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APPENDIX

Please find an anonymized version of the code for this paper at https://anonymous.4open.
science/r/rotate/.

A ALGORITHMS

Algorithm 1 Open-Ended Ad Hoc Teamwork

Require:
Environment, Env.
Total of training iterations, T iter.
Initial ego agent policy parameters, θego.

1: Bπ ← ⟨⟩ ▷ Init teammate policy parameter buffer.
2: for j = 1, 2, . . . , T iter do
3: Bnew

π ← TeammateGenerator(Env, θego, Bπ)
4: θego ← EgoUpdate(Env, θego, Bnew

π )
5: Bπ ← Bnew

π
6: end for
7: Return θego

A.1 FRAMEWORK FOR OPEN ENDED AD HOC TEAMWORK

Section 5 described an open-ended training framework for training an ego agent that can effectively
collaborate with previously unseen teammates. We further detail this general open-ended framework
in Algorithm 1. In Line 3, a TeammateGenerator function determines a buffer of teammate policy
parameters, Bnew

π . The teammate generator function considers the ego agent’s current policy pa-
rameters, θego, and the previous buffer of teammate policy parameters, Bnew. Ideally, the teammate
generation function generates and samples teammates that induce learning challenges to πego. In
Line 4, an EgoUpdate function specifies a procedure that updates the ego agent’s policy parameters
based on the Bnew

π designed by the teammate generator. Pseudocode for ROTATE, which follows
the open-ended framework specified by Algorithm 1, is presented in the following section.

A.2 ROTATE ALGORITHM

ROTATE’s teammate generation algorithm is detailed in Algorithm 2. As described in Section 6.1,
this teammate generation algorithm jointly trains the parameters of a teammate policy and an es-
timate of its best response (BR) policy, based on a provided ego agent policy. The parameters of
the teammate and BR policies, θ−i and θBR, are initialized in Line 1. The parameters of the BR
critic network, σBR, are initialized in Line 2, while those for the teammate, σ−i,BR and σ−i,ego, are
initialized in Line 3. Note that the teammate maintains two critics, for separately estimating returns
when interacting with the BR and ego agent policies.

The training of the teammate and BR policies is based on the SP, XP, XSP, and SXP interaction data
gathered in Lines 5 to 8, which we previously motivated and described in Section 6.1. Recall that
an SXP interaction require resetting an environment to start from an available XP state, and an XSP
interaction analogously requires resetting to an SP state. Since resetting from all available XP states
for SXP interaction is impractical, ROTATE samples from XP states to obtain start states for SXP
interactions (and similarly for XSP). Experiences from SP, XP, SXP, and XSP interaction are stored
in buffers DSP, DXP, DSXP, DXSP in the form of a collection of tuples, D = ⟨(sk, ak, rk, s′k)⟩

|D|
k=1.

Lines 12 to 22 of Algorithm 2 then highlight how we use the stored experiences to compute loss
functions that the trained models optimize.

Lines 12 and 13 describe how the teammate and BR policies are trained to mutually maximize
returns when interacting with each other during SP and SXP interactions. Both lines call the
POL_LOSS_ADV_TARG function, which receives (θ, θold, σold, D, ϵ) as input to evaluate the fol-
lowing, standard PPO-clip loss function that encourages return maximization and sufficient explo-
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Algorithm 2 ROTATE TeammateGenerator Function

Require:
Environment, Env.
Ego agent policy, πθego .
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs.

1: θ−i, θBR ← RandomInit(π), RandomInit(π)
2: σBR ← RandomInit(V )

3: σ−i,BR, σ−i,ego ← RandomInit(V ), RandomInit(V ) ▷ Init teammate and BR parameters
4: for tupdate = 1, 2, . . . , Nupdates do
5: DSP, DXP ← Interact(πθBR , πθ−i , pEnv

0 ), Interact(πθego , πθ−i , pEnv
0 )

6: sXP, sSP ← SampleStates(DXP),SampleStates(DSP) ▷ Sample XP states
7: DSXP ← Interact(πθBR , πθ−i ,U(sXP))

8: DXSP ← Interact(πθego , πθ−i ,U(sSP)) ▷ Gather SP, XP, SXP, and XSP data
9: θBR

old , θ
−i
old ← θBR, θ−i

10: σBR
old , σ

−i,BR
old , σ−i,ego

old ← σBR, σ−i,BR, σ−i,ego ▷ Store old model parameters.
11: for kupdate = 1, 2, . . . , Nepochs do
12: Lppo-clip(θ

BR)← POL_LOSS_ADV_TARG
(
θBRθBR

old , σ
BR
old , DSP ∪DSXP, ϵ

)
13: Lppo-clip(θ

−i)← POL_LOSS_ADV_TARG
(
θ−i, θ−iold , σ

−i,BR
old , DSXP, ϵ

)
14: Lreg(θ

−i)← POL_LOSS_REG_TARG
(
θ−i, θ−iold , σ

−i,BR
old , σ−i,ego

old , DSP ∪DXP, ϵ
)

15: LV (σ
BR)← VAL_LOSS(σBR, σBR

old , DSP ∪DSXP)

16: LV (σ
−i,BR)← VAL_LOSS

(
σ−i,BR, σ−i,BR

old , DSP ∪DSXP

)
17: LV (σ

−i,ego)← VAL_LOSS
(
σ−i,ego, σ−i,ego

old , DXP ∪DXSP

)
18: θBR ← GradDesc(θBR,∇θBRLppo-clip(θ

BR))

19: θ−i ← GradDesc
(
θ−i,∇θ−i

(
Lppo-clip(θ

−i) + Lreg(θ
−i)

))
▷ Update policies

20: σBR ← GradDesc(σBR,∇σBRLV (σ
BR))

21: σ−i,BR ← GradDesc(σ−i,BR,∇σ−i,BRLV (σ
−i,BR))

22: σ−i,ego ← GradDesc(σ−i,ego,∇σ−i,egoLV (σ
−i,ego)) ▷ Update critics.

23: end for
24: end for
25: Bπ ← Bπ ∪ ⟨θ−i⟩ ▷ Add generated teammate policy parameter
26: Return Bπ
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ration:

E
(s,a,r,s′)∈D

−min
(
πθ(a|s)
πθold(a|s)

A, clip
(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A

)
︸ ︷︷ ︸

PPO Clip Loss

+πθ(a|s)log (πθ(a|s))︸ ︷︷ ︸
Entropy Loss

 ,
where A denotes the advantage function. Our implementation of ROTATE uses an estimate of the
advantage function obtained via the Generalized Advantage Estimation (GAE) algorithm (Schul-
man et al., 2015), AGAE

σold
. Meanwhile, Line 14 shows how the teammate policy is trained

to maximize the ego agent’s regret based on experiences from XP and SP interactions. The
POL_LOSS_REG_TARG function that computes a loss function that encourages the maximization
of regret is generally the same as the POL_LOSS_ADV_TARG function except for its replacement
of the advantage function, A, with a regret-based target function. The regret-based target function
is defined differently but symmetrically for SP and XP states. We describe the target function for
regret from XP states below, and refer the reader to the code for the target function for regret from
SP states.

