
ARB-LLM: ALTERNATING REFINED BINARIZATIONS
FOR LARGE LANGUAGE MODELS

CONTENTS

A First-order ARB-X and ARB-RC 2

A.1 First-order ARB-X . 2

A.2 First-order ARB-RC . 4

B Second-order ARB, ARB-X, and ARB-RC 5

B.1 Second-order ARB . 6

B.2 Second-order ARB-X . 7

B.3 Second-order ARB-RC . 10

C Proof of Theorem 1 12

D Proof of Theorem 2 14

E Memory Computation 14

F Visualization during Alternating Refinement 16

F.1 Distribution Shift . 16

F.2 Column-wise Quantization Error . 16

F.3 Binarization Parameters . 16

G More Experimental Results 16

H Dialog Examples 19

I Limitations 21

1

A FIRST-ORDER ARB-X AND ARB-RC

A.1 FIRST-ORDER ARB-X

First-order Alternating Refined Binarization with Calibration Data (ARB-X) is based on the weight-
activation quantization error L = ||WX− ŴX||2F .

Rewritten weight-activation quantization error We first rewrite the quantization error L to
decouple W and X, reducing the computational cost when calculating the quantization error. We
define W̃ as W̃ = W − µ. Then we rewrite the quantization error as

L = ||WX− ŴX||2F (1)

= ||X(W̃ − αB)⊤||2F (2)

=
∑
i

∑
j

(
∑
b

∑
k

(Xb)ik(W̃jk − αjBjk))
2. (3)

Then, we define the residual matrix as R = W − µ− αB and further simplify L:

L =
∑
i

∑
j

(
∑
b

∑
k

(Xb)ikRjk)
2 (4)

=
∑
i

∑
j

(
∑
b

∑
k

∑
l

(Xb)ik(Xb)ilRjkRjl) (5)

=
∑
k

∑
l

(
∑
b

∑
i

(Xb)ik(Xb)il)(
∑
j

RjkRjl). (6)

After that, we define the matrix S using the following formula:

Skl =
∑
b

∑
i

(Xb)ik(Xb)il, (7)

where k = 1, 2, . . . ,m, l = 1, 2, . . . ,m. Then we obtain the final simplified L as

L = ⟨S,R⊤R⟩F = Tr(RSR⊤). (8)

Parameter Update We use the quantization error L to update µ:

L =
∑
k

∑
l

Skl

∑
j

RjkRjl (9)

=
∑
k

∑
l

Skl

∑
j

(W̃jkW̃jl − αj(BjkW̃jl +BjlW̃jk) + α2
jBjkBjl) (10)

=
∑
k

∑
l

Skl

∑
j

((Wjk − µj)(Wjl − µj)− αj(Bjk(Wjl − µj) (11)

+Bjl(Wjk − µj)) + α2
jBjkBjl). (12)

To obtain the optimal solution for µ, we take the partial derivative of L with respect to µj , where
j = 1, 2, . . . , n:

∂L
∂µj

=
∑
k

∑
l

Skl(−Wjl −Wjk + 2µj + αjBjk + αjBjl). (13)

We set ∂L
∂µj

= 0 to get the optimal solution for µj :

µj =

∑
k

∑
l Skl(Wjk − αjBjk +Wjl − αjBjl)

2
∑

k

∑
l Skl

, where j = 1, 2, . . . , n. (14)

2

Then, we define the matrix P as:

Pkl = Wjk − αjBjl, where k = 1, 2, . . . ,m, l = 1, 2, . . . ,m. (15)

After that, we can simplify µj as

µj =

∑
k

∑
l(S⊙ (P+P⊤))kl
2
∑

k

∑
l Skl

, where j = 1, 2, . . . , n. (16)

Since S is symmetric, we can further simplify the above equation as:

µj =

∑
k

∑
l(S⊙P)kl∑

k

∑
l Skl

, where j = 1, 2, . . . , n. (17)

We can also express µ in a more compact vector form:

µ =
1⊤S(W − αB)⊤

1⊤S1
. (18)

Similarly, we use the same quantization error to update α:

L =
∑
k

∑
l

Skl

∑
j

RjkRjl (19)

=
∑
k

∑
l

Skl

∑
j

(W̃jkW̃jl − αj(BjkW̃jl +BjlW̃jk) + α2
jBjkBjl). (20)

To obtain the optimal solution for α, we take the partial derivative of L with respect to αj , where
j = 1, 2, . . . , n:

∂L
∂αj

=
∑
k

∑
l

Skl(2BjkBjlαj − (BjkW̃jl +BjlW̃jk)). (21)

We set ∂L
∂αj

= 0 to get the optimal solution for αj :

αj =

∑
k

∑
l Skl(BjkW̃jl +BjlW̃jk)

2
∑

k

∑
l Skl(BjkBjl)

, where j = 1, 2, . . . , n. (22)

Then, we define the matrix U and V as:

Ukl = BjkW̃jl, Vkl = BjkBjl, (23)

where k = 1, 2, . . . ,m, l = 1, 2, . . . ,m. After that, we simplify αj using U and V:

αj =

∑
k

∑
l(S⊙ (U+U⊤))kl

2
∑

k

∑
l(S⊙V)kl

. (24)

Since S is symmetric, we can further simplify the above equation as

αj =

∑
k

∑
l(S⊙U)kl∑

k

∑
l(S⊙V)kl

. (25)

We can also express α in a more compact vector form:

α =
diag(BS(W − µ)⊤)

diag(BSB⊤)
. (26)

For the detailed pseudocode of first-order ARB-X, see Algorithm 1.

3

Algorithm 1 First-Order Alternating Refined Binarization with Calibration Data

func ARB-X1(W, M, X ,T)
Input: W ∈ Rn×m - full-precision weight

M ∈ Rn×m - group mask
X ∈ RB×L×m - calibration data
T - iteration rounds

Output: Ŵ ∈ Rn×m

1: S := X2S(X) // S ∈ Rm×m

2: Ŵ, α,B, µ := binary(W,M)
3: for iter = 1, 2, . . . , T do
4: µ← refine µ(S,W,B, α,M)
5: α← refine α(S,W, µ,B,M)

6: Ŵ← (α ·B+ µ)⊙M
7: end for
8: return Ŵ

func binary (W,M)

1: µ := 1
m

∑m
j=1(W ⊙M).j

2: W̃ := W − µ

3: α := 1
m

∑m
j=1 |(W̃ ⊙M).j |

4: B := sign(W̃ ⊙M)

5: Ŵ := α ·B+ µ

6: return Ŵ, α,B, µ

func X2S (X)

1: for b = 1, 2, . . . B do
2: for k = 1, 2, . . . ,m; l = 1, 2, . . . ,m do

3: Skl =
∑

b

∑
i(Xb)ik(Xb)il

4: end for
5: end for
6: return S

func refine µ (S,W,B, α,M)

1: for i = 1, 2, . . . , n do
2: for k = 1, 2, . . . ,m; l = 1, 2, . . . ,m do
3: Pkl := Wik − αiBil ·Mil

4: end for
5: num :=

∑
k

∑
l(S⊙P)kl

6: den :=
∑

k

∑
l Skl + ϵ

7: µi :=
num
den

8: end for
9: return µ

func refine α (S,W, µ,B,M)

1: W̃ := W − µ
2: for i = 1, 2, . . . , n do
3: for k = 1, 2, . . . ,m; l = 1, 2, . . . ,m do
4: Ukl := (Bik ·Mik)W̃il

5: Vkl := (Bik ·Mik)Bil

6: end for
7: num :=

∑
k

∑
l(S⊙U)kl

8: den :=
∑

k

∑
l(S⊙V)kl + ϵ

9: αi :=
num
den

10: end for
11: return α

A.2 FIRST-ORDER ARB-RC

The first-order ARB-RC is based on the quantization error without calibration data, so in this section,
L is defined as L = ||W− Ŵ||2F . We first perform first-order binarization with the row-wise scaling
factor αr and column-wise scaling factor αc:

αr =
1

m

m∑
j=1

|W.j |, αc =
1

n

n∑
j=1

|Wj.

