Published as a conference paper at ICLR 2025

ARB-LLM: ALTERNATING REFINED BINARIZATIONS
FOR LARGE LANGUAGE MODELS
Zhiteng Li'% Xianglong Yan'* Tianao Zhang', Haotong Qin?, Dong Xie?,

Jiang Tian®, Zhongchao Shi®, Linghe Kong'’, Yulun Zhang'?, Xiaokang Yang'
!'Shanghai Jiao Tong University, 2ETH Ziirich, 3Lenovo Research

CONTENTS

2
2
4
econd-order R -X, an - 5

IB.1 Second-order ARBI
B.2 Second-order ARB-XI. 7
B3 Second-order ARB-RC| 10
[C_Proof of Theorem 1l 12
[D_Proof of Theorem 2| 14
[EMemory Computation| 14
[FVisualization during Alternating Refinement] 16
FE1 Distribution SHIftl o oo 16
[F.2 Column-wise Quantization Error| 16
IE3_ Binarization Parametersl. 16
|G More Experimental Results| 16
[H_Dialog Examples| 19
[[Limitations| 21

*Equal contribution

fCorresponding authors: Linghe Kong, linghe kong @sjtu.edu.cn, Yulun Zhang, yulun100@ gmail.com

Published as a conference paper at ICLR 2025

A FIRST-ORDER ARB-X AND ARB-RC

A.1 FIRST-ORDER ARB-X

First-order Alternating Refined Binarization with Calibration Data (ARB-X) is based on the weight-
activation quantization error £ = |[WX — WX||2..

Rewritten weight-activation quantization error We first rewrite the quantization error £ to
decouple W and X, reducing the computational cost when calculating the quantization error. We

define W as W = W — . Then we rewrite the quantization error as
L=|WX-WX]} 1
= [X(W —aB)"|[; @)

=22 00 D (Xe)(Wy — a;Bja))* 3)
i j b k
Then, we define the residual matrix as R = W — 1, — oB and further simplify £:
L= Y0 (Xe)inRyr)? @)
i j b ok
=330 (Xy)a(Xp)aR sRy1) 5)
i 3 b k1
=> 3 0> Xp)a(Xe)a)O_ RjxRy). (6)
E ol b i j
After that, we define the matrix S using the following formula:
Sk = Z Z(Xb)ik(xb)ih (7
b

where k = 1,2,...,m,l =1,2 ..., m. Then we obtain the final simplified £ as

L= (S,R"R)r =Tr(RSR"). ®)

Parameter Update We use the quantization error £ to update p:

L= Suy RuRj ©)
ko1l j

=3 DSy (WiW,i — a;(Bjx Wi + ByW) + a2BjBj) (10)
ko1 j

=3 S D> (Wik — 1) (Wit — 1) — 0 (Bjr(Wy — ps;) an
ko1 j

+Bji(Wjk — 1)) + 5B Bj1). (12)

To obtain the optimal solution for u, we take the partial derivative of £ with respect to 11, where
i=12,...,n:

oL

87/1' = ZZSM(_W]J —ij +2[,Lj +aijk;+aijl). (13)
7 ko1

We set g/—fj = 0 to get the optimal solution for y;:

= 2ok 2 Sk (Wi — 5B + Wy — a;Bju)
’ 237 22 Sk ’

where j = 1,2,...,n. (14)

Published as a conference paper at ICLR 2025

Then, we define the matrix P as:

Py =W, — By, wherek=1,2,... mI=12,...,m.

After that, we can simplify p; as
k2SO PP

, wherej =1,2,...,n.
. 23 22 Sk
Since S is symmetric, we can further simplify the above equation as:
SoP
Wi = 2k 2480)kl, where j = 1,2,...,n.
2k 21 Sk

We can also express p in a more compact vector form:

_1"S(W —aB)"
o 17S1

Similarly, we use the same quantization error to update o:

L= Xk: Xl: Sk Z R;.Rj
J

=3 Su Y (WikWji — a; (B W + By W) + aBjiBy).
k l

J

(15)

(16)

)

(18)

(19)

(20)

To obtain the optimal solution for c, we take the partial derivative of £ with respect to o;, where

7=12,...,n:

oL —~ —~
0 = > Su(BiBjia; — (B Wi+ BiWp)).
J kool

We set %ﬁj = 0 to get the optimal solution for a;:

e Y Sk(Bi Wi+ B W)
230k 2 SuBuBy)

Then, we define the matrix U and V as:

Qj

Up =BjxWj, Viu = BBy,

where £k =1,2,...,m,l =1,2,...,m. After that, we simplify a;; using U and V:

2k 280U+ U

o
! QZk Zz(SQV)kl

Since S is symmetric, we can further simplify the above equation as
0 = 2262218 O U
(SO V)k

We can also express « in a more compact vector form:

_ diag(BS(W —p) ")
T 7 diag(BSBT)

For the detailed pseudocode of first-order ARB-X, see Algorithm [T}

where j =1,2,...,n.