Areg = Vσ−i,BR
old

(s)︸ ︷︷ ︸
≈V (s|π−i, BR(π−i))

− (r + γVσ−i,ego
old

(s′))︸ ︷︷ ︸
≈V (s|π−i,πego)

. (11)

Rather than optimizing a regret function that requires explicitly computing the return-to-go,
POL_LOSS_REG_TARG estimates the XP return via a 1-step bootstrapped return using the team-
mate critic parameterized by σ−i,ego. Similarly, the SP return is estimated using the teammate critic
network parameterized by σ−i,BR. This results in a regret optimization method that uses the log-
derivative trick to optimize objective functions (Williams, 1992; Glynn, 1990). The ROTATE regret
estimation method and alternative approaches to maximize regret are further discussed in App. C.2.

Lines 15 to 17 then detail how we train critic networks that measure returns from the interaction
between the generated teammate policy and its best response or ego agent policy. We specifically call
the VAL_LOSS function that receives (σ, σold, D) to compute the standard mean squared Bellman
error (MSBE) loss, defined as:

E
(s,a,r′,s′)∈D

[(
Vσ(s)− V targ

σold
(s)

)2]
, (12)

where V targ
σold (s) := AGAE

σold
+ Vσold(s) is the target value estimate.

The previously defined loss functions can be minimized using any gradient descent-based optimiza-
tion technique, as we indicate in Lines 18 to 22. In practice, our implementation uses the ADAM
optimization technique (Kingma & Ba, 2015). At the end of this teammate generation process,
Lines 25 and 26 indicate how the generated teammate policy parameter is added to a storage buffer,
which is subsequently uniformly sampled to provide teammate policies for ego agent training.

The ego agent policy’s training process proceeds according to Algorithm 3. Line 3 illustrates how
ROTATE creates different teammate policies by uniformly sampling model parameters from the
Bπ resulting from the teammate generation process. Using the experience collaborating with the
sampled policies outlined in Line 4, the ego agent’s policy parameters are updated to maximize
its returns via PPO in Line 7. The only difference between the EGO_POL_LOSS function and
POL_LOSS_ADV_TARG function in Algorithm 2 is the input used to compute the loss function.
Unlike in the EGO_POL_LOSS function, we assume that the input dataset, D, stores the historical
sequence of observed states and executed actions, h, rather than states. Likewise, we assume that the
only difference between the VAL_LOSS and EGO_VAL_LOSS function is that the latter stores the
observation-action history rather than states (Line 8). Like recent AHT learning algorithms (Zintgraf
et al., 2021; Rahman et al., 2021; Papoudakis et al., 2021), πego and V ego are conditioned on the ego
agent’s observation-action history to facilitate an adaptive πego through an improved characterization
of teammates’ policies. The history-conditioned ego architecture and other practical implementation
details are described in App. E. Finally, the ego agent update function returns the updated ego agent
policy parameters, which are provided as part of the inputs for the next call to ROTATE’s teammate
generation function.
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Algorithm 3 ROTATE EgoUpdate Function

Require:
Environment, Env.
Ego agent policy parameters, θego.
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs

1: σego ← Init(V ) ▷ Init params of the critic networks of πego

2: for tupdate = 1, 2, . . . , Nupdates do
3: θ−i ∼ U(Bπ) ▷ Sample teammate parameters uniformly
4: D ← Interact(πθ−i , πθego , pEnv

0 )
5: θego

old , σ
ego
old ← θego, σego

6: for kupdate ∈ {1, 2, . . . , Nepochs} do
7: Lπ(θ

ego)← EGO_POL_LOSS
(
θego, θego

old , σ
ego
old , D, ϵ

)
▷ Compute policy loss

8: LV (σ
ego)← EGO_VAL_LOSS

(
σego, σego

old , D, ϵ
)

▷ Compute critic loss
9: θego ← GradDesc(θego,∇θegoLπ(θ

ego)) ▷ Update policy
10: σego ← GradDesc(σego,∇σegoLV (σ

ego)) ▷ Update critic
11: end for
12: end for
13: Return θego

B BASELINES OVERVIEW

The main paper compares ROTATE to five baselines: PAIRED, Minimax Return, FCP, BRDiv, and
CoMeDi. Each baseline is briefly described below, followed by a discussion of the computational
complexity of teammate generation baselines compared to ROTATE, and a discussion of the rela-
tionship of Mixed Play (MP) with per-state and per-trajectory regret. A discussion of implementation
details can be found in App. E.

PAIRED (Dennis et al., 2020): A UED algorithm where a regret-maximizing“adversary" agent
proposes environment variations that an allied antagonist achieves high returns on, but a protagonist
agent receives low returns on. The algorithm is directly applicable to AHT by defining a teammate
generator for the role of the adversary, a best response agent to the generated teammate for the role
of the antagonist, and an ego agent for the role of the protagonist.

Minimax Return (Morimoto & Doya, 2005; Villin et al., 2025): A common baseline in the
UED literature, with origins in robust reinforcement learning, where the objective is minimax re-
turn. Prior works in AHT have proposed generating a curriculum of teammates according to this
objective. Translated to our open-ended learning setting, the teammate generator creates teammates
that minimize the ego agent’s return, while the ego agent maximizes return.

Fictitious Co-Play (Strouse et al., 2021): A two-stage AHT algorithm where a pool of teammates
is generated by running IPPO (Yu et al., 2022) with varying seeds, and saving multiple checkpoints
to the pool. The ego agent is an IPPO agent that is trained against the pool.

BRDiv (Rahman et al., 2023): A two-stage AHT algorithm where a population of “confederate"
and best-response agent pairs is generated, and an ego agent is trained against the confederates.
BRDiv maintains a cross-play matrix containing the returns for all confederate and best-response
pairs. The diagonal returns (self-play) are maximized, while the off-diagonal returns (cross-play)
are minimized. BRDiv and LIPO (Charakorn et al., 2023) share a similar objective, where the main
differences are: (1) If xp_weight denotes the weight on the XP return, then BRDiv requires that
the coefficient on the SP return is always 1+2∗xp_weight, and (2) LIPO introduces a secondary
diversity metric based on mutual information, and (3) LIPO assumes that agents within a team (i.e.,
a confederate-BR pair) share parameters.
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CoMeDi (Sarkar et al., 2023): CoMeDi is a two-stage AHT algorithm. In the first stage, a popula-
tion of teammates is generated, and in the second stage, an ego agent is trained against the teammate
population. The teammate generation stage trains teammate policies one at a time, where the nth
teammate policy is trained to maximize its SP return, minimize its XP return with the previously
generated teammate (i.e. from among teammates 1, · · · , n − 1) that it best collaborates with, and
maximizes its “mixed-play" (MP) return. The relationship between the regret objectives described
in Section 6 and MP is further discussed in App. C.1.

B.1 COMPUTATIONAL COMPLEXITY OF ROTATE VERSUS TEAMMATE GENERATION
BASELINES

The computational complexity of ROTATE is compared with that of the teammate generation base-
lines, in terms of the population size and the number of objective updates. In the following, n
denotes the population size, while T indicates the number of updates needed to train an individual
population member. The precise meaning of n and T might vary with the algorithm, but is made
clear in each description.

