
We further calculate the derivative of DKL with respect to Σts = 1− αts . We know that DKL gets
its minimum at

Σts = Tr(Σ̂t−1) +
1

d
||e||2 (13)

We next estimate the Σ̂t−1 in Equation 13. Assuming each pixel of image P ∈ Rw×h follows
distribution N (µi, σ) with σ being the variance, and pi ⊥ pj if i ̸= j, then the covariance of P is
σI and we have:

σt−1 =
(
∑

i(pi − p)2)

d− 1

=

∑
i(p

2
i + p2 − 2pip)

d− 1

=

∑
i(p

2
i )− dp2

d− 1

(14)
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Taking expectation on both sides, we achieve

E[σt−1] =

∑
i(E[p2i ])− dE[p2]

d− 1

=

∑
i(σ + µ2

i )

d− 1
− d

d− 1
E[(

∑
i pi
d

)2]

=
dσ

d− 1
+

∑
i µ

2
i

d− 1
− d

d− 1
E[(

∑
i pi
d

)2]

(15)

The last term on the RHS of Equation 15 can be rewritten as
d

d− 1
E[(

∑
i pi
d

)2] =
d

d− 1

1

d2
(
∑
i

E(pi)2 +
∑
i ̸=j

E(pi)E(pj))

=
d

d− 1

1

d2
(
∑
i

((E(pi))2 + σ) +
∑
i̸=j

E(pi)E(pj))

=
σ

d− 1
+

1

d(d− 1)
(
∑
i

(E(pi))2 +
∑
i ̸=j

E(pi)E(pj))

=
σ

d− 1
+

1

d(d− 1)
(
∑
i

µi)
2

(16)

By combining Equation 15 and Equation 16 and denoting µ =
∑

i µi

d we have

E[σt−1] =
dσ

d− 1
+

∑
i µ

2
i

d− 1
− σ

d− 1
− (

∑
i µi)

2

d(d− 1)

= σ +

∑
i µ

2
i

d− 1
− (

∑
i µi)

2

d(d− 1)

= σ +

∑
i(µ

2
i )− dµ2

d− 1

= σ +

∑
i(µ

2
i − 2µiµ+ µ2)

d− 1

= σ +

∑
i(µi − µ)2

d− 1

(17)

Here µ is the mean of µi and µi is the mean of the distribution of each pixel in x̂t−1 at time step
t− 1. The ground truth xt−1 ∼ N (

√
αt−1x0, (1− αt−1)I), thus ugt =

√
αt−1x0. In practice, the

x0 is normalized to stay in the range of −1 to 1, and
√
αt is close to zero when t is large. Define ζ

as the difference between µ and µ and denote that ζgti = ugt
i − µgt and ζ̂i = µi − µ, then when t is

large we have ζgti ≈ 0. Considering the network prediction error, we reach

ζ̂i = ζgti + ei ≈ ei (18)
Thus Equation 17 can be rewritten as

E[σt−1] = σ +

∑
i(ei)

2

d− 1
= σ +

||e||2
d− 1

(19)

Multiplying I on both sides and taking trace

dσt−1 ≈ dσ +
d||e||2
d− 1

(20)

Here we assume the sample variance is approximately equal to its expected value because the di-
mension of the image is usually large. Bring Equation 20 to Equation 13

σts = σt−1 −
||e||2

d(d− 1)
(21)

In the above derivation, we assume that when t is large Equation 21 holds. This assumption cor-
responds to the cutoff mechanism in our proposed algorithm, where we stop conducting time shift
when t is small, as the assumption does not hold and we are not able to estimate the Σ̂x̂t−1 in
Equation 13.
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J.2 ANALYTICAL ESTIMATION OF WINDOW SIZE

In this section, we derive the bounds of window size w with optimal time step ts ∈ [t−1−w/2, t−
1 + w/2]. In Algorithm 3, we predefine a window size and search the optimal time step ts around
time step t− 1 within w. In the above derivation in Section J.1, after Equation 11, we assume ts is
close to t− 1, thus we can omit the term

√
ᾱt−1 −

√
ᾱts , and the following derivations (Equations

12 to 21) give us the estimated variance of the optimal time step ts. In order to estimate the window
size w, we first relax our assumption. Instead of directly assuming ts is close to t − 1, in the last
term of Equation 11 we assume that the norm of (

√
ᾱt−1 −

√
ᾱts)x0 is sufficiently smaller than the

norm of γe, where 0 < γ ≪ 1. Thus we have:

||√ᾱt−1 −
√
ᾱts ||||x0|| ≤ γ||e||

(||√ᾱt−1 −
√
ᾱts ||)2 ≤ γ2 ||e||2

||x0||2
(22)

ᾱt−1 + ᾱts − 2
√

ᾱt−1ᾱts − γ2 ||e||2
||x0||2

≤ 0 (23)

Solving Equation 23, we obtain:

√
ᾱts ≥

2
√
ᾱt−1 −

√
4ᾱt−1 − 4(ᾱt−1 − γ2 ||e||2

||x0||2 )

2√
ᾱts ≤

2
√
ᾱt−1 +

√
4ᾱt−1 − 4(ᾱt−1 − γ2 ||e||2

||x0||2 )

2

(24)

In Equation 24, e is the network prediction error and γ is a predefined value. e could be estimated
using a small amount of data or a trained error prediction network similar to the work of Bao et al.
(2022a). ᾱt on the LHS is the predefined noise schedule. Since ᾱt is a monotonic function with
respect to t, denoted as ᾱt = f(t), for a given ᾱt, the corresponding time step t could be obtained
through the inverse function of f , that is t = f−1(ᾱt). Thus, the bounds of window size w could
be estimated from the bounds of ᾱt through Equation 24. To obtain the bounds of w, one could first
compute the right hand sides of Equation 24 for the predefined noise schedule of a given diffusion
model. Then for time step t, one could find the largest and smallest ts, denoted as tmax

s and tmin
s

respectively, satisfying Equation 24. The w is then bounded by the 2 × min(tmax
s , tmin

s ). If the
above condition holds, then the last term of Equation 11 is dominated by e, and (

√
ᾱt−1 −

√
ᾱts)x0

can be ignored in above derivations (Equations 12 to 21).
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