2

(22)

(23)

(24)

(25)

(26)

Published as a conference paper at ICLR 2025

Algorithm 1 First-Order Alternating Refined Binarization with Calibration Data

func ARB-Xl(W, M, X,T) 3: Su = Zb Zi(Xb)ik (Xb)il
Input: W € R™*™ - full-precision weight 4: end for
M € R™*™ - group mask 5: end for
X € RBXLXm _ calibration data 6: return S
T/—\iteratioil rounds func refine_u (S, W, B, o, M)
Output: W € R I: fori=1,2,...,ndo
I 8 :=X25(X) // S € R™*™ 2 fork=1,2,...,m;l=1,2,...,mdo
2: W, «, B, o= binary(W, M) 3: Pkl = Wik: — OéiBZ'l . Mil
3: for iter =1,2,...,T do 4: end for
4: p < refine_u(S, W, B, a, M) 55 num:=)Y,>,(SOP)
5: «a < refine_.a(S, W, u, B, M) 6: den:=D), >, Su+e
66 W« (a-B+p)oM T = gy
7: end for 8: end for
8: return W 9: return p
func binary (W, M) funcie/ﬁne,a (S, W, u,B,M)
1: u:z%Z?:l(WQM),j I W=W —y
R _ 2: fort=1,2,...,ndo
i: Wt_'_iwm“ W oM. 3 fork=1,2,...,ml=12... mdo
ST m Zjil (WoM), 4: Uy = (Bir - My)Wy
4:];)’\:: SlgIl(W O] M) 5: Vkl = (sz . M?k)le
5: Wi=a-B+pu 6: end for
6: return W, o, B, 1 T num = Y2080 U)y
func X2S (X) g i?’?;?n§Lk 280 V)i +e
. _ : L den
1: forb=1,2,... Bdo 10: end for

2. fork=1,2,....m;l=1,2,...,mdo 11: return o

A.2 FIRST-ORDER ARB-RC

The first-order ARB-RC is based on the quantization error without calibration data, so in this section,

L is defined as £ = ||[W — W/||2.. We first perform first-order binarization with the row-wise scaling
factor o” and column-wise scaling factor o®:

(07

1 & 1~ W,
o= — W, of=-— L B = sign(W). 27
W Py (W)

where we discard the mean p in this process. Then we obtain W

—~

W = ajagBjg, wherej=1,2,...,n,k=1,2,...,m. (28)

We use the quantization error to update o'

L=||W =Wl (29)

=> > (Wi — ajogBji)? (30)
ik

— Z Z((ij)2 — 2W 0B + (af)* B3 (o))?). (31)
ik

To obtain the optimal solution for a”, we take the partial derivative of £ with respect to o, where
7=12,...,n:

oL
oo > (2WiBjraf + 2(af) B3aj). (32)

J k

Published as a conference paper at ICLR 2025

We set

oL _ : : r.
o = 0 to get the optimal solution for o}

o
b
T Yk(af)?BY,

Then we use the same quantization error to update «., we take the partial derivative of £ with respect

where j =1,2,...,n. 33)

to af, where k = 1,2,...,m:

oL

Boi = > (-2WjiBjaj + 2(aj) Bjiag). (34)
J
We set 59662 = 0 to get the optimal solution for o :
W..a"B.
of = LT (35)
Zj (aj) Bjk

We can also express a” and «¢ in a more compact vector form:

- diag(W(aB) ") diag(W T (a"B)) 36)

¢ 7 Qiag((@B)(acB)T)’

“ 7 diag((a'B)T(a"B))’

For the detailed pseudocode of first-order ARB-RC, see Algorithm 2}

Algorithm 2 First-Order Alternating Refined Binarization along Row-Column Axes

func ARB-RCY(W, M, X ,T)

Input: W € R™*™ - full-precision weight
M € R™*™ - group mask
X € RBxExm _ calibration data
T - iteration rounds

o~

Output: W € R"*™

1: W,a", a¢ B = binary rc(W, M)

2: for iter =1,2,...,7T do

3: " < refine_.a" (W, B, a¢, M)

4: af < refine_a®(W, B, a",M)

5: for/li:1,2,...,n;l:1,2,...,md0
6: Wi (Oz}; . Ozlc . Bkl) - My

7: end for

8: end for

9: return W

func binary_rc (W, M)
ol = LY (W o M)

. 1 (WoM);.
20 af = o Z;‘zl |7a§ I |

3: B :=sign(W o M)

4: fork=1,2,...,n;1=1,2,...,mdo
5: Wkl = OéZOélCBkl

6: end for _

7: return W, a", a¢, B

func refine_a* (W, B, a¢, M)

I: forj=1,2,... ,ndo

2 num =y . Wjékaszk . Mjgk
3 den =3, (af)*(Bjr - Mji)* + €
4: o =14m
J den
5: end for

6: return o”

func refine_a® (W, B, a”, M)

I: fork=1,2,...,mdo

2 num = Zj ijOc;Bjk - M

3 den =3 (af)*(Bjr - Mjg)? + ¢
4: af =TT
5

6

den
: end for
: return o°

B SECOND-ORDER ARB, ARB-X, AND ARB-RC

To achieve higher quantization precision for salient weight, we apply the second-order binarization to
them. To begin with, we perform a second-order binarization on the full-precision weight matrix W:

1 m
W; =W - h = — W... 37
1 p1, where pig m; J (37)
The optimiztion objective for oy and B is:
of, B} = argmin [|W; — a1 By|[%. (38)
a1,b1

Published as a conference paper at ICLR 2025

We can obtain the optimal solution o] and B7:

1 — .
af = —> [(W1),], Bj=sign(W1). (39)
j=1

Then, we define the residual matrix \7\71 as \7\71 = W, — aj - Bj. Following the previous steps, we
perform binarization on the residual matrix W :

— 1 & —
Wy =W —piz, wherepy = — 3 (Wh) ;. (40)
j=1
o}, BS = argmin [|[W3 — asBs||%. 41)
az,B2

I &~ .