FCP: Let T denote the number of RL updates needed to train each IPPO team and let n denote
the number of teams trained by FCP. Then, the computational complexity of FCP is O(nT ).

BRDiV/LIPO: Both BRDiv (Rahman et al., 2023) and LIPO (Charakorn et al., 2023) require
sampling trajectories from each pair of agents in the population, for each update. Thus, if the total
number of updates is T and the population size is n, then the algorithm’s time complexity isO(n2T ).
Due to the quadratic complexity in n, BRDiv and LIPO are typically run with smaller population
sizes, with n < 10 for all non-matrix game tasks in both original papers.

CoMeDi: Recall that CoMeDi trains population members one at a time, such that each agent is
distinct from the previously discovered teammates in the population. This necessitates performing
evaluation rollouts of the currently trained agent against all previously generated teammates at each
RL update step. Let T be the number of RL updates required to train the ith agent to convergence,
and let n denote the population size. Then CoMeDi’s time complexity is O(n2T )—making it scale
quadratically in n, similar to BRDiv and LIPO.

ROTATE: In ROTATE, a new teammate is trained to convergence for each iteration of open-
ended learning. Thus, the number of open-ended learning iterations is equal to the population size
n, where within each iteration, there are O(T ) RL updates performed. Therefore, the complexity of
ROTATE is O(nT ), meaning that our method scales linearly in the population size n.

C SUPPLEMENTAL RESULTS

This section presents various supplemental results. First, we describe CoMeDi’s mixed-play mech-
anism in the context of ROTATE’s per-state regret. Second, we discuss alternative estimators for
ROTATE per-state regret. Third, we present experiments comparing ROTATE to a variant with
CoMeDi-style mixed-play return maximization, and a variant using the alternative regret estimation
strategy. Fourth, we examine whether the population generated by ROTATE is useful for training an
independent ego agent. Fifth, we present and describe radar charts breaking down the performance
of ROTATE on all six benchmark tasks presented in the main paper, and the learning curves for all
variants of ROTATE that are tested in this paper. Finally, we present a human proxy evaluation of
ROTATE and CoMeDi on the Overcooked tasks.

C.1 DISCUSSION OF COMEDI AND MIXED PLAY

As previously described in App. B, CoMeDi (Sarkar et al., 2023) is a two-stage teammate generation
AHT algorithm, whose teammate generation process trains one teammate per iteration, with an
objective that encourages the new teammates to be distinct from previously discovered teammates.

CoMeDi adds trained teammates policies to a teammate policy buffer, Πtrain. Each iteration begins
by identifying the teammate policy that is most compatible with the currently trained teammate π−i,
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Mixed Play

XP

SP

MP

until random t

minimize VXP

maximize VMP

maximize VSP

Objective = VSP - 𝛼VXP + 𝛽VMP

BR actionEgo action

Initial State

Self Play (SP) Cross Play (XP)

Initial State Distribution

State after Mixed Play (MP)

V = Return

Figure 5: CoMeDi-style mixed-play objective for teammate generation, in the context of open-ended AHT.

out of all previously generated policies:

πcomp = argmax
π−j∈Πtrain

Es∼p0 [V (s|π−i, π−j)]. (13)

The new teammate policy π−i is trained with an objective that improves the per-trajectory regret
objective (Eq. 8) by adding a term that maximizes the returns from states gathered in mixed-play,
which we describe below.

Let mixed-play starting states be sampled from states visited when π−i interacts with the mixed
policy, that uniformly samples actions from πcomp and BR(π−i) at each timestep:

pMSTART := d

(
π−i,

1

2
πcomp +

1

2
BR(π−i); p0

)
. (14)

From these starting states, CoMeDi then gathers mixed-play interaction data, where π−i interacts
with BR(π−i). The resulting mixed-play state visitation is then expressed as:

pMP := d
(
π−i,BR(π−i); pMSTART

)
. (15)

The complete objective that Sarkar et al. (2023) optimizes to train a collection of diverse teammates
is then defined as:

max
π

(Es0∼p0
[
CR(πcomp, π−i, s0)

]
+ Es∼pMP [V (s|π,BR(π))]︸ ︷︷ ︸

mixed-play return maximization

). (16)

CoMeDi (Sarkar et al., 2023) optimizes this objective to discourage π−i from learning poor ac-
tions for collaborations outside of pSP. This is because π−i is now also trained to maximize returns
in states visited during mixed-play, which resembles some states encountered while cooperating
with πcomp. Discerning whether a state is likely encountered while interacting with πcomp and conse-
quently choosing to sabotage collaboration will no longer be an optimal policy to maximize Expr. 16.

Despite the importance of using pMSTART as a starting state for data collection being questionable,
we take inspiration from CoMeDi’s maximization of V (s|π,BR(π)) outside of states from pSP. We
argue that maximizing V (s|π−i,BR(π−i)) is a key component towards making π−i act in good faith
by always choosing actions yielding optimal collective returns assuming BR(π−i) is substituted
as the partner policy. Unlike CoMeDi, ROTATE maximizes V (s|π−i,BR(π−i)) on trajectories
gathered from a starting state from pXP (i.e., SXP states) instead of pMSTART, which results in the
second term of Expr. 10. We formulate this objective to encourage π−i to act in good faith in states
sampled from pXP, which is visited while π−i interacts with πego. Since π−i is not sabotaging
πego by selecting actions that make collaboration impossible in pXP, the ego policy learning process
becomes less challenging. We conjecture that this leads to πego with better performances as indicated
in Figure 3.
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While Figure 3 compares ROTATE with CoMeDi, Figure 6a compares ROTATE with a modified
CoMeDi approach that now follows the open-ended training framework described in Algorithm 1.
In this modified version of CoMeDi, we train a newly generated teammate policy to maximize Eq. 16
while substituting πcomp with the trained πego. Rather than promoting meaningful differences with
previously generated teammate policies, this creates a teammate policy that maximizes the ego agent
policy’s per-trajectory regret while mitigating self-sabotage. This version of CoMeDi’s teammate
generation objective within the ROTATE open-ended framework is visualized in Figure 5.

C.2 ALTERNATIVES ESTIMATORS FOR PER-STATE REGRET

This section discusses the approach employed by ROTATE in Algorithm 2 to estimate the per-state
regret objective under a specific distribution, as well as an alternative estimation method. Experi-
ments comparing the two approaches are also presented and discussed.

Recall that the per-state regret under states sampled from a distribution D is defined as:

Es∼D[CR(πego, π−i, s)] = Es∼D
[
V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego)] (17)

= Es∼D
[
V
(
s|π−i, BR(π−i)

)]︸ ︷︷ ︸
SP return

−Es∼D
[
V
(
s|π−i, πego)]︸ ︷︷ ︸

XP return

. (18)

In practice, we can use the policy gradient method to maximize regret by estimating the self-play
returns and cross-play returns in Eq. 18 using the n-step return, Monte Carlo-based return-to-go
estimate, or generally any variant of the advantage function estimator. The choice of return esti-
mates affects the result of our teammate generation process through the bias-variance tradeoff when
estimating regret. Combined with the potentially different choices of D, we can design different
variants of ROTATE based on how regret is estimated.