αr
j

|, B = sign(W). (27)

where we discard the mean µ in this process. Then we obtain Ŵ:

Ŵjk = αr
jα

c
kBjk, where j = 1, 2, . . . , n, k = 1, 2, . . . ,m. (28)

We use the quantization error to update αr:

L = ||W − Ŵ||ℓ2 (29)

=
∑
j

∑
k

(Wjk − αr
jα

c
kBjk)

2 (30)

=
∑
j

∑
k

((Wjk)
2 − 2Wjkα

c
kBjkα

r
j + (αc

k)
2B2

jk(α
r
j)

2). (31)

To obtain the optimal solution for αr, we take the partial derivative of L with respect to αr
j , where

j = 1, 2, . . . , n:
∂L
∂αr

j

=
∑
k

(−2WjkBjkα
c
k + 2(αc

k)
2B2

jkα
r
j). (32)

4

We set ∂L
∂αr

j
= 0 to get the optimal solution for αr

j :

αr
j =

∑
k Wjkα

c
kBjk∑

k(α
c
k)

2B2
jk

, where j = 1, 2, . . . , n. (33)

Then we use the same quantization error to update αc, we take the partial derivative of L with respect
to αc

k, where k = 1, 2, . . . ,m:

∂L
∂αc

k

=
∑
j

(−2WjkBjkα
r
j + 2(αr

j)
2B2

jkα
c
k). (34)

We set ∂L
∂αc

k
= 0 to get the optimal solution for αc

k:

αc
k =

∑
j Wjkα

r
jBjk∑

j(α
r
j)

2B2
jk

. (35)

We can also express αr and αc in a more compact vector form:

αr =
diag(W(αcB)⊤)

diag((αcB)(αcB)⊤)
, αc =

diag(W⊤(αrB))

diag((αrB)⊤(αrB))
. (36)

For the detailed pseudocode of first-order ARB-RC, see Algorithm 2.

Algorithm 2 First-Order Alternating Refined Binarization along Row-Column Axes

func ARB-RC1(W, M, X ,T)
Input: W ∈ Rn×m - full-precision weight

M ∈ Rn×m - group mask
X ∈ RB×L×m - calibration data
T - iteration rounds

Output: Ŵ ∈ Rn×m

1: Ŵ, αr, αc,B := binary rc(W,M)
2: for iter = 1, 2, . . . , T do
3: αr ← refine αr(W,B, αc,M)
4: αc ← refine αc(W,B, αr,M)
5: for k = 1, 2, . . . , n; l = 1, 2, . . . ,m do
6: Ŵkl ← (αr

k · αc
l ·Bkl) ·Mkl

7: end for
8: end for
9: return Ŵ

func binary rc (W,M)

1: αr := 1
m

∑m
j=1 |(W ⊙M).j |

2: αc := 1
n

∑n
j=1 |

(W⊙M)j.
αr

j
|

3: B := sign(W ⊙M)
4: for k = 1, 2, . . . , n; l = 1, 2, . . . ,m do
5: Ŵkl := αr

kα
c
lBkl

6: end for
7: return Ŵ, αr, αc,B

func refine αr (W,B, αc,M)

1: for j = 1, 2, . . . , n do
2: num :=

∑
k Wjkα

c
kBjk ·Mjk

3: den :=
∑

k(α
c
k)

2(Bjk ·Mjk)
2 + ϵ

4: αr
j := num

den
5: end for
6: return αr

func refine αc (W,B, αr,M)

1: for k = 1, 2, . . . ,m do
2: num :=

∑
j Wjkα

r
jBjk ·Mjk

3: den :=
∑

j(α
r
j)

2(Bjk ·Mjk)
2 + ϵ

4: αc
k := num

den
5: end for
6: return αc

B SECOND-ORDER ARB, ARB-X, AND ARB-RC

To achieve higher quantization precision for salient weight, we apply the second-order binarization to
them. To begin with, we perform a second-order binarization on the full-precision weight matrix W:

W1 = W − µ1, whereµ1 =
1

m

m∑
j=1

W.j . (37)

The optimiztion objective for α1 and B1 is:

α∗
1,B

∗
1 = argmin

α1,B1

||W1 − α1B1||2F . (38)

5

We can obtain the optimal solution α∗
1 and B∗

1:

α∗
1 =

1

m

m∑
j=1

|(W1).j |, B∗
1 = sign(W1). (39)

Then, we define the residual matrix W̃1 as W̃1 = W1 − α∗
1 ·B∗

1. Following the previous steps, we
perform binarization on the residual matrix W̃1:

W2 = W̃1 − µ2, whereµ2 =
1

m

m∑
j=1

(W̃1).j . (40)

α∗
2,B

∗
2 = argmin

α2,B2

||W2 − α2B2||2F . (41)

α∗
2 =

1

m

m∑
j=1

|(W̃2).j |, B∗
2 = sign(W2). (42)

µ = µ1 + µ2. (43)

Then we can achieve the binarized matrix Ŵ:

Ŵ = α∗
1 ·B∗

1 + α∗
2 ·B∗

2 + µ. (44)

For a more concise representation of the formula, we adopt the following formula in subsequent
calculations:

Ŵ = α1 ·B1 + α2 ·B2 + µ. (45)

B.1 SECOND-ORDER ARB

For second-order ARB algorithm, we compute the residual matrix R and its row-wise mean δµ:

R = W − Ŵ, δµ =
1

m

m∑
j=1

R.j . (46)

We first use δµ to refine µ:
µ̃ = µ+ δµ. (47)

Then, we sequentially update α1 and α2:

α̃1 =

∑m
j=1 ((B1)⊙ (W − (α2B2)− µ̃)).j∑m

j=1(B1)2.j
, (48)

α̃2 =

∑m
j=1 ((B2)⊙ (W − (α̃1B1)− µ̃)).j∑m

j=1(B2)2.j
. (49)

We can further simplify it into a vectorized form:

α̃1 =
1

m
diag(B⊤

1 (W − µ̃− α2B2)), α̃2 =
1

m
diag(B⊤

2 (W − µ̃− α̃1B1)). (50)

The optimization objectives for B∗
1 and B∗

2 are as follows:

B̃1, B̃2 = argmin
B1,B2

||W − µ̃− α̃1B1 − α̃2B2||ℓ1. (51)

In the implementation, we utilize binary search to optimize them. Then we obtain the refined Ŵ:

Ŵrefine = α̃1 · B̃1 + α̃2 · B̃2 + µ̃. (52)

The detailed pseudocode can be found in Algorithm 3.

6

Algorithm 3 Second-Order Alternating Refined Binarization

func ARB2(W, M, T)
Input: W ∈ Rn×m - full-precision weight

M ∈ Rn×m - group mask
T - iteration rounds

Output: Ŵ ∈ Rn×m

1: W1, α1,B1, µ1 := binary(W,M)
2: W2, α2,B2, µ2 := binary(W −W1,M)
3: µ := µ1 + µ2

4: Ŵ := W1 +W2

5: for iter = 1, 2, ..., T do
6: R := W − Ŵ // residual matrix
7: δµ :=

∑
j(R⊙M).j

8: µ← µ+ δµ // refine mean
9: W̃1 := W − α2B2

10: α1 ← refine alpha(B1,M,W̃1, µ)

11: W̃2 := W − α1B1

12: α2 ← refine alpha(B2,M,W̃2, µ)
13: B1,B2 ← refine B(W, α1, α2, µ)

14: Ŵ← α1 ·B1 + α2 ·B2 + µ
15: end for
16: return Ŵ

func binary (W,M)

1: µ := 1
m

∑m
j=1(W ⊙M).j

2: W̃ := W − µ

3: α := 1
m

∑m
j=1 |(W̃ ⊙M).j |

4: B := sign(W̃ ⊙M)

5: Ŵ := α ·B+ µ

6: return Ŵ, α,B, µ

func refine alpha (B,M,W, µ)

1: num :=
∑

j (B⊙M⊙ (W − µ)).j
2: den :=

∑m
j=1(B ⊙M)2.j + ϵ // avoid zero-

division
3: α := num

den
4: return α

func refine B (W, α1, α2, µ)

1: v := [−α1 − α2,−α1 + α2, α1 − α2, α1 + α2]
// ascending order

2: for i = 1, 2, . . . , n; j = 1, 2, . . . ,m do
3: x := BST(Wij − µi,vi)
4: switch (x)
5: case v1:
6: (B1)ij = −1, (B2)ij = −1
7: case v2:
8: (B1)ij = −1, (B2)ij = +1
9: case v3:

10: (B1)ij = +1, (B2)ij = −1
11: default:
12: (B1)ij = +1, (B2)ij = +1
13: end switch
14: end for
15: return B1,B2

func BST (w,v)

1: l := length(v)
2: if l == 1 then
3: return v1

4: else if w ≥ (vm/2 + vm/2+1)/2 then
5: return BST(w,vm/2+1:m)
6: else
7: return BST(w,v1:m/2)
8: end if

B.2 SECOND-ORDER ARB-X

Based on the previously discussed second-order binarization process, we can obtain the binarized
weights as Ŵ = α1B1 + µ1 + α2B2 + µ2. The second-order ARB-X is based on the quantization
error L with calibration data:

L = ||WX− ŴX||2F . (53)