aly = - Z [(W3) |, B3 =sign(Ws). 42)
j=1
W= p + pa. 43)
Then we can achieve the binarized matrix W:

W =a} Bl +aj Bj+p. (44)

For a more concise representation of the formula, we adopt the following formula in subsequent
calculations: .
W:Ozl-B1+042~B2+M. (45)

B.1 SECOND-ORDER ARB

For second-order ARB algorithm, we compute the residual matrix R and its row-wise mean J,,:

R=W-W, 5M:lZR_j. (46)

We first use d,, to refine pu:
=+ 0, 47)

Then, we sequentially update «; and as:

- 2 (B1) © (W — (asBs) — 1))
oy = 2211(31)2]) (48)
YL (B2) (W — (@By) — 1)
" S (B2)? : (49)

We can further simplify it into a vectorized form:
- 1. - - 1 . L
G = —diag(B] (W — i~ a2By)), &2 = —diag(BJ(W — i~ @iBy)). (50)

The optimization objectives for B] and B3 are as follows:

]~31,]~32:argminHWfﬁf&lBl7&2B2||gl. (51)
B1,B:>

In the implementation, we utilize binary search to optimize them. Then we obtain the refined W:
Wicfine = &1 ']él + 622 .]§2 + ﬂ (52)

The detailed pseudocode can be found in Algorithm 3]

Published as a conference paper at ICLR 2025

Algorithm 3 Second-Order Alternating Refined Binarization

func ARB2(W, M, T)

Input: W € R™*™ - full-precision weight

M € R™*™ - group mask
T - iteration rounds

func refine_alpha (B, M, W, 1)
Lnum =3, (BOM®O® (W —yu));
2: den = Z (B ®M)? + € // avoid zero-

Output: W € R"*™ 3. ;141\./1:51(%
1: le aq, B17 H1 = b%na’ry(w’ M) 4 returrileézl
2: Wy, 03, Ba, 3 = binary(W — Wy, M) func refine_B (W, a1, az, 1)
3: L= i1 + po -)))
AT 1. v:i= [70[170&2,*0[1+Oé2,(117042,041+(12]
;_1: t“z 1terW11+2W2 T do // ascending order
’ - . 2:. fori=1,2,...,n;5=1,2,...,mdo
6: R :=W — W // residual matrix 3 x:=BST(Wi; — i, v;)
. — v 1] (3]
7. =2 ;(ROM),; 4: switch (z)
8: < p+ 06,/ refine mean 5. case vy:
9: Wi =W —a3B, N 6: (Bl)zj = -1, (BQ)
10: «j < refine_alpha(B;, M, W1, 1) 7. case vy:
11: Wy =W —q;B; - g cas(?\lfgu = —1,(Ba);;
12: g < refine_alpha(By, M, Wy, 1) 10; (B1)s; = +1, (Ba)s;
13 By, By« refine B(W, ay, az,) - default: I
14: W< a-Bi+ay By +) 12: (Bl)z] = +1, (BQ)ZJ =+1
15: end for__ 13: end switch
16: return W 14: end for

func binary (W, M)
1: ,U - 1 Z] I(WQM)

15: return B, B,
func BST (w, v)

2 W=W — 1 I: l = length(v)
o= % Zjil (WoM),| ; " lreturi :flien
4:]ES\:: sign(W @ M) 4: elseif w > (vy, /2 + Vpnj241)/2 then
5§ Wi=a -B+pu 5. return BST(w, vy, /241:m)
6: return W, o, B, i 6: else
7: return BST(w, vy, /2)
8: end if

B.2 SECOND-ORDER ARB-X

Based on the previously discussed second-order binarization process, we can obtain the binarized

weights as W = a1 B1 + 1 + aaBo + pe. The second-order ARB-X is based on the quantization
error £ with calibration data:

L=|[WX-WX|>. (53)

Rewritten weight-activation quantization error In this section, we rewrite the quantization error
to decouple W and X, reducing the computational cost when calculating the quantization error. We

define W as W = W — (1 + p2). Then we rewrite the quantization error:
£=|WX-WX|f} (54)
= [X(W —a:B1 - aBo) 7 (55)

_ ZZ ZZ (Xp)ie (Wi, — a{VBY) — B2, (56)

We define the residual matrix R as:

Rjp = W, — "Bl —aPBY) wherej=1,2,... .nk=12....,m. (57

Published as a conference paper at ICLR 2025

Then we simplify £ with residual matrix R
L= Z Z(Z Z(Xb)ikRjk)Q
i J bk
=D > 000> (Xe)u(Xo)aRyRy)
i 7 b k1
=330 Xp)a(Xp)a) O RjxRy).
k 1 b i J

After that, we define the matrix S:

Skl = ZZ(Xb)ik(Xb)il, where k = 1,2,. .. ,m,l = 1,2,. coyMm.
b i

Then we obtain the final simplified £:
L= (S,R"R)r =Tr(RSR").

Parameter Update We use the quantization error £ to update y:

L= Z Z Ski Z R;iR;i
= ZZSM Z ik —al)B(l) 52)]3;_?)({;\7 i —all)B(l) §.2)Bﬁ))
B Z Z Sk Z Wi Wi — Wl "Bl - Wia” Bl — Wil BY)

_ W]la@)B(z))
2 2
=3 DSk Y (Wik = 1) (Wit — 1) = (Wi —) (iU BS) + VB
ol i

1 1 2 2
— (Wi —) (afBY}) + oVB)).