ROTATE Per-State Regret: Line 14 in Algorithm 2 and Eq. 11 outline how ROTATE maximizes
per-state regret in states visited during XP interaction (denoted by pXP), where SP and XP returns
are estimated via a trained critic and a 1-step return estimate, respectively. As a reminder, ROTATE
employs the following regret target function to train the regret-maximizing teammate policy on XP
states, with an analogously defined target function for SP states:

Es∼pXP

 Vσ−i,BR(s)︸ ︷︷ ︸
SP return estimate

− (r + γVσ−i,ego(s′))︸ ︷︷ ︸
XP return estimate

 . (19)

We maximize regret in states sampled from pXP and pSP to encourage the design of teammate policies
that provide a learning challenge while also acting in good faith, thereby maximizing cooperative
returns assuming interactions with its best-response policy, while interacting with the ego agent’s
policy. Our discussion here focuses on computing Eq. 19 for brevity. However, a similar approach
can be used to train a critic network to estimate regret in SP states accurately. The only difference
lies in the use of states sampled from pSP and pXSP for training the critic network.

Despite potentially providing biased estimates, training a value function to estimate self-play returns
can reduce the variance caused by environment stochasticity, compared to a Monte Carlo return-to-
go estimate.

The critic network estimating teammate-BR returns, Vσ−i,BR(s), is trained on interactions initialized
from XP, as shown in Line 16 of Algorithm 2. This enables the teammate-BR critic network to
accurately estimate SP returns from pXP states. Meanwhile, a 1-step estimate of XP returns is made
possible by storage of rewards experienced during XP interactions (Line 5 of Algorithm 2) and the
training of a value function to estimate XP returns (Line 17 of Algorithm 2). Utilizing a 1-step
estimate produces lower variance than using a Monte Carlo-based return-to-go estimate, while also
yielding less bias than predicting returns solely based on the trained critic network’s value.

Estimating Per-State Regret via Monte Carlo Returns: An alternative approach for estimating is
to use a Monte Carlo-based return-to-go estimate for both SP and XP return estimates. Assuming
that both interaction starts from states encountered during XP interaction, the policy updates under
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this alternative approach maximize the following target function:

Est∼0.5pXP+0.5pSP

Eat′∼[BR(π−i),π−i],P

[ ∞∑
t′=t

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[ ∞∑
l=0

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
XP return estimate

 .
(20)

We refer to this as the Monte Carlo per-state regret. However, starting both SP and XP interactions
from all states visited in XP can be computationally prohibitive. More importantly, the Monte
Carlo-based return-to-go estimates of SP and XP returns have high variance, especially when the
environment transition function and the trained policies are highly stochastic.

Estimating Per-State Regret via Generalized Advantage Estimators: A final approach for es-
timating Eq. 17 is to substitute both return-to-go estimates in Expr. 20 with a generalized advantage
estimator (Schulman et al., 2015) based on SP and XP interactions. This results in the maximization
of the following target function during the teammate policy updates:

Est∼0.5pXP+0.5pSP


Eat′∼[BR(π−i),π−i],P

[ ∞∑
t′=t

(γλ)t
′
δ−i,BR
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[ ∞∑
t′=t

(γλ)t
′
δ−i,ego
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
XP return estimate


,

(21)
where we define δ−i,BR

t and δ−i,ego
t as:

δ−i,BR
t = rt + γVσ−i,BR(st+1)− Vσ−i,BR(st),

δ−i,ego
t = rt + γVσ−i,ego(st+1)− Vσ−i,ego(st).

We refer to an instance of the ROTATE algorithm that maximizes regret using this target function
as ROTATE with GAE per-state regret. In practice, we collect data for SP GAE maximization and
XP GAE minimization by first independently sampling two collections of states fromDSXP andDXP
respectively. Next, the states sampled from DSXP are used to maximize the GAE from SXP interac-
tions, while states sampled from DXP are utilized to minimize the GAE from XP interactions. The
γ and λ parameters used during the computation of the generalized advantage estimator are mecha-
nisms to regulate the bias and variance of the regret estimation (Schulman et al., 2015), effectively
providing a different bias-variance tradeoff compared to the previously mentioned methods.

C.3 EXPERIMENTAL COMPARISONS OF ROTATE TEAMMATE GENERATION OBJECTIVES

Figure 6a compares the version of ROTATE presented in the main paper and Algorithm 2, to RO-
TATE with GAE per-state regret, and a version of ROTATE where expected returns are maxi-
mized in states sampled from pMP rather than pSXP, which resembles the mixed-play objective of
CoMeDi (Sarkar et al., 2023). We do not implement the Monte Carlo per-state regret estimation
approach described above, as it is impractical and unlikely to yield better results than using value
functions to estimate regret. ROTATE and ROTATE with GAE regret yield mixed results as nei-
ther approach consistently beats the other in all environments. We suspect this is caused by the
policy gradient’s different bias and variance levels when estimating regret using these two methods.
Meanwhile, ROTATE’s maximization of returns in states from pSXP leads to higher normalized re-
turns than maximizing CoMeDi’s mixed-play objective in all environments except for Overcooked’s
Asymmetric Advantages (AA) setting. Following the difference in starting states of trajectories for
which these two maximize self-play returns, we conjecture that this is because ROTATE empiri-
cally teammate policies with good faith in states from pXP while the CoMeDi-like approach imposes
the same thing in states from pMSTART. Imposing good faith within policies in pXP is likely more
important for training an ego agent that initially interacts with π−i during training by visiting states
from pXP.
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(a) ROTATE vs ROTATE with CoMeDi’s mixed-
play (MP) objective and ROTATE with GAE regret.
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(b) ROTATE compared to an independently trained
ego agent on ROTATE’s population and an ablation
of ROTATE without the population.

Figure 6: The mean normalized returns of ROTATE and various ablations designed to evaluate the effec-
tiveness of ROTATE’s regret-based teammate generation objective and population-based ego agent training
procedure.

C.4 TRAINING AN INDEPENDENT EGO AGENT ON THE ROTATE POPULATION

Two-stage AHT algorithms first generate a population of teammates, and next train an ego agent
against the population. Although ROTATE’s teammate generation mechanism relies on the learn-
ing process of a particular ego agent, here, we investigate whether the population generated by
ROTATE is useful for training independently generated ego agents. Fig. 6b compares the mean
evaluation returns of the ROTATE ego agent against the mean evaluation returns of an indepen-
dently trained ego agent that was trained using the same configuration as ROTATE. In 3/6 tasks,
the ROTATE ego agent outperforms the trained ego agent, while in two tasks, the two ego agents
perform similarly (LBF and FC). This result suggests that the ROTATE population is a useful popu-
lation of teammates even independent of the particular ego agent generated. The strong performance
of the independently trained ego agent is unsurprising given that it has two advantages over the RO-
TATE ego agent. First, the independently trained ego agent faces a stationary distribution of training
teammates compared to ROTATE, which faces a nonstationary distribution caused by the popula-
tion growing over learning iterations. Second, the independently trained ego agent interacts with all
teammates uniformly throughout training, while the ROTATE ego agent only trains against earlier
teammates for more iterations than later teammates.