Rewritten weight-activation quantization error In this section, we rewrite the quantization error
to decouple W and X, reducing the computational cost when calculating the quantization error. We
define W̃ as W̃ = W − (µ1 + µ2). Then we rewrite the quantization error:

L = ||WX− ŴX||2F (54)

= ||X(W̃ − α1B1 − α2B2)
⊤||2F (55)

=
∑
i

∑
j

(
∑
b

∑
k

(Xb)ik(W̃jk − α
(1)
j B

(1)
jk − α

(2)
j B

(2)
jk))

2. (56)

We define the residual matrix R as:

Rjk = W̃jk − α
(1)
j B

(1)
jk − α

(2)
j B

(2)
jk , where j = 1, 2, . . . , n, k = 1, 2, . . . ,m. (57)

7

Then we simplify L with residual matrix R:

L =
∑
i

∑
j

(
∑
b

∑
k

(Xb)ikRjk)
2 (58)

=
∑
i

∑
j

(
∑
b

∑
k

∑
l

(Xb)ik(Xb)ilRjkRjl) (59)

=
∑
k

∑
l

(
∑
b

∑
i

(Xb)ik(Xb)il)(
∑
j

RjkRjl). (60)

After that, we define the matrix S:

Skl =
∑
b

∑
i

(Xb)ik(Xb)il, where k = 1, 2, . . . ,m, l = 1, 2, . . . ,m. (61)

Then we obtain the final simplified L:

L = ⟨S,R⊤R⟩F = Tr(RSR⊤). (62)

Parameter Update We use the quantization error L to update µ:

L =
∑
k

∑
l

Skl

∑
j

RjkRjl (63)

=
∑
k

∑
l

Skl

∑
j

(W̃jk − α
(1)
j B

(1)
jk − α

(2)
j B

(2)
jk)(W̃jl − α

(1)
j B

(1)
jl − α

(2)
j B

(2)
jl) (64)

=
∑
k

∑
l

Skl

∑
j

(W̃jkW̃jl − W̃jkα
(1)
j B

(1)
jl − W̃jkα

(2)
j B

(2)
jl − W̃jlα

(1)
j B

(1)
jk (65)

− W̃jlα
(2)
j B

(2)
jk)

=
∑
k

∑
l

Skl

∑
j

((Wjk − µj)(Wjl − µj)− (Wjk − µj)(α
(1)
j B

(1)
jl + α

(2)
j B

(2)
jl) (66)

− (Wjl − µj)(α
(1)
j B

(1)
jk + α

(2)
j B

(2)
jk)).

To obtain the optimal solution for µ, we take the partial derivative of L with respect to µj , where
j = 1, 2, . . . , n:

∂L
∂µj

=
∑
k

∑
l

Skl(2µj − (Wjk +Wjl) + (α
(1)
j B

(1)
jl +α

(2)
j B

(2)
jl +α

(1)
j B

(1)
jk +α

(2)
j B

(2)
jk)). (67)

We set ∂L
∂µj

= 0 to obtain the optimal solution for µj :

µj =

∑
k

∑
l Skl(Wjk − (α

(1)
j B

(1)
jl + α

(2)
j B

(2)
jl) +Wjl − (α

(1)
j B

(1)
jk + α

(2)
j B

(2)
jk))

2
∑

k

∑
l Skl

, (68)

where j = 1, 2, . . . , n. We define the matrix P:

Pkl = Wjk − (α
(1)
j B

(1)
jl + α

(2)
j B

(2)
jl), where k = 1, 2, . . . ,m, l from 1 to m. (69)

We simplify µj using the matrix P:

µj =

∑
k

∑
l(S⊙ (P+P⊤))kl
2
∑

k

∑
l Skl

, where j = 1, 2, . . . , n. (70)

Since S is symmetric, we can further simplify the above equation as:

µj =

∑
k

∑
l(S⊙P)kl∑

k

∑
l Skl

, where j = 1, 2, . . . , n. (71)

8

We use the quantization error to sequentially update α1 and α2:

L =
∑
k

∑
l

Skl

∑
j

RjkRjl (72)

=
∑
k

∑
l

Skl

∑
j

(W̃jk − α
(1)
j B

(1)
jk − α

(2)
j B

(2)
jk)(W̃jl − α

(1)
j B

(1)
jl − α

(2)
j B

(2)
jl) (73)

To update α1, we take the partial derivative of L with respect to α
(1)
j , where j = 1, 2, . . . , n:

∂L
∂α

(1)
j

=
∑
k

∑
l

Skl(2B
(1)
jk B

(1)
jl α

(1)
j −B

(1)
jk W̃jl−B(1)

jl W̃jk+α
(2)
j B

(1)
jk B

(2)
jl +α

(2)
j B

(1)
jl B

(2)
jk) (74)

We set ∂L
∂α

(1)
j

= 0 to get the optimal solution for α(1)
j :

α
(1)
j =

∑
k

∑
l Skl(B

(1)
jk W̃jl +B

(1)
jl W̃jk −B

(1)
jl α

(2)
j B

(2)
jk −B

(1)
jk α

(2)
j B

(2)
jl)

2
∑

k

∑
l Skl(B

(1)
jk B

(1)
jl)

, (75)

where j = 1, 2, . . . , n. We define the matrix U1 and V1 as:

(U1)kl = B
(1)
jk W̃jl −B

(1)
jk α

(2)
j B

(2)
jl , (V1)kl = B

(1)
jk B

(1)
jl , (76)

where k = 1, 2, . . . ,m, l = 1, 2, . . . ,m. Then we simplify α
(1)
j :

α
(1)
j =

∑
k

∑
l(S⊙ (U1 +U⊤

1))kl
2
∑

k

∑
l(S⊙V1)kl

, where j = 1, 2, . . . , n. (77)

Since S is symmetric, we can further simplify the above equation as

α
(1)
j =

∑
k

∑
l(S⊙U1)kl∑

k

∑
l(S⊙V1)kl

, where j = 1, 2, . . . , n. (78)

Then we update α2, we take the partial derivative of L with respect to α
(2)
j , where j = 1, 2, . . . , n:

∂L
∂α

(2)
j

=
∑
k

∑
l

Skl(2B
(2)
jk B

(2)
jl α

(2)
j −B

(2)
jk W̃jl −B

(2)
jl W̃jk (79)

+ α
(1)
j B

(2)
jk B

(1)
jl + α

(1)
j B

(2)
jl B

(1)
jk).

We set ∂L
∂α

(2)
j

= 0 to get the optimal α(2)
j :

α
(2)
j =

∑
k

∑
l Skl(B

(2)
jk W̃jl +B

(2)
jl W̃jk −B

(2)
jl α

(1)
j B

(1)
jk −B

(2)
jk α

(1)
j B

(1)
jl)

2
∑

k

∑
l Skl(B

(2)
jk B

(2)
jl)

, (80)

where j = 1, 2, . . . , n. We define the matrix U2 and V2 as:

(U2)kl = B
(2)
jk W̃jl −B

(2)
jk α

(1)
j B

(1)
jl , (V2)kl = B

(2)
jk B

(2)
jl , (81)

where k = 1, 2, . . . ,m, l = 1, 2, . . . ,m. We can simplify α
(2)
j using U2 and V2:

α
(2)
j =

∑
k

∑
l(S⊙ (U2 +U⊤

2))kl
2
∑

k

∑
l(S⊙V2)kl

, where j = 1, 2, . . . , n. (82)

Since S is symmetric, we can further simplify the above equation as:

α
(2)
j =

∑
k

∑
l(S⊙U2)kl∑

k

∑
l(S⊙V2)kl

, where j = 1, 2, . . . , n. (83)

The detailed pseudocode can be found in Algorithm 4.

