
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

Please find an anonymized version of the code for this paper at https://anonymous.4open.
science/r/rotate/.

A ALGORITHMS

Algorithm 1 Open-Ended Ad Hoc Teamwork

Require:
Environment, Env.
Total of training iterations, T iter.
Initial ego agent policy parameters, θego.

1: Bπ ← ⟨⟩ ▷ Init teammate policy parameter buffer.
2: for j = 1, 2, . . . , T iter do
3: Bnew

π ← TeammateGenerator(Env, θego, Bπ)
4: θego ← EgoUpdate(Env, θego, Bnew

π)
5: Bπ ← Bnew

π
6: end for
7: Return θego

A.1 FRAMEWORK FOR OPEN ENDED AD HOC TEAMWORK

Section 5 described an open-ended training framework for training an ego agent that can effectively
collaborate with previously unseen teammates. We further detail this general open-ended framework
in Algorithm 1. In Line 3, a TeammateGenerator function determines a buffer of teammate policy
parameters, Bnew

π . The teammate generator function considers the ego agent’s current policy pa-
rameters, θego, and the previous buffer of teammate policy parameters, Bnew. Ideally, the teammate
generation function generates and samples teammates that induce learning challenges to πego. In
Line 4, an EgoUpdate function specifies a procedure that updates the ego agent’s policy parameters
based on the Bnew

π designed by the teammate generator. Pseudocode for ROTATE, which follows
the open-ended framework specified by Algorithm 1, is presented in the following section.

A.2 ROTATE ALGORITHM

ROTATE’s teammate generation algorithm is detailed in Algorithm 2. As described in Section 6.1,
this teammate generation algorithm jointly trains the parameters of a teammate policy and an es-
timate of its best response (BR) policy, based on a provided ego agent policy. The parameters of
the teammate and BR policies, θ−i and θBR, are initialized in Line 1. The parameters of the BR
critic network, σBR, are initialized in Line 2, while those for the teammate, σ−i,BR and σ−i,ego, are
initialized in Line 3. Note that the teammate maintains two critics, for separately estimating returns
when interacting with the BR and ego agent policies.

The training of the teammate and BR policies is based on the SP, XP, XSP, and SXP interaction data
gathered in Lines 5 to 8, which we previously motivated and described in Section 6.1. Recall that
an SXP interaction require resetting an environment to start from an available XP state, and an XSP
interaction analogously requires resetting to an SP state. Since resetting from all available XP states
for SXP interaction is impractical, ROTATE samples from XP states to obtain start states for SXP
interactions (and similarly for XSP). Experiences from SP, XP, SXP, and XSP interaction are stored
in buffers DSP, DXP, DSXP, DXSP in the form of a collection of tuples, D = ⟨(sk, ak, rk, s′k)⟩

|D|
k=1.

Lines 12 to 22 of Algorithm 2 then highlight how we use the stored experiences to compute loss
functions that the trained models optimize.

Lines 12 and 13 describe how the teammate and BR policies are trained to mutually maximize
returns when interacting with each other during SP and SXP interactions. Both lines call the
POL_LOSS_ADV_TARG function, which receives (θ, θold, σold, D, ϵ) as input to evaluate the fol-
lowing, standard PPO-clip loss function that encourages return maximization and sufficient explo-

15

https://anonymous.4open.science/r/rotate/
https://anonymous.4open.science/r/rotate/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 ROTATE TeammateGenerator Function

Require:
Environment, Env.
Ego agent policy, πθego .
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs.

1: θ−i, θBR ← RandomInit(π), RandomInit(π)
2: σBR ← RandomInit(V)

3: σ−i,BR, σ−i,ego ← RandomInit(V), RandomInit(V) ▷ Init teammate and BR parameters
4: for tupdate = 1, 2, . . . , Nupdates do
5: DSP, DXP ← Interact(πθBR , πθ−i , pEnv

0), Interact(πθego , πθ−i , pEnv
0)

6: sXP, sSP ← SampleStates(DXP),SampleStates(DSP) ▷ Sample XP states
7: DSXP ← Interact(πθBR , πθ−i ,U(sXP))

8: DXSP ← Interact(πθego , πθ−i ,U(sSP)) ▷ Gather SP, XP, SXP, and XSP data
9: θBR

old , θ
−i
old ← θBR, θ−i

10: σBR
old , σ

−i,BR
old , σ−i,ego

old ← σBR, σ−i,BR, σ−i,ego ▷ Store old model parameters.
11: for kupdate = 1, 2, . . . , Nepochs do
12: Lppo-clip(θ

BR)← POL_LOSS_ADV_TARG
(
θBRθBR

old , σ
BR
old , DSP ∪DSXP, ϵ

)
13: Lppo-clip(θ

−i)← POL_LOSS_ADV_TARG
(
θ−i, θ−iold , σ

−i,BR
old , DSXP, ϵ

)
14: Lreg(θ

−i)← POL_LOSS_REG_TARG
(
θ−i, θ−iold , σ

−i,BR
old , σ−i,ego

old , DSP ∪DXP, ϵ
)

15: LV (σ
BR)← VAL_LOSS(σBR, σBR

old , DSP ∪DSXP)

16: LV (σ
−i,BR)← VAL_LOSS

(
σ−i,BR, σ−i,BR

old , DSP ∪DSXP

)
17: LV (σ

−i,ego)← VAL_LOSS
(
σ−i,ego, σ−i,ego

old , DXP ∪DXSP

)
18: θBR ← GradDesc(θBR,∇θBRLppo-clip(θ

BR))

19: θ−i ← GradDesc
(
θ−i,∇θ−i

(
Lppo-clip(θ

−i) + Lreg(θ
−i)

))
▷ Update policies

20: σBR ← GradDesc(σBR,∇σBRLV (σ
BR))

21: σ−i,BR ← GradDesc(σ−i,BR,∇σ−i,BRLV (σ
−i,BR))

22: σ−i,ego ← GradDesc(σ−i,ego,∇σ−i,egoLV (σ
−i,ego)) ▷ Update critics.

23: end for
24: end for
25: Bπ ← Bπ ∪ ⟨θ−i⟩ ▷ Add generated teammate policy parameter
26: Return Bπ

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ration:

E
(s,a,r,s′)∈D

−min
(
πθ(a|s)
πθold(a|s)

A, clip
(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A

)
︸ ︷︷ ︸

PPO Clip Loss

+πθ(a|s)log (πθ(a|s))︸ ︷︷ ︸
Entropy Loss

 ,
where A denotes the advantage function. Our implementation of ROTATE uses an estimate of the
advantage function obtained via the Generalized Advantage Estimation (GAE) algorithm (Schul-
man et al., 2015), AGAE

σold
. Meanwhile, Line 14 shows how the teammate policy is trained

to maximize the ego agent’s regret based on experiences from XP and SP interactions. The
POL_LOSS_REG_TARG function that computes a loss function that encourages the maximization
of regret is generally the same as the POL_LOSS_ADV_TARG function except for its replacement
of the advantage function, A, with a regret-based target function. The regret-based target function
is defined differently but symmetrically for SP and XP states. We describe the target function for
regret from XP states below, and refer the reader to the code for the target function for regret from
SP states.