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

To obtain the optimal solution for i, we take the partial derivative of £ with respect to u;, where

j=12...

aMJ

We set gTL_:j = 0 to obtain the optimal solution for z;:

1) (1 2 1) (1 2) 5 (2
= Zk Zz Skt (Wk — (O‘;)Bgl) "‘04;)B()) +Wji —(a §)ng) + O‘;)ng)))
! 23", Ez Sk ’

where j = 1,2,...,n. We define the matrix P:

Py =W, — (agl)B;.}) + a§-2)Bﬁ)), where k = 1,2,...,m, [from 1 to m.

We simplify p; using the matrix P:

o Zk Zz(s © (P + PT))kl
= 237,22 Sk ’

Since S is symmetric, we can further simplify the above equation as:

;= Zk ZZ(S © P)kl
! Ye2Sk

where j =1,2,...,n

where j = 1,2,...,n.

ZZSM 2u; — (Wi + W)+ (VB +aPBY + oVBL) + oPBD)). (67)
k

(68)

(69)

(70)

(71)

Published as a conference paper at ICLR 2025

We use the quantization error to sequentially update «v; and a:
EIH DRI)

1 2 2 A7 1 1 2 2
_ZZSMZ Wi —a{"BY) — oPBOY W — VB —aPBY) (73)

)

To update a1, we take the partial derivative of £ with respect to « j swhere j=1,2,...,n

- (1) ZZSM @BY/BY ol -BYW,-BY Wi+ PBYBY +aBYBY) (74)

1).

We set — (1) = 0 to get the optimal solution for c;

1) (2)n(2 1) (2)n@
oD = Dok 2 Skl(Bjk le + Bg‘l)wjk - Bg‘l)a§‘)B;k) - Bg'k)ag')B;z))

— ; (75)
J Do (l
2 Zk Zl Skl(B§'k)B;l))
where j = 1,2,...,n. We define the matrix U; and V as:
(U =BYW, =B aPBY . (Vi) =BY/BY, (76)
where k =1,2,...,m,l =1,2,..., m. Then we simplify aél):
So (U +U/
a§1):2k2l(© Ui+ 1))’“’, where j = 1,2,...,n. 77)
2 Zk Zz(s © Vl)kl
Since S is symmetric, we can further simplify the above equation as
SeoU
alt = 2k 20(S O Unw where j = 1,2,...,n. (78)
Y2 a(SOV’
Then we update o, we take the partial derivative of £ with respect to a() ,where j = 1,2, ... n:
) 2) 57 2) 7
<2> = 23 SuBB o)~ BW,i —BWy (19)
D (2)n(l (1 1)
+ ag.)B§k)le) +alVBYBY)).
We set — (2) = 0 to get the optimal a():
2) (1 2) ()Rl
PRRRLIL LBS s LS L
j 9’
2> k2 Sk(B))
where j = 1,2,...,n. We define the matrix U, and V2 as:
(Us)u =BRW; —BRalVBY), (V) =BYBY, (81)
where k =1,2,...,m,l =1,2,..., m. We can simplify af) using U, and V:
Se (U, +U]
oz(,Q):ZkZl(©(Us + 2))kl, where j = 1,2,...,n. (82)
’ 2Zk Zz(s@v2)kl
Since S is symmetric, we can further simplify the above equation as:
SeoU
o' = 2k 20(S O U where j = 1,2,...,n. (83)

“ Zk Zz S®V2)kl

The detailed pseudocode can be found in Algorithm 4]

Published as a conference paper at ICLR 2025

Algorithm 4 Second-Order Alternating Refined Binarization with calibration data

func ARB-X?(W, M, X ,T)

func X2S (X)

Input: W € R™*"™ - full-precision weight I: forb=1,2,...Bdo
M € R"*™ - group mask 22 fork=1,2,...,m;l=1,2,...,mdo
X € REXLxm _ calibration data 3. Sk =2, 3. (Xp)in(X b)”
T - iteration rounds 4 end for
Output: W € R"*™ 5: end for
I: S = X25(X) // S € Rm*m™ 6: return S
2: Wl,Oé1,B1,/L1 := binary(W, M) func refine_p (S, W, B, By, a,)
3: Wg,ag,Bg, o = binary(W — Wl,M) 1: fori =1,2,...,ndo
4 p = py + o 2. fork=1,2,....ml=1,2,...,mdo
W W, LW . W, _ (1) (1) (2) (2)
5: W :=W; + W, 3: Py =W, (B —+ « B)
6: B+« Bi oM 4: end for
7: Bo <~ By O M 55 numi=3), > ,(SOP)y
8: foriter =1,2,...,T do 6: den:=),> ,Su+e
9: u <+ refine_u(S, W,B1, By, a1, as) T g = e
10: «y « refine_a(S, W, u,Bq,Ba, as) 8: end for
11: a9 refine_a(S, W, 1,Bs,B1,01) 9: return p
122 W+ (a-B+pu)oOM func refine_a (S, W, 1, B, B, @)
13: end for —
: & I W:=W —y
14: re'turnW 2: fori=1,2,...,ndo
func bmariv (W, M) 30 fork=1,2...,ml=12...,mdo
Lopi= 30 (Wo M), 4 Uy = By Wi — BuaiBy
2 W=W—p 5 Vi =ByBy
32 a=LY" (WoM 6: end for
. mZ 11l).l 7. num:=Y, > ,(SOU)y
4 B = sign(W © M) 8 den=3 ;> ,(SOV)y+e
5: W= a/~\B + 1 9: ;=T
6: return W o, B, 1t 10: end for
11: return o
B.3 SECOND-ORDER ARB-RC
We perform second-order binarization under the ARB-RC method:
1 & . 1 .
==Y IW,|, af=-— B; = sign(W). (84)
m 4 n
J=1 =
We define the residual matrix R as:
Rjr = Wy, —aja;Bjg, wherej=1,2,...,n,k=1,2,...,m. (85)
Then we perform binarization on residual matrix R:
r 1 - c - RJ :
ay=—> R, a5=-> |—%| By=sign(R) (86)
=1 N4 (a3);
We can obtain the results of the second-order binarization:
Wk = (a]);(a))r(B1)k + (a5)(as)k(Ba)k, wherej=1,2,....n,k=1,2,...,m. (87)
Then quantization error without calibration data is given by the following formula:
= [IW ~ Wi, (88)
= Z Z ik — (@) (@D)k(B1)jk + (ab)(a5)k(Ba)jx))*. (89)