9

Algorithm 4 Second-Order Alternating Refined Binarization with calibration data

func ARB-X2(W, M, X ,T)
Input: W ∈ Rn×m - full-precision weight

M ∈ Rn×m - group mask
X ∈ RB×L×m - calibration data
T - iteration rounds

Output: Ŵ ∈ Rn×m

1: S := X2S(X) // S ∈ Rm×m

2: Ŵ1, α1,B1, µ1 := binary(W,M)

3: Ŵ2, α2,B2, µ2 := binary(W − Ŵ1,M)
4: µ := µ1 + µ2

5: Ŵ := Ŵ1 + Ŵ2

6: B1 ← B1 ⊙M
7: B2 ← B2 ⊙M
8: for iter = 1, 2, . . . , T do
9: µ← refine µ(S,W,B1,B2, α1, α2)

10: α1 ← refine α(S,W, µ,B1,B2, α2)
11: α2 ← refine α(S,W, µ,B2,B1, α1)

12: Ŵ← (α ·B+ µ)⊙M
13: end for
14: return Ŵ

func binary (W,M)

1: µ := 1
m

∑m
j=1(W ⊙M).j

2: W̃ := W − µ

3: α := 1
m

∑m
j=1 |(W̃ ⊙M).j |

4: B := sign(W̃ ⊙M)

5: Ŵ := α ·B+ µ

6: return Ŵ, α,B, µ

func X2S (X)

1: for b = 1, 2, . . . B do
2: for k = 1, 2, . . . ,m; l = 1, 2, . . . ,m do
3: Skl =

∑
b

∑
i(Xb)ik(Xb)il

4: end for
5: end for
6: return S

func refine µ(S,W,B1,B2, α1, α2)

1: for i = 1, 2, . . . , n do
2: for k = 1, 2, . . . ,m; l = 1, 2, . . . ,m do
3: Pkl = Wik − (α

(1)
i B

(1)
il + α

(2)
i B

(2)
il)

4: end for
5: num :=

∑
k

∑
l(S⊙P)kl

6: den :=
∑

k

∑
l Skl + ϵ

7: µi :=
num
den

8: end for
9: return µ

func refine α (S,W, µ,B, B̃, α̃)

1: W̃ := W − µ
2: for i = 1, 2, . . . , n do
3: for k = 1, 2, . . . ,m; l = 1, 2, . . . ,m do
4: Ukl := BikW̃il −Bikα̃iB̃il

5: Vkl := BikBil

6: end for
7: num :=

∑
k

∑
l(S⊙U)kl

8: den :=
∑

k

∑
l(S⊙V)kl + ϵ

9: αi :=
num
den

10: end for
11: return α

B.3 SECOND-ORDER ARB-RC

We perform second-order binarization under the ARB-RC method:

αr
1 =

1

m

m∑
j=1

|W.j |, αc
1 =

1

n

n∑
j=1

| Wj.

(αr
1)j
|, B1 = sign(W). (84)

We define the residual matrix R as:

Rjk = Wjk − αr
jα

c
kBjk, where j = 1, 2, . . . , n, k = 1, 2, . . . ,m. (85)

Then we perform binarization on residual matrix R:

αr
2 =

1

m

m∑
j=1

|R.j |, αc
2 =

1

n

n∑
j=1

| Rj.

(αr
2)j
|, B2 = sign(R). (86)

We can obtain the results of the second-order binarization:

Ŵjk = (αr
1)j(α

c
1)k(B1)jk + (αr

2)j(α
c
2)k(B2)jk, where j = 1, 2, . . . , n, k = 1, 2, . . . ,m. (87)

Then quantization error without calibration data is given by the following formula:

L = ||W − Ŵ||ℓ2 (88)

=
∑
j

∑
k

(Wjk − ((αr
1)j(α

c
1)k(B1)jk + (αr

2)j(α
c
2)k(B2)jk))

2. (89)

10

We define W̃1 and W̃2 as:

(W̃1)jk = Wjk − (αr
2)j(α

c
2)k(B2)jk), (W̃2)jk = Wjk − (αr

1)j(α
c
1)k(B1)jk). (90)

where j = 1, 2, . . . , n, k = 1, 2, . . . ,m. Then we update αr
1 using the following formulas:

∂L
∂(αr

1)j
=

∑
k

(−2(W̃1)jk(B1)jk(α
c
1)k + 2(αc

1)
2
k(B1)

2
jk(α

r
1)j). (91)

We set ∂L
∂(αr

1)j
= 0 to get the optimal solution for (αr

1)j :

(αr
1)j =

∑
k(W̃1)jk(α

c
1)k(B1)jk∑

k(α
c
1)

2
k(B1)2jk

, where j = 1, 2, . . . , n. (92)

We update αc
1 using the following formulas:

∂L
∂(αc

1)k
=

∑
j

(−2(W̃1)jk(B1)jk(α
r
1)j + 2(αr

1)
2
j (B1)

2
jk(α

c
1)k). (93)

We set ∂L
∂(αc

1)k
= 0 to get the optimal solution for (αc

1)k:

(αc
1)k =

∑
j(W̃1)jk(α

r
1)j(B1)jk∑

j(α
r
1)

2
j (B1)2jk

, where k = 1, 2, . . . ,m. (94)

We update αr
2 using the following formulas:

∂L
∂(αr

2)j
=

∑
k

(−2(W̃2)jk(B2)jk(α
c
2)k + 2(αc

2)
2
k(B2)

2
jk(α

r
2)j). (95)

We set ∂L
∂(αr

2)j
= 0 to get the optimal solution for (αr

2)j :

(αr
2)j =

∑
k(W̃2)jk(α

c
2)k(B2)jk∑

k(α
c
2)

2
k(B2)2jk

, where j = 1, 2, . . . , n. (96)

We update αc
2 using the following formulas:

∂L
∂(αc

2)k
=

∑
j

(−2(W̃2)jk(B2)jk(α
r
2)j + 2(αr

2)
2
j (B2)

2
jk(α

c
2)k). (97)

We set ∂L
∂(αc

2)k
= 0 to get the optimal solution for (αc

2)k:

(αc
2)k =

∑
j(W̃2)jk(α

r
2)j(B2)jk∑

j(α
r
2)

2
j (B2)2jk

, where k = 1, 2, . . . ,m. (98)

The objective of optimizing B1 and B2 is:

(B1)jk, (B2)jk = argmin
(B1)jk,(B2)jk

||Wjk − ((αr
1)j(α

c
1)k(B1)jk + (αr

2)j(α
c
2)k(B2)jk)||ℓ1, (99)

where j = 1, 2, . . . , n, k = 1, 2, . . . ,m. The detailed pseudocode for second-order ARB-RC can be
found in Algorithm 5.

11

Algorithm 5 Second-Order Alternating Refined Binarization along Row-Column Axes

func ARB-RC2(W, M, X ,T)
Input: W ∈ Rn×m - full-precision weight

M ∈ Rn×m - group mask
X ∈ RB×L×m - calibration data
T - iteration rounds

Output: Ŵ ∈ Rn×m

1: Ŵ1, α
r
1, α

c
1,B1 := binary rc(W,M)

2: Ŵ2, α
r
2, α

c
2,B2 := binary rc(W−Ŵ,M)

3: Ŵ = Ŵ1 + Ŵ2

4: B1 ← B1 ⊙M
5: B2 ← B2 ⊙M
6: for iter = 1, 2, . . . , T do
7: for j = 1, 2, . . . , n; k = 1, 2, . . . ,m do
8: (W̃1)jk = Wjk − (αr

2)j(α
c
2)k(B2)jk)

9: (W̃2)jk = Wjk − (αr
1)j(α

c
1)k(B1)jk)

10: end for
11: αr

1 ← refine αr(W̃1,B1, α
c
1)

12: αc
1 ← refine αc(W̃1,B1, α

r
1)

13: αr
2 ← refine αr(W̃2,B2, α

c
2)

14: αc
2 ← refine αc(W̃2,B2, α

r
1)

15: B1,B2 ← refine B(W, αr
1, α

r
2, α

c
1, α

c
2)

16: for k = 1, 2, . . . , n; l = 1, 2, . . . ,m do
17: Ŵkl ← ((αr

1)k(α
c
1)l(B1)kl +

(αr
2)k(α

c
2)l(B2)kl) ·Mkl

18: end for
19: end for
20: return Ŵ

func binary rc (W,M)

1: αr := 1
m

∑m
j=1 |(W ⊙M).j |

2: αc := 1
n

∑n
j=1 |

(W⊙M)j.
αr

j
|

3: B := sign(W ⊙M)
4: for k = 1, 2, . . . , n; l = 1, 2, . . . ,m do
5: Ŵkl := αr

kα
c
lBkl

6: end for
7: return Ŵ, αr, αc,B

func refine αr (W,B, αc)

1: for j = 1, 2, . . . , n do

2: num :=
∑

k Wjkα
c
kBjk

3: den :=
∑

k(α
c
k)

2B2
jk + ϵ

4: αr
j := num

den
5: end for
6: return αr

func refine αc (W,B, αr)

1: for k = 1, 2, . . . ,m do
2: num :=

∑
j Wjkα

r
jBjk

3: den :=
∑

j(α
r
j)

2B2
jk + ϵ

4: αc
k := num

den
5: end for
6: return αc

func refine B (W, αr
1, α

r
2, α

c
1, α

c
2)