C.5 ROTATE VS BASELINES—RADAR CHARTS

We break down the performance of ROTATE and all baseline methods by individual evaluation
teammate policies as radar charts in Fig. 7. The radar charts show that ROTATE achieves higher
performance across a larger number and variety of evaluation teammates than baselines. The best
baseline, CoMeDi, achieves unusually high returns with the heuristic-based evaluation teammates
on LBF, CR, and CC. We hypothesize that this trend occurs because CoMeDi explicitly optimizes
for novel conventions that do not match existing conventions. However, on these tasks, CoMeDi
does not perform as well as BRDiv teammates, which are trained to maximize the adversarial diver-
sity objective. The radar charts also show that the second-best baseline, FCP, is strong specifically
against IPPO teammates and relatively weaker on heuristics and BRDiv teammates, especially in
CR and CC. As mentioned in the main paper, we attribute FCP’s relative strength on IPPO evalua-
tion teammates to the fact that the IPPO evaluation teammates are closer to the training teammate
distribution constructed by FCP. While FCP is not especially strong against the “IPPO pass" agents
in CC, these agents were trained via reward shaping to solve the task by passing onions across the
counter rather than navigating around the counter, which is the policy found by IPPO without reward
shaping (denoted as “IPPO CC" in the figures).

C.6 LEARNING CURVES

Figure 8 shows learning curves for ROTATE and all ROTATE variations tested in this paper, where
the x-axis is the open-ended learning iteration, and the y-axis corresponds to the mean evaluation
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Figure 7: Normalized mean returns of ROTATE and all baselines across all tasks, broken down by
evaluation teammate in Πeval. Legend shown for LBF applies for all plots.

return. On 4/6 tasks (LBF, CR, CC, and FC), ROTATE has better sample efficiency than variants.
On 3/6 tasks (LBF, CR, and FC), ROTATE dominates variants at almost all points in learning.

C.7 HUMAN PROXY EVALUATIONS

The results in the main paper show that ROTATE is better able to generalize to unseen partners
compared to baseline methods. Here, we evaluate the ability of ROTATE to generalize to human
partners, compared to the best baseline, CoMeDi. The evaluation is conducted with human proxy
teammates generated by behavior cloning on the human gameplay dataset published by (Carroll
et al., 2019). Table 2 shows that ROTATE achieves higher returns in coordination with the human
proxy compared to CoMeDi, across all five Overcooked layouts.
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(b) Asymmetric Advantages.
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(c) Cramped Room.
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(d) Counter Circuit.
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(e) Forced Coordination.
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(f) Coordination Ring.

Figure 8: Learning curves of ROTATE and all variations of ROTATE considered in this paper.
Normalized mean returns and bootstrapped 95% confidence intervals on Πeval are shown.

CR AA CC CoR FC
ROTATE 0.81 (0.78, 0.84) 0.66 (0.63, 0.69) 1.09 (1.05, 1.14) 0.73 (0.71, 0.75) 0.62 (0.57, 0.66)
CoMeDi 0.75 (0.71, 0.78) 0.57 (0.54, 0.59) 0.89 (0.83, 0.95) 0.56 (0.54, 0.59) 0.40 (0.38, 0.43)

Table 2: ROTATE outperforms CoMeDi with the human proxy teammate on all Overcooked layouts.
Normalized returns and bootstrapped 95% CI’s are shown, where the normalization is performed
using the human proxy agent’s self-play returns.

D EXPERIMENTAL TASKS

Experiments in the main paper are conducted on Jax re-implementations of Level-Based Foraging
(LBF) (Albrecht & Ramamoorthy, 2013; Bonnet et al., 2023), and five tasks from the Overcooked
suite—Cramped Room (CR), Asymmetric Advantages (AA), Counter Circuit (CC), Coordination
Ring (CoR), and Forced Coordination (FC) (Carroll et al., 2019; Rutherford et al., 2024b). Each
task is described below.
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Level-Based Foraging (LBF) Originally introduced by Albrecht & Ramamoorthy (2013), Level-
Based Foraging is a mixed cooperative-competitive logistics problem where N players interact
within a rectangular grid world to obtain k foods. All players and foods have a positive integer
level, where groups of one to four players may only load (collect) a food if the sum of player levels
is greater than the food’s level. A food’s level is configured so that it is always possible to load it.

We use the Jax re-implementation of LBF by Bonnet et al. (2023), which was based on the imple-
mentation by Christianos et al. (2020). The implementation permits the user to specify the number
of players, number of foods, grid world size, level of observability, and whether to set the food level
equal to the sum to player levels in order to force players to coordinate to load each food.

The experiments in this paper configured the LBF environment to a 7 × 7 grid, where two players
interact to collect three foods. Our LBF configuration is shown in Fig. 9. Each player observes the
full environment state, allowing each player to observe the locations of other agents and all foods
and the number of time steps elapsed in the current episode. Each player has six discrete actions:
up, down, left, right, no-op, and load, where the last action is the special food collection action. A
food may only be collected if the sum of player levels is greater than the level of the food. Since this
paper focuses on fully cooperative scenarios, we set the food level equal to the level of both players,
so all foods require cooperation in order to be collected. When a food is collected, both players
receive an identical reward, which is normalized such that the maximum return in an episode is 0.5.
An episode terminates if an invalid action is taken, players collide, or when 100 time steps have
passed. Player and food locations are randomized for each episode.

Figure 9: Level-based foraging
environment. The apple icons de-
note food. The number on the
icon indicates each player’s and
food’s level. The AHT player is
indicated by the red box.

Overcooked Introduced by Carroll et al. (2019), the Overcooked
suite is a set of two-player collaborative cooking tasks, based on
the commercially successful Overcooked video game. Designed to
study human-AI collaboration, the original Overcooked suite con-
sists of five simple environment layouts, where two agents collab-
orate within a grid world kitchen to cook and deliver onion soups.
While Carroll et al. (2019) introduced Overcooked to study human-
AI coordination, Overcooked has become popularized for AHT re-
search as well (Charakorn et al., 2023; Sarkar et al., 2023; Erlebach
& Cook, 2024).

We use the Jax re-implementation of the Overcooked suite
by Rutherford et al. (2024b), which is based on the original imple-
mentation by Carroll et al. (2019). Later versions of Overcooked
include features such as multiple dish types, order lists, and alterna-
tive layouts, but this paper considers only the five original Over-
cooked layouts: Cramped Room (CR), Asymmetric Advantages
(AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced
Coordination (FC).