10

Published as a conference paper at ICLR 2025

We define Wl and Wg as:

(W) = Wi — (ab);(a)k(B2)jx), (Wa)jx = Wk — (a]);(a5)e(B1)jr). (90)

where j =1,2,...,n,k =1,2,...,m. Then we update o] using the following formulas:
oL —~ . . .
5rary. = 2o (2W)(B)(ad)s + 2aDi(Ba)ji(ah),): o1
1)3 -
We set a(iié)j = 0 to get the optimal solution for (af);:
W) ik (a$)r(B1);
(af); = 2k 1);5(2&1)1@(2 1)Jk, where j = 1,2,...,n. (92)
>oe(a)i(B1)f,

We update of using the following formulas:

oL

3tar — 2 ("2AWik(B)(an); + 2D (Ba)u(@De)- (93)
1 -
j
We set ﬁ = 0 to get the optimal solution for (a5):
(W) ;(ah);(By);
(af)k _ Z](I)Jf(z 1)](2 1)]1@’ where k = 1,2,m. 04)
Zj(al)j(Bl)jk

We update o using the following formulas:

oL
d(a3);

= (—2(W2)x(Ba)js(a8)s + 2(05)F (B2) 2 (05),). 95)
k

We set %’g)j = 0 to get the optimal solution for (a4);:

Wa) i (a$)(Ba),
(a3); = i 2)Jf(§2)k(2 z)ﬂ“, where j = 1,2,...,n. (96)
Zk(a2)k(B2)jk
We update o5 using the following formulas:
oL W T 7\2 2 c
B D (—2(Wa)jk(Ba)jk(ab); + 2(ab)?(B2) 3, (05)k). (97)
J
We set 8(?17{3:);@ = 0 to get the optimal solution for (a$)g:
(W) k(%) (By);
(ag)k = 24 2)jf(2 2)3(2 Z)Jk, where k = 1,2,...,m. (98)
Zj(a2)j(B2)jk

The objective of optimizing B; and By is:

(B1)jk, (B2)jr = argmin [[Wj, — ((a]);(a])k(B1)k + (a3);(a3)k(B2)x)|ler, (99)
(B1)jk,(B2)jk

where j = 1,2,...,n,k =1,2,...,m. The detailed pseudocode for second-order ARB-RC can be
found in Algorithm 5]

11

Published as a conference paper at ICLR 2025

Algorithm 5 Second-Order Alternating Refined Binarization along Row-Column Axes

func ARB-RC?(W, M, X ,T)
Input: W € R™*™ - full-precision weight

M € R™*™ - group mask
X € RBxExm _ calibration data
T - iteration rounds

Output: W € R"*™

1: \/ﬂ\fl,a{,a{‘,Bl := binary_rc(W, M)

»

AN A

9:
10:
11:

12:
13:
14:

15:
16:

17:

18:
19:

A~

Wy, af, a§, Bs = binary r¢(W — W, M)

W = Wl + WZ
B+~ B oM
B, +~B:oM
for iter =1,2,...,
forj=1,2,...,
(Wl)j}c =W — (ag)j(a
(WQ)jk; = ij - (O‘{)j(a
end for
ol + refine_ ar(WhBh af)
+ refine_a (W1,Bl’ ay)
"()
(

T do
nk=1,2,...,mdo

$)k(B2) k)

D)e(B1)jk)

af
+ refine_a WQ,BQ,QQ
a§ + refine_a* Wg,Bg,al)
B1, B2 < refine B(W, af, o}, af, a$)
fork=1,2,..., n;l=1,2,...,mdo
Wi« ((aD)r(af)i(Bi)u +
(a5)k(a5)i(Ba)rt) - My
end for
end for

”
Qg

20: return W
func binary_rc (W, M)

1:

7:

SAN AN

a’ =53 [(Wo M)
C. WMJ
=5 1|®7|

@

B =sign(W © M)

fork=1,2,....,n:l=1,2,...,m
Wy, = aiachkl

end for

return W o, o, B

do

func refine_a* (W, B, a¢)

1:

forj =1,2,...,ndo

22 num =), W,pa;Bj

3: den:= Zk(ak)2B2k +e
. T . num

4 o=

5: end for

6: return o”
func refine_a® (W, B, a")