1: for i = 1, 2, . . . , n; j = 1, 2, . . . ,m do

2: v :=

−(α
r
1)i(α

c
1)j − (αr

2)i(α
c
2)j

−(αr
1)i(α

c
1)j + (αr

2)i(α
c
2)j

(αr
1)i(α

c
1)j − (αr

2)i(α
c
2)j

(αr
1)i(α

c
1)j + (αr

2)i(α
c
2)j

3: x := BST(Wij ,v)
4: switch (x)
5: case v1:
6: (B1)ij = −1, (B2)ij = −1
7: case v2:
8: (B1)ij = −1, (B2)ij = +1
9: case v3:

10: (B1)ij = +1, (B2)ij = −1
11: default:
12: (B1)ij = +1, (B2)ij = +1
13: end switch
14: end for
15: return B1,B2

func BST (w,v)

1: l := length(v)
2: if l == 1 then
3: return v1

4: else if w ≥ (vm/2 + vm/2+1)/2 then
5: return BST(w,vm/2+1:m)
6: else
7: return BST(w,v1:m/2)
8: end if

C PROOF OF THEOREM 1

Here we consider a row of the weight matrix W ∈ R1×m with single µ and α. In the (τ+1)-th
iteration, we update µ by using the following formulas:

Rτ = W − ατBτ − µτ , (100)

δτµ = Rτ , (101)

µτ+1 = µτ + δτµ. (102)

12

Then we can compute the specific value of the quantization error reduction after updating µτ :
||Rτ − δτµ||2 = ||Rτ ||2 − 2⟨Rτ , δτµ⟩+ ||δτµ||2 (103)

= ||Rτ ||2 − 2δτµ

m∑
k=1

Rτ
k +m(δτµ)

2 (104)

= ||Rτ ||2 −m(δτµ)
2 (105)

≤ ||Rτ ||2. (106)

Here we have mδτµ
2 = ||Rτ ||2 − nσ2. We refine B using the following formula:

Bτ+1 = sign(W − µτ − δτµ). (107)

The following derivation provides the decrease in quantization error after updating B:
||Rτ − δτµ + ατ (Bτ −Bτ+1)||2 (108)

= ||Rτ − δτµ||2 + 2⟨(Rτ − δτµ), α
τ (Bτ −Bτ+1)⟩+ ||ατ (Bτ −Bτ+1)||2 (109)

= ||Rτ − δτµ||2 + ατ
∑
k

(Bτ
k −Bτ+1

k)(2Rτ
k − 2δτµ + ατBτ

k − ατBτ+1
k) (110)

= ||Rτ ||2 −mδτµ
2 + ατ

∑
k

(Bτ
k −Bτ+1

k)(2(Wk − µτ − δτµ)− ατ (Bτ
k +Bτ+1

k)) (111)

= ||Rτ ||2 −mδτµ
2 +M, (112)

where M = ατ
∑
k

(Bτ
k −Bτ+1

k)(2(Wk − µτ − δτµ)− ατ (Bτ
k +Bτ+1

k)). (113)

M only has the following conditions:
if Bτ

k = Bτ+1
k ⇒M = 0,

if Bτ
k = +1,Bτ+1

k = −1⇒W − µτ − δτµ < 0⇒M < 0,
if Bτ

k = −1,Bτ+1
k = +1⇒W − µτ − δτµ > 0⇒M < 0,

⇒M ≤ 0,
⇒ ||Rτ − δτµ + ατ (Bτ −Bτ+1)||2 ≤ ||Rτ ||2 −mδτµ

2.

Specifically,

M = 2m(ατ)2 − 2ατδτµ
∑
k

Bτ
k − 2mατατ+1 (114)

= 2m(ατ)2 + 2mδτµ(µ
τ+1 −W)− 2mατατ+1. (115)

Then we refine α and calculate the reduction of quantization error:
R′ = Rτ − δτµ + ατ (Bτ −Bτ+1), (116)

||R′ + (ατ − ατ+1)Bτ+1||2 (117)

= ||R′||2 + (ατ − ατ+1)
∑
k

Bτ+1
k (2R′

k + (ατ − ατ+1)Bτ+1) (118)

= ||R′||2 + (ατ − ατ+1)
∑
k

Bτ+1
k (2(Wk − µτ+1)− (ατ + ατ+1)Bτ+1) (119)

= ||R′||2 + 2mατ+1(ατ − ατ+1)−m(ατ)2 +m(ατ+1)2 (120)

= ||R′||2 −m(ατ − ατ+1)2 (121)

≤ ||R′||2. (122)

Combining the results from the above derivation, we can obtain the specific value of the decrease of
quantization error after the (τ+1)-th iteration:

||Rτ+1||2 − ||Rτ ||2 (123)

= −m(δτµ)
2 + 2m(ατ)2 + 2mδτµ(µ

τ+1 − µ0)− 2mατατ+1 −m(ατ − ατ+1)2 (124)

= m((ατ)2 − (ατ+1)2 − (δτµ)
2 + 2δτµ(µ

τ+1 − µ0)) (125)

13

We can also derive the relationship between the quantization error after the T -th iteration RT and the
quantization error before iteration R0 as

||RT ||2 − ||R0||2 = m((α0)2 − (αT)2 + (µT − µ0)2). (126)

D PROOF OF THEOREM 2

X ∈ RB×L×m is the calibration data. W,Ŵ ∈ Rn×m are the full-precision weight matrix and
binarized weight matrix, k is the block size, T is theiteration rounds. The quantization error with
calibration data L1 is shown as follows:

L1 = ||WX− ŴX||2 (127)

= ||X · (W − Ŵ)⊤||2. (128)

We calculate the time complexity of X · (W − Ŵ)⊤ as O(B · k · L · n) since it involves B matrix
multiplications, each requiring (L · n · k) multiplications and (L · n · (k − 1)) additions. The time
complexity of squaring all the elements of a matrix and then sums them up is O(L · n). In each
iteration, we need to perform m

k calculations, and there are T iterations in total. Therefore, the overall
time complexity is T · mk · (O(B · k · L · n) +O(L · n)), which simplifies to O(n ·B · L ·m · T).

L2 =
∑
i

∑
j

(S⊙R)ij . (129)

We calculate the time complexity of S asO(B · k2 ·L), since S contains k2 elements, and calculating
each element involves (B · L) multiplications and (B · L) additions. And we calculate the time
complexity of R as O(n · k2), since R contains k2 elements, and calculating each element involves
n multiplications and (n− 1) additions. The time complexity of the element-wise multiplication of S
and R, as well as the summation of the matrices, is O(k2). In each iteration, we need to perform m

k
calculations, and there are T iterations in total. It is important to note that the calculation of matrix S
does not need to be performed in every iteration of the T iterations; it only needs to be computed
once. Therefore, the overall time complexity is m

k · (O(B · k
2 ·L)+T · (O(n · k2)+O(k2))), which

simplifies to O(m · k · (B · L+ n · T)).
We define the acceleration ratio η as the quotient of the time complexities of L1 and L2

η =
O(n ·B · L ·m · T)

O(m · k · (B · L+ n · T))
(130)

∝ 1

k · (1
n·T + 1

B·L)
. (131)

Typically, we set n to 4096, B to 128, L to 2048, T to 15, and k to 128. Under these circumstances,
η is approximately equal to 389.

E MEMORY COMPUTATION

For W ∈ Rn×m, block size k, the memory of Ŵ after standard row-wise binarization is

M1st =

B︷ ︸︸ ︷
n×m+

multiple blocks︷ ︸︸ ︷
⌈m/k⌉ ×

row−wise FP16 α and µ︷ ︸︸ ︷
2× n× 16 . (132)

Moreover, second-order row-wise binarization can be represented as

M2nd =

B1 and B2︷ ︸︸ ︷
2× n×m+

multiple blocks︷ ︸︸ ︷
⌈m/k⌉ ×

row−wise FP16 α1, α2, and µ︷ ︸︸ ︷
3× n× 16 , (133)

since row-wise µ1 and µ2 can be combined together as µ = µ1 + µ2.

14

Thus, the memory required by BiLLM can be formulated as

MBiLLM =

second−order binarization︷ ︸︸ ︷
2× n× c+ ⌈m/k⌉ × 3n× 16+

first−order binarization︷ ︸︸ ︷
n× (m− c) + ⌈m/k⌉ × 2n× 16× 2︸ ︷︷ ︸

2 groups

(134)

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m , (135)

where c is the number of salient columns for W.