Areg = Vσ−i,BR
old

(s)︸ ︷︷ ︸
≈V (s|π−i, BR(π−i))

− (r + γVσ−i,ego
old

(s′))︸ ︷︷ ︸
≈V (s|π−i,πego)

. (11)

Rather than optimizing a regret function that requires explicitly computing the return-to-go,
POL_LOSS_REG_TARG estimates the XP return via a 1-step bootstrapped return using the team-
mate critic parameterized by σ−i,ego. Similarly, the SP return is estimated using the teammate critic
network parameterized by σ−i,BR. This results in a regret optimization method that uses the log-
derivative trick to optimize objective functions (Williams, 1992; Glynn, 1990). The ROTATE regret
estimation method and alternative approaches to maximize regret are further discussed in App. C.2.

Lines 15 to 17 then detail how we train critic networks that measure returns from the interaction
between the generated teammate policy and its best response or ego agent policy. We specifically call
the VAL_LOSS function that receives (σ, σold, D) to compute the standard mean squared Bellman
error (MSBE) loss, defined as:

E
(s,a,r′,s′)∈D

[(
Vσ(s)− V targ

σold
(s)

)2]
, (12)

where V targ
σold (s) := AGAE

σold
+ Vσold(s) is the target value estimate.

The previously defined loss functions can be minimized using any gradient descent-based optimiza-
tion technique, as we indicate in Lines 18 to 22. In practice, our implementation uses the ADAM
optimization technique (Kingma & Ba, 2015). At the end of this teammate generation process,
Lines 25 and 26 indicate how the generated teammate policy parameter is added to a storage buffer,
which is subsequently uniformly sampled to provide teammate policies for ego agent training.

The ego agent policy’s training process proceeds according to Algorithm 3. Line 3 illustrates how
ROTATE creates different teammate policies by uniformly sampling model parameters from the
Bπ resulting from the teammate generation process. Using the experience collaborating with the
sampled policies outlined in Line 4, the ego agent’s policy parameters are updated to maximize
its returns via PPO in Line 7. The only difference between the EGO_POL_LOSS function and
POL_LOSS_ADV_TARG function in Algorithm 2 is the input used to compute the loss function.
Unlike in the EGO_POL_LOSS function, we assume that the input dataset, D, stores the historical
sequence of observed states and executed actions, h, rather than states. Likewise, we assume that the
only difference between the VAL_LOSS and EGO_VAL_LOSS function is that the latter stores the
observation-action history rather than states (Line 8). Like recent AHT learning algorithms (Zintgraf
et al., 2021; Rahman et al., 2021; Papoudakis et al., 2021), πego and V ego are conditioned on the ego
agent’s observation-action history to facilitate an adaptive πego through an improved characterization
of teammates’ policies. The history-conditioned ego architecture and other practical implementation
details are described in App. E. Finally, the ego agent update function returns the updated ego agent
policy parameters, which are provided as part of the inputs for the next call to ROTATE’s teammate
generation function.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3 ROTATE EgoUpdate Function

Require:
Environment, Env.
Ego agent policy parameters, θego.
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs

1: σego ← Init(V) ▷ Init params of the critic networks of πego

2: for tupdate = 1, 2, . . . , Nupdates do
3: θ−i ∼ U(Bπ) ▷ Sample teammate parameters uniformly
4: D ← Interact(πθ−i , πθego , pEnv

0)
5: θego

old , σ
ego
old ← θego, σego

6: for kupdate ∈ {1, 2, . . . , Nepochs} do
7: Lπ(θ

ego)← EGO_POL_LOSS
(
θego, θego

old , σ
ego
old , D, ϵ

)
▷ Compute policy loss

8: LV (σ
ego)← EGO_VAL_LOSS

(
σego, σego

old , D, ϵ
)

▷ Compute critic loss
9: θego ← GradDesc(θego,∇θegoLπ(θ

ego)) ▷ Update policy
10: σego ← GradDesc(σego,∇σegoLV (σ

ego)) ▷ Update critic
11: end for
12: end for
13: Return θego

B BASELINES OVERVIEW

The main paper compares ROTATE to five baselines: PAIRED, Minimax Return, FCP, BRDiv, and
CoMeDi. Each baseline is briefly described below, followed by a discussion of the computational
complexity of teammate generation baselines compared to ROTATE, and a discussion of the rela-
tionship of Mixed Play (MP) with per-state and per-trajectory regret. A discussion of implementation
details can be found in App. E.

PAIRED (Dennis et al., 2020): A UED algorithm where a regret-maximizing“adversary" agent
proposes environment variations that an allied antagonist achieves high returns on, but a protagonist
agent receives low returns on. The algorithm is directly applicable to AHT by defining a teammate
generator for the role of the adversary, a best response agent to the generated teammate for the role
of the antagonist, and an ego agent for the role of the protagonist.

Minimax Return (Morimoto & Doya, 2005; Villin et al., 2025): A common baseline in the
UED literature, with origins in robust reinforcement learning, where the objective is minimax re-
turn. Prior works in AHT have proposed generating a curriculum of teammates according to this
objective. Translated to our open-ended learning setting, the teammate generator creates teammates
that minimize the ego agent’s return, while the ego agent maximizes return.

Fictitious Co-Play (Strouse et al., 2021): A two-stage AHT algorithm where a pool of teammates
is generated by running IPPO (Yu et al., 2022) with varying seeds, and saving multiple checkpoints
to the pool. The ego agent is an IPPO agent that is trained against the pool.

BRDiv (Rahman et al., 2023): A two-stage AHT algorithm where a population of “confederate"
and best-response agent pairs is generated, and an ego agent is trained against the confederates.
BRDiv maintains a cross-play matrix containing the returns for all confederate and best-response
pairs. The diagonal returns (self-play) are maximized, while the off-diagonal returns (cross-play)
are minimized. BRDiv and LIPO (Charakorn et al., 2023) share a similar objective, where the main
differences are: (1) If xp_weight denotes the weight on the XP return, then BRDiv requires that
the coefficient on the SP return is always 1+2∗xp_weight, and (2) LIPO introduces a secondary
diversity metric based on mutual information, and (3) LIPO assumes that agents within a team (i.e.,
a confederate-BR pair) share parameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

CoMeDi (Sarkar et al., 2023): CoMeDi is a two-stage AHT algorithm. In the first stage, a popula-
tion of teammates is generated, and in the second stage, an ego agent is trained against the teammate
population. The teammate generation stage trains teammate policies one at a time, where the nth
teammate policy is trained to maximize its SP return, minimize its XP return with the previously
generated teammate (i.e. from among teammates 1, · · · , n − 1) that it best collaborates with, and
maximizes its “mixed-play" (MP) return. The relationship between the regret objectives described
in Section 6 and MP is further discussed in App. C.1.

B.1 COMPUTATIONAL COMPLEXITY OF ROTATE VERSUS TEAMMATE GENERATION
BASELINES

The computational complexity of ROTATE is compared with that of the teammate generation base-
lines, in terms of the population size and the number of objective updates. In the following, n
denotes the population size, while T indicates the number of updates needed to train an individual
population member. The precise meaning of n and T might vary with the algorithm, but is made
clear in each description.

FCP: Let T denote the number of RL updates needed to train each IPPO team and let n denote
the number of teams trained by FCP. Then, the computational complexity of FCP is O(nT).

BRDiV/LIPO: Both BRDiv (Rahman et al., 2023) and LIPO (Charakorn et al., 2023) require
sampling trajectories from each pair of agents in the population, for each update. Thus, if the total
number of updates is T and the population size is n, then the algorithm’s time complexity isO(n2T).
Due to the quadratic complexity in n, BRDiv and LIPO are typically run with smaller population
sizes, with n < 10 for all non-matrix game tasks in both original papers.