1: fork=1,2,...,mdo
2 num = Z ijo/’Bjk
3 den:=3); (1)PB3, +e
4 af = ’QZ?
5: end for
6: return af
func refine B (W, af, ab, af, a$)
cfori=1,2,...,n;5=1,2,...,mdo
—(ai)i(ai)j — (a5)i(as5);
5 v |(@D)i(e9); + (ag)i(as5);
(a1)i(af); — (a)i(a5),
(a7)i(af); + (a3)i(a5),
3: T = BST(W”,V)
4: switch (z)
5: case vi:
6: (B1)ij = —1,(Ba);; = —1
7 case vo:
8: (B1)ij = —1,(Ba)i; = +1
9: case vg:
10: (Bl)ij = +1, (Bg)ij =-1
11: default:
12: (B1)2] +1, (Bg)ij =+1
13: end switch
14: end for

15: return B, B,
func BST (w, v)
1: 1 :=length(v)
2: if [== 1 then
3: return v,
4: elseif w > (v, /2 + Vpn/241)/2 then
5. return BST(w, vy, /241:m)
6: else
7: return BST(w, vy, /2)
8: end if

C

PROOF OF THEOREM 1

Here we consider a row of the weight matrix W € R1*™ with single y and . In the (7+1)-th
iteration, we update p by using the following formulas:

R"=W —a"B” _MT’

T+1

=R",

=u’ +0,.

12

(100)

(101)

(102)

Published as a conference paper at ICLR 2025

Then we can compute the specific value of the quantization error reduction after updating p":

IR™ — 61" = IIR||* — 2(R7, 67,) + ||}, (103)
= |R7|? - 26TZRk+m) (104)
k=1
= [[R7|[* = m(5})* (105)
< |[R7[*. (106)
Here we have m¢7,” = ||R7||? — no?. We refine B using the following formula:
B™ = sign(W — ™ — 4. (107)
The following derivation provides the decrease in quantization error after updating B:
IR™ — 6], +a”(B” —B")||? (108)
= |IR™ = o7l + 2(R™ — &7),a”(B" = B™)) + [|a" (BT — B™™)||? (109)
=|R™ =5[> +a” Y (Bf - B")(2R] — 207, + "B} — B[") (110)
k
= [IR7|I? = md;* + a7 Y (Bf = B{*)(2(Wi — 7 —6;) —a” (BL+ B[*) (111
k
= [|[R7[|> — md},* + M, (112)
where M = o™ Y (B} - B;™)(2(W, — u7 — 57) — o” (B}, + B[™). (113)
k

M only has the following conditions:

if B =B = M =0,

if B, =+1,B"' = —1=W -y -7 <0=M <0,
ifBf=-1,B" ' =+1=W -y —67>0=M<0,

=M <0,)
T T T T T4+1Y]|2 T2 T
= |[[R” =46, +a"(B —B™H|]2 < ||IR7| —mo”.
Specifically,
M =2m(a")? — 2474, ZBk —2ma’a’ ! (114)
=2m(a”)? + 2m6;(;f+1 ~W) —2ma"a™ . (115)
Then we refine o and calculate the reduction of quantization error:
R'=R™ -4, +a"(B"-B™™), (116)
IR+ (a7 — o™ H)B7H|? (117)
_ ||R/||2 (T _ o ! ZBTJrl 2Rk + (a _a'r-i-l)Br-i-l) (118)
_ ||R/||2 o — T+1 ZBT—H . T+1) - (ar +aT+1)BT+1) (119)
= ||R/||*> + 2ma™ " (a" — aT'H) —m(a”)? +m(a™h)? (120)
=R =m(a” —a™)? (121)
< [RJ%. (122)

Combining the results from the above derivation, we can obtain the specific value of the decrease of
quantization error after the (7+1)-th iteration:

[R7H[* — [[RT]]” (123)
= 7m(5;)2 + 2m(a”)? + 2m6;(,u7+1 —u%) —2maTa™ —m(a” —a”Th)? (124)
=m((a7)? = (a™"1)* = (1) + 207 (u " —) (125)

13

Published as a conference paper at ICLR 2025

We can also derive the relationship between the quantization error after the T-th iteration R’ and the
quantization error before iteration R as

IRT[]? = |RY|]> = m((a®)? = (a)* + (u" — u®)?). (126)

D PROOF OF THEOREM 2

X € RBEXLXm iq the calibration data. W, W € R™*™ are the full-precision weight matrix and
binarized weight matrix, k is the block size, T is theiteration rounds. The quantization error with
calibration data £ is shown as follows:

Ly =||[WX - WX||2 (127)
=X (W-W)T|= (128)

We calculate the time complexity of X - (W — W)T as O(B - k- L - n) since it involves B matrix
multiplications, each requiring (L - n - k) multiplications and (L - n - (k — 1)) additions. The time
complexity of squaring all the elements of a matrix and then sums them up is O(L - n). In each
iteration, we need to perform % calculations, and there are 7" iterations in total. Therefore, the overall
time complexity is 7" - 7 - (O(B - k- L - n) + O(L - n)), which simplifies to O(n- B- L -m - T).

Ly=)_> (SOR);. (129)
i g

We calculate the time complexity of S as O(B - k? - L), since S contains k% elements, and calculating
each element involves (B - L) multiplications and (B - L) additions. And we calculate the time
complexity of R as O(n - k?), since R contains k? elements, and calculating each element involves
n multiplications and (n — 1) additions. The time complexity of the element-wise multiplication of S
and R, as well as the summation of the matrices, is O(k2). In each iteration, we need to perform %
calculations, and there are 7 iterations in total. It is important to note that the calculation of matrix S
does not need to be performed in every iteration of the 7" iterations; it only needs to be computed
once. Therefore, the overall time complexity is % - (O(B-k*- L)+ T - (O(n- k*) + O(k?))), which
simplifiesto O(m - k- (B-L+n-T)).