Similarly, we can formulate the memory occupation of first-order row-column-wise binarization and
our ARB-RC as

M1st
row-column-wise =

B︷ ︸︸ ︷
n×m+

FP16 αr and αc︷ ︸︸ ︷
(n+m)× 16, (136)

MARB-RC =

second−order binarization︷ ︸︸ ︷
2× n× c+ (⌈m/k⌉ × 2n+ 2c)× 16 (137)

+

first−order binarization︷ ︸︸ ︷
n× (m− c) + (⌈m/k⌉ × n+ (m− c))× 16× 2︸ ︷︷ ︸

2 groups

(138)

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m . (139)

In addition, if added CGB, i.e. our refined strategy for the combination of salient column bitmap and
group bitmap, the memory requirement slightly increases due to more scaling factors, but still less
than BiLLM. The total memory of ARB-RC + CGB is

MARB-RC + CGB =

second−order binarization︷ ︸︸ ︷
2× n× c+ (⌈m/k⌉ × 2n+ 2c)× 16× 2︸ ︷︷ ︸

2 groups

(140)

+

first−order binarization︷ ︸︸ ︷
n× (m− c) + (⌈m/k⌉ × n+ (m− c))× 16× 2︸ ︷︷ ︸

2 groups

(141)

+

group bitmap︷ ︸︸ ︷
n×m +

salient column bitmap︷︸︸︷
m . (142)

15

F VISUALIZATION DURING ALTERNATING REFINEMENT

Q

K

V

O

Gate

Up

Down

Figure 1: The change of distribution shift (absolute difference between the mean of binarized and full-
precision weights) during alternating refined binarization on LLaMA-7B. Each subfigure represents a
block, with iteration 0 corresponding to the BiLLM method.

F.1 DISTRIBUTION SHIFT

As shown in Figure 1, our Alternating Refined Binarization progressively reduces the distribution
shift with fast convergence, where the initial distribution shift corresponds to BiLLM.

F.2 COLUMN-WISE QUANTIZATION ERROR

As shown in Figure 2, We visualize the column-wise quantization error of a block in each layer of the
LLM. The results indicate that our ARB-RC method can effectively reduce column-wise quantization
error compared to previous row-wise binarization method.

F.3 BINARIZATION PARAMETERS

As shown in Figure 3, we visualize the changes of alpha and mean during Alternating Refined
Binarization. It is evident that all alpha values increase beyond their initial estimates, as supported by
our analysis of quantization error in Equation (121). This suggests that alpha was underestimated by
previous binarization methods.

G MORE EXPERIMENTAL RESULTS

Comparison on PTB and C4. Due to the page limit, we provide the perplexity comparison on PTB
dataset for LLaMA and OPT families in Table 1 and Table 3 respectively. Similarly, the comparisons
on C4 dataset for LLaMA and OPT families are provided in Table 2 and Table 4 respectively.

Comparison on 7 zero-shot QA datasets. We also provide the comparison of 7 zero-shot QA
datasets on OPT family, as shown in Table 5.

16

Q

K

V

O

Gate

Up

Down

Figure 2: Quantization error comparison between row-wise binarization (red curve) and ARB-RC
(blue curve) on LLaMA-7B. We display the error along columns, with each subfigure representing
a block. The blue curve is notably lower than the red curve, with the difference being particularly
pronounced in the Gate Project, Up Project, and Down Project layers.

Evaluation with other metrics. We conduct additional experiments on LLaMA-7B, measuring the
F1 score on the SQuADv2 dataset and chrF on the WMT2014 (En-Fr) dataset. As shown in Table 6,
our ARB-LLM significantly outperforms previous binarization methods, PB-LLM and BiLLM, in
both F1 score and chrF metrics, further demonstrating the effectiveness of our proposed method.

Evaluation on SQuADv2, SWAG, and MMLU College Mathematics datasets. We conduct addi-
tional experiments on the long context dataset SQuADv2, math dataset MMLU College Mathematics,

17

Q

K

V

O

Gate

Up

Down

Figure 3: The changes of alpha and mean during alternating refinement on LLaMA-7B, with each
subfigure representing a block. The red curve on the left represents the change of alpha, while the
blue curve represents the change of mean. All alpha values exceed their initial estimates, indicating
that alpha is underestimated in standard binarization.

and reasoning dataset SWAG. As shown in Table 7, our ARB-LLM also outperforms the previous
binarization methods PB-LLM and BiLLM on these datasets, narrowing the performance gap with
FP16, especially on the long-context SQuADv2 dataset.

Comparison on Phi-3 models. We conduct additional experiments by binarizing Phi-3-mini (3.8B)
and Phi-3-medium (14B), and evaluate their perplexity (PPL) on WikiText2. As shown in Table 8,
our ARB-LLM consistently outperforms previous binarization methods, PB-LLM and BiLLM.
Moreover, the performance gap between binarized and FP16 models is reasonable. Compared to the
binarization of OPT, the results for Phi-3-mini (3.8B) surpass those of OPT (2.7B), and the results for
Phi-3-medium (14B) outperform OPT (13B).

Comparison of runtime inference. Evaluating runtime performance is crucial for demonstrating
the practical feasibility of our proposed implementation. Unfortunately, previous works such as
BiLLM and PB-LLM, did not report runtime performance due to the lack of a CUDA kernel for
matrix multiplication between FP activation and 1-bit weights. We use the BitBLAS codebase to
benchmark our method and comparable approaches, providing detailed runtime evaluations. We
evaluate the runtime inference metrics by measuring the latency (ms) of various linear layers in
LLaMA-7B and LLaMA-13B. The sequence length of input tensor X is 2048, and experiments are
conducted on an NVIDIA A6000 GPU. As shown in Table 9, our method demonstrates significant
improvements in inference speed compared to FP16 and PB-LLM. PB-LLM is slower due to the
Int8-to-FP16 matrix multiplication. Moreover, both ARB-LLM-X and ARB-LLM-RC achieve a
speed similar to BiLLM, while largely improving the performance.

Pareto curve. We present the Pareto curves of binarization methods PB-LLM, BiLLM, and our
ARB-LLM (all with CSR compressed bitmap), as well as the low-bit quantization methods GPTQ
in Figure 4. Among GPTQ models, the 4-bit version achieves the highest accuracy for a given
memory budget compared to its 2-bit, 3-bit, and 8-bit counterparts. However, our ARB-LLM still
outperforms 4-bit GPTQ on the Pareto curve. Moreover, low-bit quantization methods like GPTQ
suffer significant accuracy degradation at extremely low bit levels (e.g., 2-bit). In contrast, our
ARB-LLM excels in such scenarios, delivering superior performance while using less memory.

18

Table 1: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on LLaMA family. The
columns represent the perplexity results on the PTB dataset with different model sizes. N/A: LLaMA2
lacks a 30B version, and LLaMA3 lacks both 13B and 30B versions. *: LLaMA has a 65B version,
while both LLaMA2 and LLaMA3 have 70B versions.

Model Method Block
Size

Weight
Bits 7B/8B* 13B 30B 65B/70B*

Full Precision - 16.00 41.15 28.10 23.51 25.07

RTN - 3.00 329.78 64.53 80.46 81.57
GPTQ 128 3.00 84.88 26.40 20.22 19.55
RTN - 2.00 126501.65 84172.61 32162.31 21743.58
GPTQ 128 2.00 1421.47 224.45 69.46 47.70

LLaMA RTN - 1.00 155213.47 1960633.38 14821.51 68358.99
GPTQ 128 1.00 121586.44 104769.39 10959.79 20192.53
PB-LLM 128 1.70 603.57 237.22 114.35 119.19
BiLLM 128 1.09 373.81 84.87 43.10 44.68
ARB-LLMX 128 1.09 281.70 81.50 38.07 36.08
ARB-LLMRC 128 1.09 195.94 54.38 34.65 32.20
Full Precision - 16.00 37.91 50.93 N/A 24.25

RTN - 3.00 1680.32 228.12 N/A 63.24
GPTQ 128 3.00 4825.75 40.33 N/A 18.26
RTN - 2.00 24786.95 51250.84 N/A 29383.20
GPTQ 128 2.00 5583.96 419.07 N/A 50.51

LLaMA2 RTN - 1.00 99798.48 38487.07 N/A 110548.30
GPTQ 128 1.00 66784.62 27741.64 N/A 14379.46
PB-LLM 128 1.70 657.24 816.31 N/A NAN
BiLLM 128 1.08 5243.01 309.12 N/A 72.02
ARB-LLMX 128 1.08 681.24 182.10 N/A 49.18
ARB-LLMRC 128 1.08 389.59 198.17 N/A 32.79
Full Precision - 16.00 11.18 N/A N/A 8.53

RTN - 3.00 1869.24 N/A N/A 16180.72
GPTQ 128 3.00 18.83 N/A N/A 15.97
RTN - 2.00 633297.75 N/A N/A 374834.19
GPTQ 128 2.00 717.24 N/A N/A 79.20

LLaMA3 RTN - 1.00 764941.75 N/A N/A 227967.19
GPTQ 128 1.00 978209.31 N/A N/A 118912.35
PB-LLM 128 1.70 106.25 N/A N/A 45.13
BiLLM 128 1.06 87.25 N/A N/A 97.13
ARB-LLMX 128 1.06 53.86 N/A N/A 23.13
ARB-LLMRC 128 1.06 45.49 N/A N/A 15.34

Results of BiLLM. We strictly follow the BiLLM codebase to reproduce the results. However, the
experiments were conducted on a different GPU, and some package versions may differ. These slight
variations in the experimental environment are likely the primary cause of any discrepancies. As
shown in Table 10, for these two models, more than half of the reproduced results are better than
those reported in the original paper. Whether compared against the original results or the reproduced
ones, our ARB-LLM consistently outperforms BiLLM.