CoMeDi: Recall that CoMeDi trains population members one at a time, such that each agent is
distinct from the previously discovered teammates in the population. This necessitates performing
evaluation rollouts of the currently trained agent against all previously generated teammates at each
RL update step. Let T be the number of RL updates required to train the ith agent to convergence,
and let n denote the population size. Then CoMeDi’s time complexity is O(n2T)—making it scale
quadratically in n, similar to BRDiv and LIPO.

ROTATE: In ROTATE, a new teammate is trained to convergence for each iteration of open-
ended learning. Thus, the number of open-ended learning iterations is equal to the population size
n, where within each iteration, there are O(T) RL updates performed. Therefore, the complexity of
ROTATE is O(nT), meaning that our method scales linearly in the population size n.

C SUPPLEMENTAL RESULTS

This section presents various supplemental results. First, we describe CoMeDi’s mixed-play mech-
anism in the context of ROTATE’s per-state regret. Second, we discuss alternative estimators for
ROTATE per-state regret. Third, we present experiments comparing ROTATE to a variant with
CoMeDi-style mixed-play return maximization, and a variant using the alternative regret estimation
strategy. Fourth, we examine whether the population generated by ROTATE is useful for training an
independent ego agent. Fifth, we present and describe radar charts breaking down the performance
of ROTATE on all six benchmark tasks presented in the main paper, and the learning curves for all
variants of ROTATE that are tested in this paper. Finally, we present a human proxy evaluation of
ROTATE and CoMeDi on the Overcooked tasks.

C.1 DISCUSSION OF COMEDI AND MIXED PLAY

As previously described in App. B, CoMeDi (Sarkar et al., 2023) is a two-stage teammate generation
AHT algorithm, whose teammate generation process trains one teammate per iteration, with an
objective that encourages the new teammates to be distinct from previously discovered teammates.

CoMeDi adds trained teammates policies to a teammate policy buffer, Πtrain. Each iteration begins
by identifying the teammate policy that is most compatible with the currently trained teammate π−i,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Mixed Play

XP

SP

MP

until random t

minimize VXP

maximize VMP

maximize VSP

Objective = VSP - 𝛼VXP + 𝛽VMP

BR actionEgo action

Initial State

Self Play (SP) Cross Play (XP)

Initial State Distribution

State after Mixed Play (MP)

V = Return

Figure 5: CoMeDi-style mixed-play objective for teammate generation, in the context of open-ended AHT.

out of all previously generated policies:

πcomp = argmax
π−j∈Πtrain

Es∼p0 [V (s|π−i, π−j)]. (13)

The new teammate policy π−i is trained with an objective that improves the per-trajectory regret
objective (Eq. 8) by adding a term that maximizes the returns from states gathered in mixed-play,
which we describe below.

Let mixed-play starting states be sampled from states visited when π−i interacts with the mixed
policy, that uniformly samples actions from πcomp and BR(π−i) at each timestep:

pMSTART := d

(
π−i,

1

2
πcomp +

1

2
BR(π−i); p0

)
. (14)

From these starting states, CoMeDi then gathers mixed-play interaction data, where π−i interacts
with BR(π−i). The resulting mixed-play state visitation is then expressed as:

pMP := d
(
π−i,BR(π−i); pMSTART

)
. (15)

The complete objective that Sarkar et al. (2023) optimizes to train a collection of diverse teammates
is then defined as:

max
π

(Es0∼p0
[
CR(πcomp, π−i, s0)

]
+ Es∼pMP [V (s|π,BR(π))]︸ ︷︷ ︸

mixed-play return maximization

). (16)

CoMeDi (Sarkar et al., 2023) optimizes this objective to discourage π−i from learning poor ac-
tions for collaborations outside of pSP. This is because π−i is now also trained to maximize returns
in states visited during mixed-play, which resembles some states encountered while cooperating
with πcomp. Discerning whether a state is likely encountered while interacting with πcomp and conse-
quently choosing to sabotage collaboration will no longer be an optimal policy to maximize Expr. 16.

Despite the importance of using pMSTART as a starting state for data collection being questionable,
we take inspiration from CoMeDi’s maximization of V (s|π,BR(π)) outside of states from pSP. We
argue that maximizing V (s|π−i,BR(π−i)) is a key component towards making π−i act in good faith
by always choosing actions yielding optimal collective returns assuming BR(π−i) is substituted
as the partner policy. Unlike CoMeDi, ROTATE maximizes V (s|π−i,BR(π−i)) on trajectories
gathered from a starting state from pXP (i.e., SXP states) instead of pMSTART, which results in the
second term of Expr. 10. We formulate this objective to encourage π−i to act in good faith in states
sampled from pXP, which is visited while π−i interacts with πego. Since π−i is not sabotaging
πego by selecting actions that make collaboration impossible in pXP, the ego policy learning process
becomes less challenging. We conjecture that this leads to πego with better performances as indicated
in Figure 3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

While Figure 3 compares ROTATE with CoMeDi, Figure 6a compares ROTATE with a modified
CoMeDi approach that now follows the open-ended training framework described in Algorithm 1.
In this modified version of CoMeDi, we train a newly generated teammate policy to maximize Eq. 16
while substituting πcomp with the trained πego. Rather than promoting meaningful differences with
previously generated teammate policies, this creates a teammate policy that maximizes the ego agent
policy’s per-trajectory regret while mitigating self-sabotage. This version of CoMeDi’s teammate
generation objective within the ROTATE open-ended framework is visualized in Figure 5.

C.2 ALTERNATIVES ESTIMATORS FOR PER-STATE REGRET

This section discusses the approach employed by ROTATE in Algorithm 2 to estimate the per-state
regret objective under a specific distribution, as well as an alternative estimation method. Experi-
ments comparing the two approaches are also presented and discussed.

Recall that the per-state regret under states sampled from a distribution D is defined as:

Es∼D[CR(πego, π−i, s)] = Es∼D
[
V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego)] (17)

= Es∼D
[
V
(
s|π−i, BR(π−i)

)]︸ ︷︷ ︸
SP return

−Es∼D
[
V
(
s|π−i, πego)]︸ ︷︷ ︸

XP return

. (18)

In practice, we can use the policy gradient method to maximize regret by estimating the self-play
returns and cross-play returns in Eq. 18 using the n-step return, Monte Carlo-based return-to-go
estimate, or generally any variant of the advantage function estimator. The choice of return esti-
mates affects the result of our teammate generation process through the bias-variance tradeoff when
estimating regret. Combined with the potentially different choices of D, we can design different
variants of ROTATE based on how regret is estimated.

ROTATE Per-State Regret: Line 14 in Algorithm 2 and Eq. 11 outline how ROTATE maximizes
per-state regret in states visited during XP interaction (denoted by pXP), where SP and XP returns
are estimated via a trained critic and a 1-step return estimate, respectively. As a reminder, ROTATE
employs the following regret target function to train the regret-maximizing teammate policy on XP
states, with an analogously defined target function for SP states:

Es∼pXP

 Vσ−i,BR(s)︸ ︷︷ ︸
SP return estimate

− (r + γVσ−i,ego(s′))︸ ︷︷ ︸
XP return estimate

 . (19)

We maximize regret in states sampled from pXP and pSP to encourage the design of teammate policies
that provide a learning challenge while also acting in good faith, thereby maximizing cooperative
returns assuming interactions with its best-response policy, while interacting with the ego agent’s
policy. Our discussion here focuses on computing Eq. 19 for brevity. However, a similar approach
can be used to train a critic network to estimate regret in SP states accurately. The only difference
lies in the use of states sampled from pSP and pXSP for training the critic network.

Despite potentially providing biased estimates, training a value function to estimate self-play returns
can reduce the variance caused by environment stochasticity, compared to a Monte Carlo return-to-
go estimate.