We define the acceleration ratio 7 as the quotient of the time complexities of £; and Lo
On-B-L-m-T)

"ZOm -k (B-Ltn-T))
1

k-Gir+ 1)

(130)

o (131)

Typically, we set n to 4096, B to 128, L to 2048, T to 15, and k to 128. Under these circumstances,
7 is approximately equal to 389.

E MEMORY COMPUTATION

For W € R™*"™ block size k, the memory of W after standard row-wise binarization is

B multiple blocks row—wise FP16 o and u
—— PNy PN,
MBSt = xm+ [m/k] x 2xnx16 . (132)

Moreover, second-order row-wise binarization can be represented as

B1 and Ba multiple blocks row—wise FP16 a1, as, and i
——N— ~—> —N—
Mznd:2xnxm+ ’—m/kj] X 3Xnx16 s (133)

since row-wise (1 and po can be combined together as = p1 + po.

14

Published as a conference paper at ICLR 2025

Thus, the memory required by BiLLM can be formulated as

second—order binarization first—order binarization
Mpim =2 xnxc+ [m/k] x3n x 16+n x (m—c) + [m/k] x2n x 16 x 2 (134)
2 groups

group bitmap salient column bitmap

+ mxm + m , (135)
where c is the number of salient columns for W.

Similarly, we can formulate the memory occupation of first-order row-column-wise binarization and
our ARB-RC as

B FP16 a, and o,

. —_—~—~
Mrltfvt—column—wise =nXm+ (n + m) X 167 (136)
second—order binarization
Marpre =2 xn X c+ ([m/k] x 2n 4+ 2¢) x 16 (137)
first—order binarization
+nx(m—c)+ ([m/k] xn+(m—c)) x 16 x 2 (138)
2 groups

group bitmap salient column bitmap
—~

+ nxm + m . (139)

In addition, if added CGB, i.e. our refined strategy for the combination of salient column bitmap and
group bitmap, the memory requirement slightly increases due to more scaling factors, but still less
than BiLLM. The total memory of ARB-RC + CGB is

second—order binarization

MargrCc+cgB =2 X n X ¢+ ([m/k] x 2n+ 2¢) x 16 x 2 (140)

2 groups

first—order binarization
+nx(m—c)+ ([m/k] xn+(m—-c)) x 16 x 2 (141)

2 groups

group bitmap salient column bitmap

+ nxm + m . (142)

15

Published as a conference paper at ICLR 2025

F VISUALIZATION DURING ALTERNATING REFINEMENT

Gate |...|

Up

Down

Figure 1: The change of distribution shift (absolute difference between the mean of binarized and full-
precision weights) during alternating refined binarization on LLaMA-7B. Each subfigure represents a
block, with iteration O corresponding to the BiLLM method.

F.1 DISTRIBUTION SHIFT

As shown in Figure|l} our Alternating Refined Binarization progressively reduces the distribution
shift with fast convergence, where the initial distribution shift corresponds to BiLLM.

F.2 COLUMN-WISE QUANTIZATION ERROR

As shown in Figure 2| We visualize the column-wise quantization error of a block in each layer of the
LLM. The results indicate that our ARB-RC method can effectively reduce column-wise quantization
error compared to previous row-wise binarization method.

F.3 BINARIZATION PARAMETERS

As shown in Figure [3] we visualize the changes of alpha and mean during Alternating Refined
Binarization. It is evident that all alpha values increase beyond their initial estimates, as supported by
our analysis of quantization error in Equation (I2I)). This suggests that alpha was underestimated by
previous binarization methods.

G MORE EXPERIMENTAL RESULTS

Comparison on PTB and C4. Due to the page limit, we provide the perplexity comparison on PTB
dataset for LLaMA and OPT families in Table[I] and Table [3|respectively. Similarly, the comparisons
on C4 dataset for LLaMA and OPT families are provided in Table [2]and Table [respectively.

Comparison on 7 zero-shot QA datasets. We also provide the comparison of 7 zero-shot QA
datasets on OPT family, as shown in Table 3]

16

Published as a conference paper at ICLR 2025

oooooo

Gate

Up

Down «

Figure 2: Quantization error comparison between row-wise binarization (red curve) and ARB-RC
(blue curve) on LLaMA-7B. We display the error along columns, with each subfigure representing
a block. The blue curve is notably lower than the red curve, with the difference being particularly
pronounced in the Gate Project, Up Project, and Down Project layers.

Evaluation with other metrics. We conduct additional experiments on LLaMA-7B, measuring the
F1 score on the SQuADV2 dataset and chrF on the WMT2014 (En-Fr) dataset. As shown in Table [6]
our ARB-LLM significantly outperforms previous binarization methods, PB-LLM and BiLLM, in
both F1 score and chrF metrics, further demonstrating the effectiveness of our proposed method.

Evaluation on SQuADvV2, SWAG, and MMLU College Mathematics datasets. We conduct addi-
tional experiments on the long context dataset SQuADV2, math dataset MMLU College Mathematics,

17

Published as a conference paper at ICLR 2025

Gate

Up

Down

Figure 3: The changes of alpha and mean during alternating refinement on LLaMA-7B, with each
subfigure representing a block. The red curve on the left represents the change of alpha, while the
blue curve represents the change of mean. All alpha values exceed their initial estimates, indicating
that alpha is underestimated in standard binarization.

and reasoning dataset SWAG. As shown in Table[/| our ARB-LLM also outperforms the previous
binarization methods PB-LLM and BiLLLM on these datasets, narrowing the performance gap with
FP16, especially on the long-context SQuADvV2 dataset.