H DIALOG EXAMPLES

As shown in Figure 5, we provide some dialogue examples of PB-LLM, BiLLM, and our ARB-
LLMRC on LLaMA-13B and Vicuna-13B models.

19

Table 2: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on LLaMA family. The
columns represent the perplexity results on the C4 dataset with different model sizes. N/A: LLaMA2
lacks a 30B version, and LLaMA3 lacks both 13B and 30B versions. *: LLaMA has a 65B version,
while both LLaMA2 and LLaMA3 have 70B versions.

Model Method Block
Size

Weight
Bits 7B/8B* 13B 30B 65B/70B*

Full Precision - 16.00 7.34 6.80 6.13 5.81

RTN - 3.00 28.24 13.24 28.58 12.76
GPTQ 128 3.00 9.95 7.16 6.51 6.03
RTN - 2.00 112668.16 58515.73 27979.50 22130.23
GPTQ 128 2.00 79.06 18.97 14.86 10.23

LLaMA RTN - 1.00 194607.78 1288356.88 13556.87 135027.31
GPTQ 128 1.00 186229.5 108958.73 9584.84 23965.75
PB-LLM 128 1.70 76.63 40.64 25.16 15.30
BiLLM 128 1.09 46.96 16.83 12.11 11.09
ARB-LLMX 128 1.09 22.73 13.86 10.93 9.64
ARB-LLMRC 128 1.09 17.92 12.48 10.09 8.91
Full Precision - 16.00 7.26 6.73 N/A 5.71

RTN - 3.00 384.02 12.50 N/A 10.03
GPTQ 128 3.00 7.95 7.06 N/A 5.88
RTN - 2.00 30843.15 51690.40 N/A 27052.53
GPTQ 128 2.00 35.27 19.66 N/A 9.55

LLaMA2 RTN - 1.00 115058.76 46250.21 N/A 314504.09
GPTQ 128 1.00 67954.04 19303.51 N/A 13036.32
PB-LLM 128 1.70 80.69 184.67 N/A NAN
BiLLM 128 1.08 39.38 25.87 N/A 17.30
ARB-LLMX 128 1.08 28.02 19.82 N/A 11.85
ARB-LLMRC 128 1.08 20.12 14.29 N/A 8.65
Full Precision - 16.00 9.45 N/A N/A 7.17

RTN - 3.00 566.43 N/A N/A 12285.45
GPTQ 128 3.00 17.68 N/A N/A 10.04
RTN - 2.00 777230.94 N/A N/A 447601.09
GPTQ 128 2.00 394.74 N/A N/A 122.55

LLaMA3 RTN - 1.00 1422473.38 N/A N/A 188916.13
GPTQ 128 1.00 1118313.13 N/A N/A 126439.66
PB-LLM 128 1.70 104.15 N/A N/A 40.69
BiLLM 128 1.06 61.04 N/A N/A 198.86
ARB-LLMX 128 1.06 41.86 N/A N/A 21.67
ARB-LLMRC 128 1.06 35.70 N/A N/A 15.44

Table 3: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on OPT family. The columns
represent the perplexity results on PTB datasets with different model sizes.

Method Block
Size

Weight
Bits 1.3B 2.7B 6.7B 13B 30B 66B

Full Precision - 16.00 20.29 17.97 15.77 14.52 14.04 13.36

RTN - 3.00 8987.17 9054.89 4661.77 2474.14 1043.13 3647.87
GPTQ 128 3.00 17.54 15.15 12.86 11.93 11.28 11.42
RTN - 2.00 8030.18 5969.35 17222.70 72388.19 105760.72 462581.28
GPTQ 128 2.00 110.93 58.38 22.73 17.81 14.19 62.04
RTN - 1.00 11062.04 28183.08 11981.09 32157360.00 5435.99 147668.78
GPTQ 128 1.00 6524.99 8405.25 5198.99 3444847.25 7158.62 5737.15
PB-LLM 128 1.70 324.62 183.97 169.49 101.00 41.87 45.32
BiLLM 128 1.11 115.94 88.52 69.41 27.16 21.41 18.51
ARB-LLMX 128 1.11 71.96 54.28 31.23 23.46 19.28 17.64
ARB-LLMRC 128 1.11 43.34 31.77 22.31 18.81 16.88 15.66

20

Table 4: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on OPT family. The columns
represent the perplexity results on C4 datasets with different model sizes.

Method Block
Size

Weight
Bits 1.3B 2.7B 6.7B 13B 30B 66B

Full Precision - 16.00 16.07 14.34 12.71 12.06 11.45 10.99

RTN - 3.00 5039.85 11165.54 5022.57 2550.72 1030.62 3394.97
GPTQ 128 3.00 16.11 14.17 12.29 11.54 10.91 11.05
RTN - 2.00 7431.04 7387.40 13192.40 89517.66 61213.64 823566.00
GPTQ 128 2.00 63.06 35.81 18.60 16.29 12.92 33.03
RTN - 1.00 9999.56 23492.89 9617.07 23436088.00 5041.77 113236.92
GPTQ 128 1.00 6364.65 6703.36 5576.82 1799217.88 7971.37 7791.47
PB-LLM 128 1.70 168.12 222.15 104.78 57.84 27.67 27.73
BiLLM 128 1.11 64.14 44.77 42.13 19.83 16.17 14.16
ARB-LLMX 128 1.11 47.60 34.97 22.54 17.71 14.71 13.32
ARB-LLMRC 128 1.11 28.19 21.46 16.97 15.01 13.34 12.43

Table 5: Accuracy of 7 QA datasets on OPT family. We compare the results among GPTQ, PB-LLM,
BiLLM, ARB-LLMX, and ARB-LLMRC to validate the quantization effect.

Model Method Weight
Bits PIQA ↑ BoolQ ↑ OBQA ↑ Winogrande ↑ ARC-e ↑ ARC-c ↑ Hellaswag ↑ Average ↑

GPTQ 2.00 59.47 42.66 15.80 50.04 37.21 21.42 30.92 36.79
PB-LLM 1.70 54.57 61.77 13.00 50.99 28.79 20.56 26.55 36.60

OPT-1.3B BiLLM 1.09 59.52 61.74 14.80 52.17 36.53 17.83 29.64 38.89
ARB-LLMX 1.09 62.84 61.99 13.40 52.17 43.43 18.94 30.86 40.52
ARB-LLMRC 1.09 65.45 60.31 15.40 53.04 48.27 19.37 33.44 42.18
GPTQ 2.00 61.81 54.43 15.40 52.33 40.15 20.56 32.55 39.60
PB-LLM 1.70 56.42 62.23 12.80 50.12 31.61 18.60 27.61 37.06

OPT-2.7B BiLLM 1.09 62.57 62.20 15,40 52.57 39.65 19.80 30.88 40.44
ARB-LLMX 1.09 65.61 62.08 14.80 53.59 47.22 19.62 32.57 42.21
ARB-LLMRC 1.09 68.50 61.99 21.60 58.33 52.82 22.27 37.50 46.14
GPTQ 2.00 69.37 55.05 21.20 55.80 56.06 23.38 41.29 46.02
PB-LLM 1.70 56.47 55.57 13.20 50.28 29.97 18.69 27.50 35.95

OPT-6.7B BiLLM 1.09 58.60 62.14 13.20 53.12 33.75 18.26 28.83 38.27
ARB-LLMX 1.09 69.75 62.20 17.80 58.64 55.47 24.32 37.78 46.57
ARB-LLMRC 1.09 72.47 62.87 22.20 60.62 59.09 26.79 42.08 49.45
GPTQ 2.00 66.54 56.51 18.60 59.12 48.53 24.06 41.34 44.96
PB-LLM 1.70 57.29 62.17 12.80 51.22 30.93 20.56 26.83 37.40