The critic network estimating teammate-BR returns, Vσ−i,BR(s), is trained on interactions initialized
from XP, as shown in Line 16 of Algorithm 2. This enables the teammate-BR critic network to
accurately estimate SP returns from pXP states. Meanwhile, a 1-step estimate of XP returns is made
possible by storage of rewards experienced during XP interactions (Line 5 of Algorithm 2) and the
training of a value function to estimate XP returns (Line 17 of Algorithm 2). Utilizing a 1-step
estimate produces lower variance than using a Monte Carlo-based return-to-go estimate, while also
yielding less bias than predicting returns solely based on the trained critic network’s value.

Estimating Per-State Regret via Monte Carlo Returns: An alternative approach for estimating is
to use a Monte Carlo-based return-to-go estimate for both SP and XP return estimates. Assuming
that both interaction starts from states encountered during XP interaction, the policy updates under

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

this alternative approach maximize the following target function:

Est∼0.5pXP+0.5pSP

Eat′∼[BR(π−i),π−i],P

[∞∑
t′=t

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[∞∑
l=0

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
XP return estimate

 .
(20)

We refer to this as the Monte Carlo per-state regret. However, starting both SP and XP interactions
from all states visited in XP can be computationally prohibitive. More importantly, the Monte
Carlo-based return-to-go estimates of SP and XP returns have high variance, especially when the
environment transition function and the trained policies are highly stochastic.

Estimating Per-State Regret via Generalized Advantage Estimators: A final approach for es-
timating Eq. 17 is to substitute both return-to-go estimates in Expr. 20 with a generalized advantage
estimator (Schulman et al., 2015) based on SP and XP interactions. This results in the maximization
of the following target function during the teammate policy updates:

Est∼0.5pXP+0.5pSP


Eat′∼[BR(π−i),π−i],P

[∞∑
t′=t

(γλ)t
′
δ−i,BR
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[∞∑
t′=t

(γλ)t
′
δ−i,ego
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
XP return estimate


,

(21)
where we define δ−i,BR

t and δ−i,ego
t as:

δ−i,BR
t = rt + γVσ−i,BR(st+1)− Vσ−i,BR(st),

δ−i,ego
t = rt + γVσ−i,ego(st+1)− Vσ−i,ego(st).

We refer to an instance of the ROTATE algorithm that maximizes regret using this target function
as ROTATE with GAE per-state regret. In practice, we collect data for SP GAE maximization and
XP GAE minimization by first independently sampling two collections of states fromDSXP andDXP
respectively. Next, the states sampled from DSXP are used to maximize the GAE from SXP interac-
tions, while states sampled from DXP are utilized to minimize the GAE from XP interactions. The
γ and λ parameters used during the computation of the generalized advantage estimator are mecha-
nisms to regulate the bias and variance of the regret estimation (Schulman et al., 2015), effectively
providing a different bias-variance tradeoff compared to the previously mentioned methods.

C.3 EXPERIMENTAL COMPARISONS OF ROTATE TEAMMATE GENERATION OBJECTIVES

Figure 6a compares the version of ROTATE presented in the main paper and Algorithm 2, to RO-
TATE with GAE per-state regret, and a version of ROTATE where expected returns are maxi-
mized in states sampled from pMP rather than pSXP, which resembles the mixed-play objective of
CoMeDi (Sarkar et al., 2023). We do not implement the Monte Carlo per-state regret estimation
approach described above, as it is impractical and unlikely to yield better results than using value
functions to estimate regret. ROTATE and ROTATE with GAE regret yield mixed results as nei-
ther approach consistently beats the other in all environments. We suspect this is caused by the
policy gradient’s different bias and variance levels when estimating regret using these two methods.
Meanwhile, ROTATE’s maximization of returns in states from pSXP leads to higher normalized re-
turns than maximizing CoMeDi’s mixed-play objective in all environments except for Overcooked’s
Asymmetric Advantages (AA) setting. Following the difference in starting states of trajectories for
which these two maximize self-play returns, we conjecture that this is because ROTATE empiri-
cally teammate policies with good faith in states from pXP while the CoMeDi-like approach imposes
the same thing in states from pMSTART. Imposing good faith within policies in pXP is likely more
important for training an ego agent that initially interacts with π−i during training by visiting states
from pXP.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

LBF CR AA CC CoR FC0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
No

rm
al

ize
d

Re
tu

rn

ROTATE
ROTATE+CoMeDi MP
ROTATE (GAE regret)

(a) ROTATE vs ROTATE with CoMeDi’s mixed-
play (MP) objective and ROTATE with GAE regret.

LBF CR AA CC CoR FC0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
No

rm
al

ize
d

Re
tu

rn

ROTATE
PPO on ROTATE pop
ROTATE w/o population

(b) ROTATE compared to an independently trained
ego agent on ROTATE’s population and an ablation
of ROTATE without the population.

Figure 6: The mean normalized returns of ROTATE and various ablations designed to evaluate the effec-
tiveness of ROTATE’s regret-based teammate generation objective and population-based ego agent training
procedure.

C.4 TRAINING AN INDEPENDENT EGO AGENT ON THE ROTATE POPULATION

Two-stage AHT algorithms first generate a population of teammates, and next train an ego agent
against the population. Although ROTATE’s teammate generation mechanism relies on the learn-
ing process of a particular ego agent, here, we investigate whether the population generated by
ROTATE is useful for training independently generated ego agents. Fig. 6b compares the mean
evaluation returns of the ROTATE ego agent against the mean evaluation returns of an indepen-
dently trained ego agent that was trained using the same configuration as ROTATE. In 3/6 tasks,
the ROTATE ego agent outperforms the trained ego agent, while in two tasks, the two ego agents
perform similarly (LBF and FC). This result suggests that the ROTATE population is a useful popu-
lation of teammates even independent of the particular ego agent generated. The strong performance
of the independently trained ego agent is unsurprising given that it has two advantages over the RO-
TATE ego agent. First, the independently trained ego agent faces a stationary distribution of training
teammates compared to ROTATE, which faces a nonstationary distribution caused by the popula-
tion growing over learning iterations. Second, the independently trained ego agent interacts with all
teammates uniformly throughout training, while the ROTATE ego agent only trains against earlier
teammates for more iterations than later teammates.

C.5 ROTATE VS BASELINES—RADAR CHARTS

We break down the performance of ROTATE and all baseline methods by individual evaluation
teammate policies as radar charts in Fig. 7. The radar charts show that ROTATE achieves higher
performance across a larger number and variety of evaluation teammates than baselines. The best
baseline, CoMeDi, achieves unusually high returns with the heuristic-based evaluation teammates
on LBF, CR, and CC. We hypothesize that this trend occurs because CoMeDi explicitly optimizes
for novel conventions that do not match existing conventions. However, on these tasks, CoMeDi
does not perform as well as BRDiv teammates, which are trained to maximize the adversarial diver-
sity objective. The radar charts also show that the second-best baseline, FCP, is strong specifically
against IPPO teammates and relatively weaker on heuristics and BRDiv teammates, especially in
CR and CC. As mentioned in the main paper, we attribute FCP’s relative strength on IPPO evalua-
tion teammates to the fact that the IPPO evaluation teammates are closer to the training teammate
distribution constructed by FCP. While FCP is not especially strong against the “IPPO pass" agents
in CC, these agents were trained via reward shaping to solve the task by passing onions across the
counter rather than navigating around the counter, which is the policy found by IPPO without reward
shaping (denoted as “IPPO CC" in the figures).