The objective for all five tasks is to deliver as many onion soups as
possible, where the only difference between the tasks is the envi-
ronment layout, as shown in Fig. 10. To deliver an onion soup, players must place three onions in a
pot to cook, use a plate to pick up the cooked soup, and send the plated soup to the delivery location.
Each player observes the state and location of all environment features (counters, pots, delivery,
onions, and plates), the position and orientation of both players, and an urgency indicator, which
is 1 if there are 40 or fewer remaining time steps, and 0 otherwise. Each player has six discrete
actions, consisting of the four movement actions, interact, and no-op. The reward function awards
both agents +20 upon successfully delivering a dish, which is the return reported in the experimental
results. To improve sample efficiency, all algorithms are trained using a shaped reward function that
provides each agent an additional reward of 0.1 for picking up an onion, 0.5 for placing an onion
in the pot, 0.1 for picking up a plate, and 1.0 for picking up a soup from the pot with a plate. An
episode terminates after 400 time steps. Player locations are randomized in each episode. In divided
layouts such as AA and FC, we ensure that a player is spawned on each half of the layout.
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(a) Cramped
Room.

(b) Coord.
Ring.

(c) Forced Co-
ord.

(d) Asymmetric Advantages. (e) Counter Circuit.

Figure 10: The five classic Overcooked layouts. Each yellow circle is an onion, while white circles are plates.
Grid spaces with multiple yellow (resp. white) circles are onion (resp. plate) piles, which agents must visit to
pick up an onion (or plate). The green square is the delivery location, where finished dishes must be sent to
receive a reward. Black squares denote free space, while adjacent gray spaces are empty counters. A black pot
icon indicates pots, while agents are shown as red and blue pointers. The AHT agent is highlighted.

E IMPLEMENTATION DETAILS

As implementations of prior methods use PyTorch, but this project uses Jax, we re-implemented
all methods in this paper, using PPO (Schulman et al., 2017) with Generalized Advantage Esti-
mation (GAE) (Schulman et al., 2015) as a base RL algorithm and Adam (Kingma & Ba, 2015)
as the default optimizer. An anonymized version of the code is released for reproducibility at
https://anonymous.4open.science/r/rotate/, and we recommend consulting it for
a full understanding of method implementations. Pseudocode for ROTATE is provided in App. A.
This section discusses implementation details such as training time choices, agent architectures, and
key hyperparameters for ROTATE and all baselines.

E.1 TRAINING COMPUTE

For fair comparison, all open-ended methods (ROTATE and all variations, PAIRED, Minimax Re-
turn) were trained for the same number of open-ended learning iterations and a similar number of
environment interactions. For two-stage teammate generation approaches (FCP, BRDiv, CoMeDi),
the teammate generation stage is run using a similar amount of compute as the original implemen-
tations, while the ego agent training stage is run for a sufficiently large number of steps to allow
convergence. We describe the amount of compute used for the teammate generation stage of each
baseline below.

In particular, the FCP population is generated by training 22-23 seeds of IPPO with 5 checkpoints
per seed for a population of approximately 110 agents—similar to Strouse et al. (2021), who trained
32 seeds of IPPO with 3 checkpoints per seed for a population size of 96 agents. On the other hand,
BRDiv was trained with a population size of 3-4 agents, until we observed that each agent’s learn-
ing converged. While we attempted training BRDiv with a larger population size, the algorithm was
prone to discovering degenerate solutions where only 2-3 agents in the population could discover so-
lutions with high SP returns, and all other agents in the population would have zero returns. Finally,
CoMeDi was trained with a population size of 10 agents, until each agent’s learning converged.
We attempted to train CoMeDi with a larger population size, but due to the algorithm’s quadratic
complexity in the population size, its runtime surpassed the available time budget. Nevertheless, the
population size of 10 forms a reasonable comparison to ROTATE because (1) the original paper
used a population size of 8 for all Overcooked tasks, and (2) the configuration of CoMeDi in this
paper runs for a similar wall-clock time as ROTATE.

E.2 AGENT ARCHITECTURES

For all methods considered in this paper, agents are implemented using neural networks and an
actor-critic architecture, as is standard for PPO-based RL algorithms. All AHT methods implement
policies without parameter sharing (Christianos et al., 2020), to enable greater behavioral diversity.
Specifics for ego agents, teammates, and best response agents are described below.

As mentioned in the main paper, ego agents are history-conditioned. Thus, ego agents are imple-
mented with the S5 actor-critic architecture, a recently introduced recurrent architecture shown to
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have stronger long-term memory than prior types of recurrent architectures. Another advantage
of the S5 architecture over typical recurrent architectures (e.g., LSTMs) is that it is parallelizable
during training, allowing significant speedups in Jax (Lu et al., 2023).

On the other hand, teammates and best response agents are state-based. Best response agents are
implemented with fully connected neural networks. Teammates are also based on fully connected
neural networks, but the precise architecture varies based on the algorithm. For methods where
the teammate only interacts with itself (FCP) or with the ego agent (Minimax Return), a standard
actor-critic architecture is used. However, for open-ended learning methods that optimize regret
(ROTATE and PAIRED), or for teammate generation methods that optimize adversarial diversity
(ComeDi and BRDiv), teammates must estimate returns when interacting with multiple agents.
Thus, for these methods, the teammate architecture includes a critic for each type of interaction.

In particular, for ROTATE and PAIRED, the teammate must estimate returns when interacting with
the ego agent and its best response, and so it maintains a critic network for each partner type. For
CoMeDi and BRDiv, given a population with n agents, each teammate must estimate the return
when interacting with the other n − 1 agents in the population. As it would be impractical to
maintain n − 1 critics for each teammate, the teammate instead uses a critic that conditions on
the agent ID of a candidate partner agent—in effect, implementing the n − 1 critics via parameter
sharing (Christianos et al., 2020).

Task LBF CR AA CC CoR FC
Timesteps 3e5, 1e6 1e6 1e6 1e6, 3e6 3e6 1e6, 3e6,

1e7
Number
envs

8, 16 8, 16 8 8, 16 8 8

Epochs 7, 15 15 15 15, 30 15 15
Minibatches 4, 8 4, 8, 16,

32
16 16 16 16

Clip-Eps 0.03, 0.05 0.03, 0.05,
0.10, 0.15,
0.2, 0.3

0.2, 0.3 0.1, 0.2 0.1, 0.2,
0.3

0.1, 0.2

Ent-Coef 5e-3, 0.01,
0.03, 0.05

5e-3, 0.01,
0.03, 0.05

0.01, 0.02 0.01, 0.03,
0.05

0.001,
0.01, 0.05

0.01, 0.05

LR 1e-4 1e-4 1e-4, 1e-3 1e-4, 1e-3 1e-4, 5e-4,
1e-3

1e-4, 5e-4,
1e-3

Anneal
LR

true, false true, false true true, false true true

Table 3: Hyperparameters for IPPO.