OPT-13B BiLLM 1.09 68.72 62.32 18.00 59.91 54.71 26.37 39.02 47.00
ARB-LLMX 1.09 71.98 62.57 21.20 61.40 59.72 26.02 41.45 49.19
ARB-LLMRC 1.09 73.56 65.93 24.20 64.25 62.54 29.52 45.14 52.16
GPTQ 2.00 73.88 63.94 24.20 62.19 60.77 28.24 47.88 51.59
PB-LLM 1.70 66.76 62.29 17.40 51.07 49.33 22.53 36.53 43.70

OPT-30B BiLLM 1.09 72.74 62.35 21.00 60.14 60.69 27.56 42.81 49.61
ARB-LLMX 1.09 74.27 62.39 23.60 64.25 63.51 28.33 46.04 51.77
ARB-LLMRC 1.09 75.08 65.78 26.40 65.43 64.81 29.69 48.59 53.68
GPTQ 2.00 57.62 57.13 13.20 51.85 36.11 21.67 34.01 38.80
PB-LLM 1.70 72.74 62.54 24.20 63.46 60.10 30.20 43.13 50.91

OPT-66B BiLLM 1.09 75.08 65.26 25.60 65.43 65.66 31.40 47.54 53.71
ARB-LLMX 1.09 75.79 66.27 27.00 66.77 67.51 32.76 49.33 55.06
ARB-LLMRC 1.09 76.88 70.89 28.60 66.22 69.28 33.62 51.23 56.67

I LIMITATIONS

Combination of ARB-X and ARB-RC. We find that it is hard to incorporate the calibration data
into the update of column scaling factors. After initializing the row and column scaling factors, we
take the derivative of quantization error L2 with respect to αc and set it to zero:

∂L
∂αc

t

=
∑
k

Skt

∑
j

(−αr
jBjtWjk + (αr

j)
2αc

kBjtBjk) = 0, where t = 1, 2, . . . ,m. (143)

21

Table 6: Comparison on SQuADv2 (F1 score) and WMT2014 En-Fr (chrF).

Method SQuADv2 (F1 score↑) WMT2014 En-Fr (chrF↑)
FP16 19.45 28.89

PB-LLM 2.78 14.27
BiLLM 3.55 17.45
ARB-LLMX 8.23 23.90
ARB-LLMRC 12.24 19.22

Table 7: Comparison on SQuADv2, SWAG, and MMLU College Mathematics datasets.

Method SQuADv2 (F1↑) SWAG (Acc↑) MMLU College Mathematics (Acc↑)
FP16 19.45 0.57 0.36

PB-LLM 2.78 0.31 0.20
BiLLM 3.55 0.36 0.21
ARB-LLMX 8.23 0.41 0.22
ARB-LLMRC 12.24 0.44 0.23

Table 8: Perplexity of WikiText2 on Phi-3 models.

Model Phi-3-mini (3.8B) Phi-3-medium (14B)
FP16 5.82 4.02

PB-LLM 377.98 754.27
BiLLM 21.03 10.33
ARB-LLMX 18.32 9.31
ARB-LLMRC 17.32 8.97

Table 9: Comparison of runtime inference (ms) on LLaMA-1/2-7B and LLaMA-1/2-13B.

Model LLaMA-1/2-7B LLaMA-1/2-13B
Weight Size 4096×4096 4096×11008 11008×4096 5120×5120 5120×13824 13824×5120

FP16 0.76595 1.63532 1.76949 0.91443 2.68492 2.71254

PB-LLM 0.73363 1.44076 1.69881 0.83148 2.17292 2.19443
BiLLM 0.34201 0.36777 0.37689 0.35948 0.48947 0.49406
ARB-LLMRC 0.35974 0.37218 0.37981 0.36312 0.49801 0.50038
ARB-LLMX 0.33180 0.35539 0.36792 0.35505 0.47788 0.48275

Table 10: Perplexity of WikiText2 on LLaMA-1 and LLaMA-2. ‡We reproduce BiLLM based on
their codebase.

Model LLaMA-1 LLaMA-2
7B 13B 30B 65B 7B 13B 70B

BiLLM 35.04 15.14 10.52 8.49 32.48 16.77 8.41
BiLLM‡ 49.79 14.58 9.90 8.37 32.31 21.35 13.32
ARB-LLMX 21.81 11.20 8.66 7.27 21.61 14.86 7.88
ARB-LLMRC 14.03 10.18 7.75 6.56 16.44 11.85 6.16

We observe that during the process of updating αc
t , the derivative of the quantization error with

respect to αc
t includes terms involving other αc

l . This indicates that introducing a calibration set
results in coupling between αc values, complicating their updates. Incorporating calibration data into
ARB-RC presents a promising direction for future work.

22

100 101 102
35

40

45

50

55

60

Model Size (GB, log scale)

A
vg

.
A

cc
ur

ac
y

FP16
GPTQ-8bit
GPTQ-4bit
GPTQ-3bit
GPTQ-2bit
PB-LLM
BiLLM
ARB-LLMRC (Ours)

Figure 4: The Pareto curves of binarization and low-bit quantization methods demonstrate that our
ARB-LLM outperforms all other approaches within the same memory constraints. Low-bit methods
like GPTQ suffer significant performance degradation at extremely low bit levels (e.g., 2-bit), whereas
our method maintains strong performance.

23

LLaMA-13B

Florida is a state of the United States and covers an area of 57,680 hectares.
The Florida surface comprises mostly of salt beaches.

Florida is a state of the art business in the works.

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMRC-1.1bit :

Florida is a state of ___Prompt :

Prompt :

Amazon River locate in the Amazon rainforest. Amazon River is a river with the longest
length in the world.

Amazon River locate in front of the road, in the rear, in the lane, in the lane.

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMRC-1.1bit :

Amazon River locate in ___

I suggested he to come close. And he was glad. I could be a good thing by a good action.
I suggested he went up to mountain for 8km again but when he couldn't even run for ten
minutes, he turned his head. He went back to the bottom and went to the mountain for
another time.

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMRC-1.1bit :

Prompt : Having hiked through the steep mountain trail for hours, he was exhausted, his clothes
soaked with sweat, and his legs trembling from the effort. Seeing his condition, I
suggested he ___

Vicuna-13B

Well, it could be best first to speak with your teacher about how exactly you can try
to improve your performance. If you are sure that you failed the exam, get a retake.

Please assist me.

I failed my physics exam, and I am unsure what steps to take next. What should I do?Prompt :

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMRC-1.1bit :

Can you guide me through the process of buying tickets from Madrid? Can you help me
travel from Madrid to a specific destination in Japan where I could go to the place
because I don't want to do it. I don't have the ability to do it, but if you could tell me.
The easiest way to get from Madrid to Rome is to take a flight from Madrid to Rome. The
flight will take approximately 3-5 hours, depending on the specific airline and the time it
takes to get to Rome. The flight from Madrid to Rome is usually relatively cheap and can
be done by any Spanish airline, like Vuelta, Iberia and many other.

My friend is studying in Rome, and I want to visit. What's the easiest way to get there
from Madrid?

Prompt :

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMRC-1.1bit :

Prompt : After running a marathon, I was completely exhausted and out of breath. What should
I do to recover?

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMRC-1.1bit : During recovery, it's important to relax, rest, and replenish your body. You may need to
rest for at least a week to recover, or you might be a little better. Some people might
feel better after a day after running a marathon. In order to recover, I recommend that
you rest on Sunday and Monday, and then be ready and full of energy by Tuesday.

I already asked my doctor friend. He suggested what to do now but what to do, how to
do it, or to do, how to do, how to do, how to do...

Florida is a atate of is a is that is a is that is a is that is that is

Amazon River locate in all of this way. You can see me, and you can hear me.

I suggested he could was a piss, with his hiked piss wisp. He was sopped. He had a bust.

Ne Ne and it looked like much o Ne' ne because sheâNe ne

Mr.” I’ leads she_ home inside of no is often. I didn. I needed outside off. I didn. I
needed outsideoff. I was. I looked inside. I am! Unmann. I needs. I. I would. I. L. I would.
I. It.I. I would have. I had.

I. I was too and she said.I. I didn. It would give. It was. I was. It. It is. It’ It was.

Figure 5: Conversation examples on LLaMA-13B (language supplementary) and Vicuna-13B (Q&A).
We compare our best method ARB-LLMRC with PB-LLM and BiLLM. Inappropiate and reasonable
responses are shown in corresponding colors.

24

	First-order ARB-X and ARB-RC
	First-order ARB-X
	First-order ARB-RC

	Second-order ARB, ARB-X, and ARB-RC
	Second-order ARB
	Second-order ARB-X
	Second-order ARB-RC

	Proof of Theorem 1
	Proof of Theorem 2
	Memory Computation
	Visualization during Alternating Refinement
	Distribution Shift
	Column-wise Quantization Error
	Binarization Parameters

	More Experimental Results
	Dialog Examples
	Limitations