C.6 LEARNING CURVES

Figure 8 shows learning curves for ROTATE and all ROTATE variations tested in this paper, where
the x-axis is the open-ended learning iteration, and the y-axis corresponds to the mean evaluation

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ippo_mlp (0)

ippo_mlp_s2c0 (2

brdiv-conf1 (0)

brdiv-conf1 (1)brdiv-conf1 (2)

brdiv-conf2 (0)

brdiv-conf2 (1)

seq_agent_lexi

seq_agent_rlexi

seq_agent_col seq_agent_rcol
seq_agent_nearest

seq_agent_farthes

0 0.2
0.4
0.6
0.8
1 1.2

ROTATE
Minimax
PAIRED
FCP
BRDiv
CoMeDi

(a) LBF.

ippo_mlp (0)

ippo_mlp (1)

ippo_mlp (2)
brdiv-conf (0)

brdiv-conf (1)

independent_agent_0.4

independent_agent_0
onion_agent_0.1

plate_agent_0.1

0 0.2
0.4
0.6
0.8
1

(b) Cramped Room.

ippo_mlp_cc (0)

ippo_mlp_cc (1)

ippo_mlp_cc (2)
ippo_mlp_pass (0)

ippo_mlp_pass (1)

ippo_mlp_pass (2)

independent_agent_0

onion_agent_0

plate_agent_0
onion_agent_0.9

plate_agent_0.9

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) Counter Circuit.

ippo_mlp (1)

ippo_mlp (2)

ippo_mlp (3)
brdiv-conf1 (1)

brdiv-conf1 (2)

brdiv-conf2 (0)

independent_agent_0
onion_agent_0

plate_agent_0

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(d) Coordination Ring.

ippo_mlp (0)

ippo_mlp (1)

ippo_mlp (2)
brdiv-conf1 (0)

brdiv-conf1 (2)

brdiv-conf2 (1)

brdiv-conf3 (0)
brdiv-conf3 (2)

independent_agent_0.

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(e) Forced Coordination.

ippo_mlp (0)

ippo_mlp (1)

ippo_mlp (2)
brdiv-conf (0)

brdiv-conf (1)

brdiv-conf (2)

independent_agent_0
onion_agent_0

plate_agent_0

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(f) Asymmetric Advantages.

Figure 7: Normalized mean returns of ROTATE and all baselines across all tasks, broken down by
evaluation teammate in Πeval. Legend shown for LBF applies for all plots.

return. On 4/6 tasks (LBF, CR, CC, and FC), ROTATE has better sample efficiency than variants.
On 3/6 tasks (LBF, CR, and FC), ROTATE dominates variants at almost all points in learning.

C.7 HUMAN PROXY EVALUATIONS

The results in the main paper show that ROTATE is better able to generalize to unseen partners
compared to baseline methods. Here, we evaluate the ability of ROTATE to generalize to human
partners, compared to the best baseline, CoMeDi. The evaluation is conducted with human proxy
teammates generated by behavior cloning on the human gameplay dataset published by (Carroll
et al., 2019). Table 2 shows that ROTATE achieves higher returns in coordination with the human
proxy compared to CoMeDi, across all five Overcooked layouts.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Pe

rc
en

t E
at

en
 (N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(a) LBF.

0 5 10 15 20 25 30
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(b) Asymmetric Advantages.

0 5 10 15 20 25 30
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(c) Cramped Room.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(d) Counter Circuit.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(e) Forced Coordination.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
Ba

se
 R

et
ur

n
(N

or
m

al
ize

d)

ROTATE
ROTATE (per-traj)
ROTATE+CoMeDi MP
ROTATE (GAE regret)
ROTATE w/o population

(f) Coordination Ring.

Figure 8: Learning curves of ROTATE and all variations of ROTATE considered in this paper.
Normalized mean returns and bootstrapped 95% confidence intervals on Πeval are shown.

CR AA CC CoR FC
ROTATE 0.81 (0.78, 0.84) 0.66 (0.63, 0.69) 1.09 (1.05, 1.14) 0.73 (0.71, 0.75) 0.62 (0.57, 0.66)
CoMeDi 0.75 (0.71, 0.78) 0.57 (0.54, 0.59) 0.89 (0.83, 0.95) 0.56 (0.54, 0.59) 0.40 (0.38, 0.43)

Table 2: ROTATE outperforms CoMeDi with the human proxy teammate on all Overcooked layouts.
Normalized returns and bootstrapped 95% CI’s are shown, where the normalization is performed
using the human proxy agent’s self-play returns.

D EXPERIMENTAL TASKS

Experiments in the main paper are conducted on Jax re-implementations of Level-Based Foraging
(LBF) (Albrecht & Ramamoorthy, 2013; Bonnet et al., 2023), and five tasks from the Overcooked
suite—Cramped Room (CR), Asymmetric Advantages (AA), Counter Circuit (CC), Coordination
Ring (CoR), and Forced Coordination (FC) (Carroll et al., 2019; Rutherford et al., 2024b). Each
task is described below.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Level-Based Foraging (LBF) Originally introduced by Albrecht & Ramamoorthy (2013), Level-
Based Foraging is a mixed cooperative-competitive logistics problem where N players interact
within a rectangular grid world to obtain k foods. All players and foods have a positive integer
level, where groups of one to four players may only load (collect) a food if the sum of player levels
is greater than the food’s level. A food’s level is configured so that it is always possible to load it.

We use the Jax re-implementation of LBF by Bonnet et al. (2023), which was based on the imple-
mentation by Christianos et al. (2020). The implementation permits the user to specify the number
of players, number of foods, grid world size, level of observability, and whether to set the food level
equal to the sum to player levels in order to force players to coordinate to load each food.

The experiments in this paper configured the LBF environment to a 7 × 7 grid, where two players
interact to collect three foods. Our LBF configuration is shown in Fig. 9. Each player observes the
full environment state, allowing each player to observe the locations of other agents and all foods
and the number of time steps elapsed in the current episode. Each player has six discrete actions:
up, down, left, right, no-op, and load, where the last action is the special food collection action. A
food may only be collected if the sum of player levels is greater than the level of the food. Since this
paper focuses on fully cooperative scenarios, we set the food level equal to the level of both players,
so all foods require cooperation in order to be collected. When a food is collected, both players
receive an identical reward, which is normalized such that the maximum return in an episode is 0.5.
An episode terminates if an invalid action is taken, players collide, or when 100 time steps have
passed. Player and food locations are randomized for each episode.

Figure 9: Level-based foraging
environment. The apple icons de-
note food. The number on the
icon indicates each player’s and
food’s level. The AHT player is
indicated by the red box.

Overcooked Introduced by Carroll et al. (2019), the Overcooked
suite is a set of two-player collaborative cooking tasks, based on
the commercially successful Overcooked video game. Designed to
study human-AI collaboration, the original Overcooked suite con-
sists of five simple environment layouts, where two agents collab-
orate within a grid world kitchen to cook and deliver onion soups.
While Carroll et al. (2019) introduced Overcooked to study human-
AI coordination, Overcooked has become popularized for AHT re-
search as well (Charakorn et al., 2023; Sarkar et al., 2023; Erlebach
& Cook, 2024).

We use the Jax re-implementation of the Overcooked suite
by Rutherford et al. (2024b), which is based on the original imple-
mentation by Carroll et al. (2019). Later versions of Overcooked
include features such as multiple dish types, order lists, and alterna-
tive layouts, but this paper considers only the five original Over-
cooked layouts: Cramped Room (CR), Asymmetric Advantages
(AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced
Coordination (FC).