LBF CR AA CC CoR FC
Timesteps 4.5e7 4.5e7 4.5e7 9e7 9e7 9e7
XP Coefficient 0.1, 0.75, 1, 10 1, 10 10 0.01, 10 0.01, 10 0.01, 0.1, 0.5, 1, 10
Population size 3, 4, 5, 10 2, 3, 4, 5 3, 4 3, 4 3, 4 3, 4
Num Envs 8, 32 8, 32 8, 32 8, 32 8, 32 8, 32
LR 1e-4, 5e-4 1e-4 1e-4 1e-3 1e-3, 5e-4 1e-3, 5e-4
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Clip-Eps 0.03, 0.05 0.05, 0.2 0.3 0.01, 0.1 0.05, 0.1 0.05, 0.1

Table 4: Hyperparameters for the teammate generation stage of BRDiv.
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LBF CR AA CC CoR FC
OEL Iterations 30 30 30 20 20 20
Num Envs 16 16 16 16 16 16
Regret-SP
Weight

1, 2 1, 3 1, 2 1, 2 1, 2 1, 2

Minibatches 4, 8 8 8 8 8 8
Timesteps per
Iter (Ego)

2e6 2e6 2e6 6e6 6e6 6e6

Epochs (Ego) 5, 10, 20 10, 15 10 10 10 5, 10
Ent-Coef (Ego) 1e-4, 1e-3,

0.01, 0.05
1e-4, 1e-3,
1e-2

1e-3, 0.01 1e-3, 0.05 1e-3, 0.05 1e-4, 1e-3,
1e-2

LR (Ego) 5e-5, 1e-4,
1e-3

1e-5, 3e-5,
5e-5, 1e-4

1e-5, 3e-5,
5e-5, 1e-4

3e-5, 5e-5,
1e-3

1e-5, 3e-5,
5e-5, 1e-3

8e-6, 1e-5,
3e-5, 5e-5,
1e-4

Eps-Clip (Ego) 0.05, 0.1 0.1, 0.2 0.1, 0.3 0.1 0.1 0.1
Anneal LR (Ego) true, false true, false true, false true, false true, false true, false
Timesteps per
Iter (T)

1e7 6e6 6e6 1.6e7 1.6e7 1.6e7

Epochs (T) 20 20 20 20 20 20
Ent-Coef (T) 0.05, 0.01 0.01 0.01 0.05 0.05 0.01, 0.05
LR (T) 1e-4, 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3, 1e-4
Clip-Eps (T) 0.1 0.1, 0.2 0.3 0.1 0.1 0.1, 0.2
Anneal LR (T) true, false true, false false false false true, false

Table 5: Hyperparameters for ROTATE. Hyperparameters specific to the teammate training process
are marked by "(T)".

LBF CR AA CC CoR FC
Total Timesteps 3e7 3e7 3e7 6e7 6e7 6e7
Num Envs 8 8 8 8 8 8
LR 5e-5 5e-5 5e-5 5e-5 3e-5 1e-5
Epochs 10 10 10 10 10 5
Minibatches 4 4 4 4 4 4
Ent-Coef 1e-4 1e-3 1e-3 1e-3 1e-3 1e-4
Clip-Eps 0.1 0.1 0.1 0.1 0.1 0.1
Anneal LR false false true true true true

Table 6: Hyperparameters for PPO ego agent for all teammate generation methods.
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LBF CR AA CC CoR FC
Timesteps Per Agent 2e6 2e6 2e6 4e6 4e6 4e6
Num Seeds 23 23 23 22 22 22
Num Checkpoints 5 5 5 5 5 5
Num Envs 8 8 8 8 8 8
LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 16 16 16 16 16
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1
Anneal LR true true true true true true

Table 7: Hyperparameters for teammate generation stage of FCP.

LBF CR AA CC CoR FC
Timesteps Per Iteration 6e6 6e6 6e6 1e7 1e7 1e7
Population Size 10 10 10 10 10 10
Num Envs 16 16 16 16 16 16
LR 5e-4 1e-4 1e-4 1e-3 5e-4 5e-4
Epochs 15 15 15 15 15 15
Minibatches 8 8 8 8 8 8
Ent-Coef 1e-3 0.01 0.01 0.05 0.1 0.01
Eps-Clip 0.05 0.05 0.3 0.01 0.05 0.05
Anneal LR false false false false false false
α 0.2 1.0 1.0 1.0 1.0 1.0
β 0.4 0.5 0.5 0.5 0.5 0.5

Table 8: Hyperparameters for the teammate generation stage of CoMeDi.

LBF CR AA CC CoR FC
Timesteps 7.5e7 7.5e7 7.5e7 1.5e8 1.5e8 1.5e8
Num Seeds 5 5 5 5 5 5
Num Checkpoints 10 10 10 10 10 10
Num Envs 16 16 16 16 16 16
LR 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 8 8 8 8 8
Ent-Coef 0.05 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.1 0.2 0.3 0.1 0.1 0.1
Anneal LR false false false false false false

Table 9: Hyperparameters for PAIRED.
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LBF CR AA CC CoR FC
OEL Iterations 30 30 30 20 20 20
Num Envs 16 16 16 16 16 16
Timesteps Per Iter (Ego) 1e6 1e6 1e6 3e6 3e6 3e6
Timesteps Per Iter (T) 1e6 1e6 1e6 3e6 3e6 3e6
LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 8 8 8 8 8
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1
Anneal LR false false false false false false

Table 10: Hyperparameters for Minimax Return. Hyperparameters specific to the teammate training
process are marked by "(T)".

E.3 HYPERPARAMETERS

This section presents the hyperparameters for ROTATE (Table 5), baseline methods (Tables 4 and 6
to 10), and training evaluation teammates with IPPO (Table 3). Note that hyperparameters for the
two-stage teammate generation methods are presented in separate tables, where those corresponding
to the shared ego agent training stage are presented in Table 6. All experiments in the paper were
performed with a discount factor of γ = 0.99 and λGAE = 0.95.

Hyperparameters were searched for IPPO, BRDiv, and ROTATE, in that order, with the search for
earlier methods informing initial hyperparameter values for later methods. Based on prior experience
with PPO, we primarily searched the number of environments, epochs, minibatches, learning rate,
entropy coefficient, the epsilon used for clipping the PPO objective, and whether to anneal the
learning rate. For each hyperparameter, the searched values are listed in the tables, and selected
values are bolded. We performed the search manually, typically varying one parameter over the
listed range while holding others fixed, and varying parameters jointly only when varying one at a
time did not yield desired results.

Due to compute constraints, hyperparameters for FCP, CoMeDi, PAIRED, and Minimax Return
were set based on knowledge of appropriate ranges gained from doing the hyperparameter searches
over IPPO, BRDiv, and ROTATE.

F EVALUATION TEAMMATE DETAILS

As described in Section 7 of the main paper, evaluation teammates were constructed using three
strategies: training IPPO teammates in self-play using varied seeds and reward shaping, training
teammates with BRDiv, and manually programming heuristic agents. Note that the evaluation team-
mates trained using IPPO and BRDiv were trained using different seeds than those used for training
ROTATE and baseline methods.

The teammate construction procedure results in distinct teammate archetypes. Generally, IPPO
agents execute straightforward, return-maximizing strategies. On the other hand, since BRDiv
agents are trained to maximize self-play returns with their best response partner and to minimize
cross-play returns with all other best response policies in the population, the generated teammates
display more adversarial behavior compared to IPPO and heuristics. Coefficients on the SP and XP
returns were carefully tuned to ensure that the behavior was not too adversarial, which we opera-
tionalized as teammates where the SP returns were high, but the XP returns were near zero.