The objective for all five tasks is to deliver as many onion soups as
possible, where the only difference between the tasks is the envi-
ronment layout, as shown in Fig. 10. To deliver an onion soup, players must place three onions in a
pot to cook, use a plate to pick up the cooked soup, and send the plated soup to the delivery location.
Each player observes the state and location of all environment features (counters, pots, delivery,
onions, and plates), the position and orientation of both players, and an urgency indicator, which
is 1 if there are 40 or fewer remaining time steps, and 0 otherwise. Each player has six discrete
actions, consisting of the four movement actions, interact, and no-op. The reward function awards
both agents +20 upon successfully delivering a dish, which is the return reported in the experimental
results. To improve sample efficiency, all algorithms are trained using a shaped reward function that
provides each agent an additional reward of 0.1 for picking up an onion, 0.5 for placing an onion
in the pot, 0.1 for picking up a plate, and 1.0 for picking up a soup from the pot with a plate. An
episode terminates after 400 time steps. Player locations are randomized in each episode. In divided
layouts such as AA and FC, we ensure that a player is spawned on each half of the layout.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Cramped
Room.

(b) Coord.
Ring.

(c) Forced Co-
ord.

(d) Asymmetric Advantages. (e) Counter Circuit.

Figure 10: The five classic Overcooked layouts. Each yellow circle is an onion, while white circles are plates.
Grid spaces with multiple yellow (resp. white) circles are onion (resp. plate) piles, which agents must visit to
pick up an onion (or plate). The green square is the delivery location, where finished dishes must be sent to
receive a reward. Black squares denote free space, while adjacent gray spaces are empty counters. A black pot
icon indicates pots, while agents are shown as red and blue pointers. The AHT agent is highlighted.

E IMPLEMENTATION DETAILS

As implementations of prior methods use PyTorch, but this project uses Jax, we re-implemented
all methods in this paper, using PPO (Schulman et al., 2017) with Generalized Advantage Esti-
mation (GAE) (Schulman et al., 2015) as a base RL algorithm and Adam (Kingma & Ba, 2015)
as the default optimizer. An anonymized version of the code is released for reproducibility at
https://anonymous.4open.science/r/rotate/, and we recommend consulting it for
a full understanding of method implementations. Pseudocode for ROTATE is provided in App. A.
This section discusses implementation details such as training time choices, agent architectures, and
key hyperparameters for ROTATE and all baselines.

E.1 TRAINING COMPUTE

For fair comparison, all open-ended methods (ROTATE and all variations, PAIRED, Minimax Re-
turn) were trained for the same number of open-ended learning iterations and a similar number of
environment interactions. For two-stage teammate generation approaches (FCP, BRDiv, CoMeDi),
the teammate generation stage is run using a similar amount of compute as the original implemen-
tations, while the ego agent training stage is run for a sufficiently large number of steps to allow
convergence. We describe the amount of compute used for the teammate generation stage of each
baseline below.

In particular, the FCP population is generated by training 22-23 seeds of IPPO with 5 checkpoints
per seed for a population of approximately 110 agents—similar to Strouse et al. (2021), who trained
32 seeds of IPPO with 3 checkpoints per seed for a population size of 96 agents. On the other hand,
BRDiv was trained with a population size of 3-4 agents, until we observed that each agent’s learn-
ing converged. While we attempted training BRDiv with a larger population size, the algorithm was
prone to discovering degenerate solutions where only 2-3 agents in the population could discover so-
lutions with high SP returns, and all other agents in the population would have zero returns. Finally,
CoMeDi was trained with a population size of 10 agents, until each agent’s learning converged.
We attempted to train CoMeDi with a larger population size, but due to the algorithm’s quadratic
complexity in the population size, its runtime surpassed the available time budget. Nevertheless, the
population size of 10 forms a reasonable comparison to ROTATE because (1) the original paper
used a population size of 8 for all Overcooked tasks, and (2) the configuration of CoMeDi in this
paper runs for a similar wall-clock time as ROTATE.

E.2 AGENT ARCHITECTURES

For all methods considered in this paper, agents are implemented using neural networks and an
actor-critic architecture, as is standard for PPO-based RL algorithms. All AHT methods implement
policies without parameter sharing (Christianos et al., 2020), to enable greater behavioral diversity.
Specifics for ego agents, teammates, and best response agents are described below.

As mentioned in the main paper, ego agents are history-conditioned. Thus, ego agents are imple-
mented with the S5 actor-critic architecture, a recently introduced recurrent architecture shown to

27

https://anonymous.4open.science/r/rotate/

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

have stronger long-term memory than prior types of recurrent architectures. Another advantage
of the S5 architecture over typical recurrent architectures (e.g., LSTMs) is that it is parallelizable
during training, allowing significant speedups in Jax (Lu et al., 2023).

On the other hand, teammates and best response agents are state-based. Best response agents are
implemented with fully connected neural networks. Teammates are also based on fully connected
neural networks, but the precise architecture varies based on the algorithm. For methods where
the teammate only interacts with itself (FCP) or with the ego agent (Minimax Return), a standard
actor-critic architecture is used. However, for open-ended learning methods that optimize regret
(ROTATE and PAIRED), or for teammate generation methods that optimize adversarial diversity
(ComeDi and BRDiv), teammates must estimate returns when interacting with multiple agents.
Thus, for these methods, the teammate architecture includes a critic for each type of interaction.

In particular, for ROTATE and PAIRED, the teammate must estimate returns when interacting with
the ego agent and its best response, and so it maintains a critic network for each partner type. For
CoMeDi and BRDiv, given a population with n agents, each teammate must estimate the return
when interacting with the other n − 1 agents in the population. As it would be impractical to
maintain n − 1 critics for each teammate, the teammate instead uses a critic that conditions on
the agent ID of a candidate partner agent—in effect, implementing the n − 1 critics via parameter
sharing (Christianos et al., 2020).

Task LBF CR AA CC CoR FC
Timesteps 3e5, 1e6 1e6 1e6 1e6, 3e6 3e6 1e6, 3e6,

1e7
Number
envs

8, 16 8, 16 8 8, 16 8 8

Epochs 7, 15 15 15 15, 30 15 15
Minibatches 4, 8 4, 8, 16,

32
16 16 16 16

Clip-Eps 0.03, 0.05 0.03, 0.05,
0.10, 0.15,
0.2, 0.3

0.2, 0.3 0.1, 0.2 0.1, 0.2,
0.3

0.1, 0.2

Ent-Coef 5e-3, 0.01,
0.03, 0.05

5e-3, 0.01,
0.03, 0.05

0.01, 0.02 0.01, 0.03,
0.05

0.001,
0.01, 0.05

0.01, 0.05

LR 1e-4 1e-4 1e-4, 1e-3 1e-4, 1e-3 1e-4, 5e-4,
1e-3

1e-4, 5e-4,
1e-3

Anneal
LR

true, false true, false true true, false true true

Table 3: Hyperparameters for IPPO.

LBF CR AA CC CoR FC
Timesteps 4.5e7 4.5e7 4.5e7 9e7 9e7 9e7
XP Coefficient 0.1, 0.75, 1, 10 1, 10 10 0.01, 10 0.01, 10 0.01, 0.1, 0.5, 1, 10
Population size 3, 4, 5, 10 2, 3, 4, 5 3, 4 3, 4 3, 4 3, 4
Num Envs 8, 32 8, 32 8, 32 8, 32 8, 32 8, 32
LR 1e-4, 5e-4 1e-4 1e-4 1e-3 1e-3, 5e-4 1e-3, 5e-4
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Clip-Eps 0.03, 0.05 0.05, 0.2 0.3 0.01, 0.1 0.05, 0.1 0.05, 0.1

Table 4: Hyperparameters for the teammate generation stage of BRDiv.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

LBF CR AA CC CoR FC
OEL Iterations 30 30 30 20 20 20
Num Envs 16 16 16 16 16 16
Regret-SP
Weight

1, 2 1, 3 1, 2 1, 2 1, 2 1, 2

Minibatches 4, 8 8 8 8 8 8
Timesteps per
Iter (Ego)

2e6 2e6 2e6 6e6 6e6 6e6

Epochs (Ego) 5, 10, 20 10, 15 10 10 10 5, 10
Ent-Coef (Ego) 1e-4, 1e-3,

0.01, 0.05
1e-4, 1e-3,
1e-2

1e-3, 0.01 1e-3, 0.05 1e-3, 0.05 1e-4, 1e-3,
1e-2

LR (Ego) 5e-5, 1e-4,
1e-3

1e-5, 3e-5,
5e-5, 1e-4

1e-5, 3e-5,
5e-5, 1e-4

3e-5, 5e-5,
1e-3

1e-5, 3e-5,
5e-5, 1e-3

8e-6, 1e-5,
3e-5, 5e-5,
1e-4

Eps-Clip (Ego) 0.05, 0.1 0.1, 0.2 0.1, 0.3 0.1 0.1 0.1
Anneal LR (Ego) true, false true, false true, false true, false true, false true, false
Timesteps per
Iter (T)

1e7 6e6 6e6 1.6e7 1.6e7 1.6e7

Epochs (T) 20 20 20 20 20 20
Ent-Coef (T) 0.05, 0.01 0.01 0.01 0.05 0.05 0.01, 0.05
LR (T) 1e-4, 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3, 1e-4
Clip-Eps (T) 0.1 0.1, 0.2 0.3 0.1 0.1 0.1, 0.2
Anneal LR (T) true, false true, false false false false true, false

Table 5: Hyperparameters for ROTATE. Hyperparameters specific to the teammate training process
are marked by "(T)".

LBF CR AA CC CoR FC
Total Timesteps 3e7 3e7 3e7 6e7 6e7 6e7
Num Envs 8 8 8 8 8 8
LR 5e-5 5e-5 5e-5 5e-5 3e-5 1e-5
Epochs 10 10 10 10 10 5
Minibatches 4 4 4 4 4 4
Ent-Coef 1e-4 1e-3 1e-3 1e-3 1e-3 1e-4
Clip-Eps 0.1 0.1 0.1 0.1 0.1 0.1
Anneal LR false false true true true true

Table 6: Hyperparameters for PPO ego agent for all teammate generation methods.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

LBF CR AA CC CoR FC
Timesteps Per Agent 2e6 2e6 2e6 4e6 4e6 4e6
Num Seeds 23 23 23 22 22 22
Num Checkpoints 5 5 5 5 5 5
Num Envs 8 8 8 8 8 8
LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 16 16 16 16 16
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1
Anneal LR true true true true true true

Table 7: Hyperparameters for teammate generation stage of FCP.

LBF CR AA CC CoR FC
Timesteps Per Iteration 6e6 6e6 6e6 1e7 1e7 1e7
Population Size 10 10 10 10 10 10
Num Envs 16 16 16 16 16 16
LR 5e-4 1e-4 1e-4 1e-3 5e-4 5e-4
Epochs 15 15 15 15 15 15
Minibatches 8 8 8 8 8 8
Ent-Coef 1e-3 0.01 0.01 0.05 0.1 0.01
Eps-Clip 0.05 0.05 0.3 0.01 0.05 0.05
Anneal LR false false false false false false
α 0.2 1.0 1.0 1.0 1.0 1.0
β 0.4 0.5 0.5 0.5 0.5 0.5

Table 8: Hyperparameters for the teammate generation stage of CoMeDi.

LBF CR AA CC CoR FC
Timesteps 7.5e7 7.5e7 7.5e7 1.5e8 1.5e8 1.5e8
Num Seeds 5 5 5 5 5 5
Num Checkpoints 10 10 10 10 10 10
Num Envs 16 16 16 16 16 16
LR 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 8 8 8 8 8
Ent-Coef 0.05 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.1 0.2 0.3 0.1 0.1 0.1
Anneal LR false false false false false false

Table 9: Hyperparameters for PAIRED.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

LBF CR AA CC CoR FC
OEL Iterations 30 30 30 20 20 20
Num Envs 16 16 16 16 16 16
Timesteps Per Iter (Ego) 1e6 1e6 1e6 3e6 3e6 3e6
Timesteps Per Iter (T) 1e6 1e6 1e6 3e6 3e6 3e6
LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 8 8 8 8 8
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1
Anneal LR false false false false false false

Table 10: Hyperparameters for Minimax Return. Hyperparameters specific to the teammate training
process are marked by "(T)".

E.3 HYPERPARAMETERS

This section presents the hyperparameters for ROTATE (Table 5), baseline methods (Tables 4 and 6
to 10), and training evaluation teammates with IPPO (Table 3). Note that hyperparameters for the
two-stage teammate generation methods are presented in separate tables, where those corresponding
to the shared ego agent training stage are presented in Table 6. All experiments in the paper were
performed with a discount factor of γ = 0.99 and λGAE = 0.95.

Hyperparameters were searched for IPPO, BRDiv, and ROTATE, in that order, with the search for
earlier methods informing initial hyperparameter values for later methods. Based on prior experience
with PPO, we primarily searched the number of environments, epochs, minibatches, learning rate,
entropy coefficient, the epsilon used for clipping the PPO objective, and whether to anneal the
learning rate. For each hyperparameter, the searched values are listed in the tables, and selected
values are bolded. We performed the search manually, typically varying one parameter over the
listed range while holding others fixed, and varying parameters jointly only when varying one at a
time did not yield desired results.

Due to compute constraints, hyperparameters for FCP, CoMeDi, PAIRED, and Minimax Return
were set based on knowledge of appropriate ranges gained from doing the hyperparameter searches
over IPPO, BRDiv, and ROTATE.

F EVALUATION TEAMMATE DETAILS

As described in Section 7 of the main paper, evaluation teammates were constructed using three
strategies: training IPPO teammates in self-play using varied seeds and reward shaping, training
teammates with BRDiv, and manually programming heuristic agents. Note that the evaluation team-
mates trained using IPPO and BRDiv were trained using different seeds than those used for training
ROTATE and baseline methods.

The teammate construction procedure results in distinct teammate archetypes. Generally, IPPO
agents execute straightforward, return-maximizing strategies. On the other hand, since BRDiv
agents are trained to maximize self-play returns with their best response partner and to minimize
cross-play returns with all other best response policies in the population, the generated teammates
display more adversarial behavior compared to IPPO and heuristics. Coefficients on the SP and XP
returns were carefully tuned to ensure that the behavior was not too adversarial, which we opera-
tionalized as teammates where the SP returns were high, but the XP returns were near zero.

Finally, the manually programmed heuristic agents have a large range of skills and levels of deter-
minism. The LBF heuristics are planning-based agents that deterministically attempt to collect the
apples in a specific order. Given a best response partner, the LBF heuristics can achieve the opti-
mal task return in LBF. The Overcooked heuristics execute pre-programmed roles that are agnostic

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Name Description Est. BR Return
brdiv_conf1(0) Teammate trained by BRDiv. 97.396
brdiv_conf1(1) - 100.0
brdiv_conf1(2) - 89.583
brdiv_conf2(0) - 100.0
brdiv_conf2(1) - 62.5

ippo_mlp(0) Teammate trained by IPPO to maximize return. 100.0
ippo_mlp_s2c0(2,0) An intermediate checkpoint of a teammate trained

by IPPO to maximize return.
96.354

seq_agent_col Planning agent that collects food in column-major
order (left to right, top to bottom).