Finally, the manually programmed heuristic agents have a large range of skills and levels of deter-
minism. The LBF heuristics are planning-based agents that deterministically attempt to collect the
apples in a specific order. Given a best response partner, the LBF heuristics can achieve the opti-
mal task return in LBF. The Overcooked heuristics execute pre-programmed roles that are agnostic
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Name Description Est. BR Return
brdiv_conf1(0) Teammate trained by BRDiv. 97.396
brdiv_conf1(1) - 100.0
brdiv_conf1(2) - 89.583
brdiv_conf2(0) - 100.0
brdiv_conf2(1) - 62.5

ippo_mlp(0) Teammate trained by IPPO to maximize return. 100.0
ippo_mlp_s2c0(2,0) An intermediate checkpoint of a teammate trained

by IPPO to maximize return.
96.354

seq_agent_col Planning agent that collects food in column-major
order (left to right, top to bottom).

100.0

seq_agent_rcol Planning agent that collects food in reverse
column-major order (right to left, bottom to top).

100.0

seq_agent_lexi Planning agent that collects food in lexicographic
order (top to bottom, left to right).

100.0

seq_agent_rlexi Planning agent that collects food in reverse lexi-
cographic order (bottom to top, right to left).

100.0

seq_agent_nearest Planning agent that collects food in nearest to far-
thest order, based on the Manhattan distance from
the agent’s initial position.

100.0

seq_agent_farthest Planning agent that collects food in farthest to
nearest order, based on the Manhattan distance
from the agent’s initial position.

100.0

Table 11: Evaluation teammates for LBF and estimated best response returns (percent eaten). Hy-
phens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
brdiv_conf(0) Teammate trained by BRDiv. 214.063
brdiv_conf(1) - 240.940
ippo_mlp(0) Teammate trained by IPPO to maximize return. 256.875
ippo_mlp(1) - 253.750
ippo_mlp(2) - 249.686

independent_agent_0.4 Agent programmed to cook and deliver soups. If
holding item, 40% chance of placing item on the
counter.

197.188

independent_agent_0 Agent programmed to cook and deliver soups. 132.50
onion_agent_0.1 Agent programmed to place onions in non-full

pots. If holding item, 10% chance of placing item
on counter.

146.875

plate_agent_0.1 Agent programmed to plate finished soups and de-
liver. If holding item, 10% chance of placing item
on counter.

191.250

Table 12: Evaluation teammates for Cramped Room and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.
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Name Description Est. BR Return
brdiv_conf(0) Teammate trained by BRDiv. 286.875
brdiv_conf(1) - 335.625
brdiv_conf(2) - 333.750
ippo_mlp(0) Teammate trained by IPPO to maximize return. 382.50
ippo_mlp(1) - 369.375
ippo_mlp(2) - 312.50

independent_agent_0 Agent programmed to cook and deliver soups. 308.125
onion_agent_0 Agent programmed to place onions in non-full pots. 301.250
plate_agent_0 Agent programmed to place onions in non-full pots. 285.0

Table 13: Evaluation teammates for Asymmetric Advantages and estimated best response returns.
Hyphens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
ippo_mlp_cc(0) Teammate trained by IPPO to maximize return. Nav-

igates counterclockwise around counter.
200.625

ippo_mlp_cc(1) - 198.120
ippo_mlp_cc(2) - 194.375

ippo_mlp_pass(0) Teammate trained by IPPO+reward shaping to pass
onions across the counter.

137.813

ippo_mlp_pass(1) - 103.125
ippo_mlp_pass(2) - 170.0

independent_agent_0 Agent programmed to cook and deliver soups. 77.189
onion_agent_0.9 Agent programmed to place onions in non-full pots. If

holding item, 90% chance of placing item on counter.
80.0

onion_agent_0 Agent programmed to place onions in non-full pots. 81.563
plate_agent_0.9 Agent programmed to plate finished soups and de-

liver. If holding item, 90% chance of placing item
on counter.

97.189

plate_agent_0 Agent programmed to place onions in non-full pots. 76.875

Table 14: Evaluation teammates for Counter Circuit and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
brdiv_conf1(1) Teammate trained by BRDiv. 161.250
brdiv_conf1(2) - 183.440
brdiv_conf2(0) - 142.810

ippo_mlp(1) Teammate trained by IPPO to maximize return. 249.688
ippo_mlp(2) - 246.560
ippo_mlp(3) - 246.560

independent_agent_0 Agent programmed to cook and deliver soups. 136.250
onion_agent_0 Agent programmed to place onions in non-full pots. 72.50
plate_agent_0 Agent programmed to place onions in non-full pots. 110.938

Table 15: Evaluation teammates for Coordination Ring and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.
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Name Description Est. BR Return
brdiv_conf1(0) Teammate trained by BRDiv. 131.560
brdiv_conf1(2) - 184.690
brdiv_conf2(1) - 143.750
brdiv_conf3(0) - 71.250
brdiv_conf3(2) - 174.690

ippo_mlp(0) Teammate trained by IPPO to maximize return. 220.0
ippo_mlp(1) - 214.380
ippo_mlp(2) - 225.620

independent_agent_0.6 Agent programmed to cook and deliver soups. If
holding item, 60% chance of placing item on the
counter.

81.250

Table 16: Evaluation teammates for Forced Coordination and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.

to the layout and some basic collision-avoidance logic. The "onion" heuristic collects onions and
places them in non-full pots. The "plate" heuristic plates soups that are ready, and delivers them.
The "independent" heuristic attempts to fulfill both roles by itself. All three heuristic types have a
user-specified parameter that defines the probability that the agent places whatever it is holding on
a nearby counter. The feature serves two purposes: first, it creates a larger space of behaviors, and
second, it allows the heuristics to work for the FC task, where the agent in the left half of the kitchen
must pass onions and plates to the right, while the agent in the right half must pick up resources
from the dividing counter, cook soup, and deliver.

Descriptions of the evaluation teammates for each task and estimated best response returns are pro-
vided in Tables 11 to 16.

Evaluation Return Normalization Details. The lower return bound is set to zero since a poor
teammate could always cause a zero return in all tasks considered. Ideally, the upper return bounds
would be the returns achieved with the theoretically optimal best response teammate for each evalu-
ation teammate. To approximate this, we instead set the upper bound equal to the maximum average
return achieved by any method, for each evaluation teammate.

As described in Section 7, our normalized return metric is similar to the BRProx metric recom-
mended by Wang et al. (2024b). The main difference is that we aggregate results using the mean
rather than the interquartile mean (IQM), due to challenges around determining appropriate upper
bounds for return normalization. In particular, during method development, we used looser BR re-
turn estimates to perform return normalization, leading to normalized returns often surpassing 1.0
for certain teammates. Under such conditions, aggregating results using the IQM led to entirely
dropping results corresponding to particular teammates.

G COMPUTE INFRASTRUCTURE

Experiments were performed on two servers, each with the following specifications:

• CPUs: two Intel(R) Xeon(R) Gold 6342 CPUs, each with 24 cores and two threads per core.
• GPUs: four NVIDIA A100 GPUs, each with 81920 MiB VRAM.

The experiments in this paper were implemented in Jax and parallelized across seeds. On the servers
above, each method took approximately 4-6 hours of wall-clock time to run.
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