100.0

seq_agent_rcol Planning agent that collects food in reverse
column-major order (right to left, bottom to top).

100.0

seq_agent_lexi Planning agent that collects food in lexicographic
order (top to bottom, left to right).

100.0

seq_agent_rlexi Planning agent that collects food in reverse lexi-
cographic order (bottom to top, right to left).

100.0

seq_agent_nearest Planning agent that collects food in nearest to far-
thest order, based on the Manhattan distance from
the agent’s initial position.

100.0

seq_agent_farthest Planning agent that collects food in farthest to
nearest order, based on the Manhattan distance
from the agent’s initial position.

100.0

Table 11: Evaluation teammates for LBF and estimated best response returns (percent eaten). Hy-
phens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
brdiv_conf(0) Teammate trained by BRDiv. 214.063
brdiv_conf(1) - 240.940
ippo_mlp(0) Teammate trained by IPPO to maximize return. 256.875
ippo_mlp(1) - 253.750
ippo_mlp(2) - 249.686

independent_agent_0.4 Agent programmed to cook and deliver soups. If
holding item, 40% chance of placing item on the
counter.

197.188

independent_agent_0 Agent programmed to cook and deliver soups. 132.50
onion_agent_0.1 Agent programmed to place onions in non-full

pots. If holding item, 10% chance of placing item
on counter.

146.875

plate_agent_0.1 Agent programmed to plate finished soups and de-
liver. If holding item, 10% chance of placing item
on counter.

191.250

Table 12: Evaluation teammates for Cramped Room and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Name Description Est. BR Return
brdiv_conf(0) Teammate trained by BRDiv. 286.875
brdiv_conf(1) - 335.625
brdiv_conf(2) - 333.750
ippo_mlp(0) Teammate trained by IPPO to maximize return. 382.50
ippo_mlp(1) - 369.375
ippo_mlp(2) - 312.50

independent_agent_0 Agent programmed to cook and deliver soups. 308.125
onion_agent_0 Agent programmed to place onions in non-full pots. 301.250
plate_agent_0 Agent programmed to place onions in non-full pots. 285.0

Table 13: Evaluation teammates for Asymmetric Advantages and estimated best response returns.
Hyphens indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
ippo_mlp_cc(0) Teammate trained by IPPO to maximize return. Nav-

igates counterclockwise around counter.
200.625

ippo_mlp_cc(1) - 198.120
ippo_mlp_cc(2) - 194.375

ippo_mlp_pass(0) Teammate trained by IPPO+reward shaping to pass
onions across the counter.

137.813

ippo_mlp_pass(1) - 103.125
ippo_mlp_pass(2) - 170.0

independent_agent_0 Agent programmed to cook and deliver soups. 77.189
onion_agent_0.9 Agent programmed to place onions in non-full pots. If

holding item, 90% chance of placing item on counter.
80.0

onion_agent_0 Agent programmed to place onions in non-full pots. 81.563
plate_agent_0.9 Agent programmed to plate finished soups and de-

liver. If holding item, 90% chance of placing item
on counter.

97.189

plate_agent_0 Agent programmed to place onions in non-full pots. 76.875

Table 14: Evaluation teammates for Counter Circuit and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
brdiv_conf1(1) Teammate trained by BRDiv. 161.250
brdiv_conf1(2) - 183.440
brdiv_conf2(0) - 142.810

ippo_mlp(1) Teammate trained by IPPO to maximize return. 249.688
ippo_mlp(2) - 246.560
ippo_mlp(3) - 246.560

independent_agent_0 Agent programmed to cook and deliver soups. 136.250
onion_agent_0 Agent programmed to place onions in non-full pots. 72.50
plate_agent_0 Agent programmed to place onions in non-full pots. 110.938

Table 15: Evaluation teammates for Coordination Ring and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Name Description Est. BR Return
brdiv_conf1(0) Teammate trained by BRDiv. 131.560
brdiv_conf1(2) - 184.690
brdiv_conf2(1) - 143.750
brdiv_conf3(0) - 71.250
brdiv_conf3(2) - 174.690

ippo_mlp(0) Teammate trained by IPPO to maximize return. 220.0
ippo_mlp(1) - 214.380
ippo_mlp(2) - 225.620

independent_agent_0.6 Agent programmed to cook and deliver soups. If
holding item, 60% chance of placing item on the
counter.

81.250

Table 16: Evaluation teammates for Forced Coordination and estimated best response returns. Hy-
phens indicate that the agent description is the same as the previous description.

to the layout and some basic collision-avoidance logic. The "onion" heuristic collects onions and
places them in non-full pots. The "plate" heuristic plates soups that are ready, and delivers them.
The "independent" heuristic attempts to fulfill both roles by itself. All three heuristic types have a
user-specified parameter that defines the probability that the agent places whatever it is holding on
a nearby counter. The feature serves two purposes: first, it creates a larger space of behaviors, and
second, it allows the heuristics to work for the FC task, where the agent in the left half of the kitchen
must pass onions and plates to the right, while the agent in the right half must pick up resources
from the dividing counter, cook soup, and deliver.

Descriptions of the evaluation teammates for each task and estimated best response returns are pro-
vided in Tables 11 to 16.

Evaluation Return Normalization Details. The lower return bound is set to zero since a poor
teammate could always cause a zero return in all tasks considered. Ideally, the upper return bounds
would be the returns achieved with the theoretically optimal best response teammate for each evalu-
ation teammate. To approximate this, we instead set the upper bound equal to the maximum average
return achieved by any method, for each evaluation teammate.

As described in Section 7, our normalized return metric is similar to the BRProx metric recom-
mended by Wang et al. (2024b). The main difference is that we aggregate results using the mean
rather than the interquartile mean (IQM), due to challenges around determining appropriate upper
bounds for return normalization. In particular, during method development, we used looser BR re-
turn estimates to perform return normalization, leading to normalized returns often surpassing 1.0
for certain teammates. Under such conditions, aggregating results using the IQM led to entirely
dropping results corresponding to particular teammates.

G COMPUTE INFRASTRUCTURE

Experiments were performed on two servers, each with the following specifications:

• CPUs: two Intel(R) Xeon(R) Gold 6342 CPUs, each with 24 cores and two threads per core.
• GPUs: four NVIDIA A100 GPUs, each with 81920 MiB VRAM.

The experiments in this paper were implemented in Jax and parallelized across seeds. On the servers
above, each method took approximately 4-6 hours of wall-clock time to run.

34

	Algorithms
	Framework for Open Ended Ad Hoc Teamwork
	ROTATE Algorithm

	Baselines Overview
	Computational Complexity of ROTATE versus Teammate Generation Baselines

	Supplemental Results
	Discussion of CoMeDi and Mixed Play
	Alternatives Estimators for Per-State Regret
	Experimental Comparisons of ROTATE Teammate Generation Objectives
	Training an Independent Ego Agent on the ROTATE Population
	ROTATE vs Baselines—Radar Charts
	Learning Curves
	Human Proxy Evaluations

	Experimental Tasks
	Implementation Details
	Training Compute
	Agent Architectures
	Hyperparameters

	Evaluation Teammate Details
	Compute infrastructure