Comparison on Phi-3 models. We conduct additional experiments by binarizing Phi-3-mini (3.8B)
and Phi-3-medium (14B), and evaluate their perplexity (PPL) on WikiText2. As shown in Table[8]
our ARB-LLM consistently outperforms previous binarization methods, PB-LLM and BiLLM.
Moreover, the performance gap between binarized and FP16 models is reasonable. Compared to the
binarization of OPT, the results for Phi-3-mini (3.8B) surpass those of OPT (2.7B), and the results for
Phi-3-medium (14B) outperform OPT (13B).

Comparison of runtime inference. Evaluating runtime performance is crucial for demonstrating
the practical feasibility of our proposed implementation. Unfortunately, previous works such as
BiLLM and PB-LLM, did not report runtime performance due to the lack of a CUDA kernel for
matrix multiplication between FP activation and 1-bit weights. We use the BitBLAS codebase to
benchmark our method and comparable approaches, providing detailed runtime evaluations. We
evaluate the runtime inference metrics by measuring the latency (ms) of various linear layers in
LLaMA-7B and LLaMA-13B. The sequence length of input tensor X is 2048, and experiments are
conducted on an NVIDIA A6000 GPU. As shown in Table[0] our method demonstrates significant
improvements in inference speed compared to FP16 and PB-LLM. PB-LLM is slower due to the
Int8-to-FP16 matrix multiplication. Moreover, both ARB-LLM-X and ARB-LLM-RC achieve a
speed similar to BiLLM, while largely improving the performance.

Pareto curve. We present the Pareto curves of binarization methods PB-LLM, BiLLM, and our
ARB-LLM (all with CSR compressed bitmap), as well as the low-bit quantization methods GPTQ
in Figure @ Among GPTQ models, the 4-bit version achieves the highest accuracy for a given
memory budget compared to its 2-bit, 3-bit, and 8-bit counterparts. However, our ARB-LLM still
outperforms 4-bit GPTQ on the Pareto curve. Moreover, low-bit quantization methods like GPTQ
suffer significant accuracy degradation at extremely low bit levels (e.g., 2-bit). In contrast, our
ARB-LLM excels in such scenarios, delivering superior performance while using less memory.

18

Published as a conference paper at ICLR 2025

Table 1: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on LLaMA family. The
columns represent the perplexity results on the PTB dataset with different model sizes. N/A: LLaMA2
lacks a 30B version, and LLaMA3 lacks both 13B and 30B versions. *: LLaMA has a 65B version,
while both LLaMA?2 and LLaMA3 have 70B versions.

Block Weight

Model Method Si A 7B/8B* 13B 30B 65B/70B*
ize Bits
Full Precision - 16.00 41.15 28.10 23.51 25.07
RTN - 3.00 329.78 64.53 80.46 81.57
GPTQ 128 3.00 84.88 26.40 20.22 19.55
RTN - 2.00 126501.65 84172.61 32162.31 21743.58
GPTQ 128 2.00 1421.47 224.45 69.46 47.70
LLaMA RTN - 1.00 155213.47 1960633.38 14821.51 68358.99
GPTQ 128 1.00 121586.44 104769.39 10959.79 20192.53
PB-LLM 128 1.70 603.57 237.22 114.35 119.19
BiLLM 128 1.09 373.81 84.87 43.10 44.68
ARB-LLMx 128 1.09 281.70 81.50 38.07 36.08
ARB-LLMgc 128 1.09 195.94 54.38 34.65 32.20
Full Precision - 16.00 37.91 50.93 N/A 24.25
RTN - 3.00 1680.32 228.12 N/A 63.24
GPTQ 128 3.00 4825.75 40.33 N/A 18.26
RTN - 2.00 24786.95 51250.84 N/A 29383.20
GPTQ 128 2.00 5583.96 419.07 N/A 50.51
LLaMA2 RTN - 1.00 99798.48 38487.07 N/A 110548.30
GPTQ 128 1.00 66784.62 27741.64 N/A 14379.46
PB-LLM 128 1.70 657.24 816.31 N/A NAN
BiLLM 128 1.08 5243.01 309.12 N/A 72.02
ARB-LLMx 128 1.08 681.24 182.10 N/A 49.18
ARB-LLMgc 128 1.08 389.59 198.17 N/A 32.79
Full Precision - 16.00 11.18 N/A N/A 8.53
RTN - 3.00 1869.24 N/A N/A 16180.72
GPTQ 128 3.00 18.83 N/A N/A 15.97
RTN - 2.00 633297.75 N/A N/A 374834.19
GPTQ 128 2.00 717.24 N/A N/A 79.20
LLaMA3 RTN - 1.00 764941.75 N/A N/A 227967.19
GPTQ 128 1.00 978209.31 N/A N/A 118912.35
PB-LLM 128 1.70 106.25 N/A N/A 45.13
BiLLM 128 1.06 87.25 N/A N/A 97.13
ARB-LLMy 128 1.06 53.86 N/A N/A 23.13
ARB-LLMgc 128 1.06 45.49 N/A N/A 15.34

Results of BILLM. We strictly follow the BiLLM codebase to reproduce the results. However, the
experiments were conducted on a different GPU, and some package versions may differ. These slight
variations in the experimental environment are likely the primary cause of any discrepancies. As
shown in Table @} for these two models, more than half of the reproduced results are better than
those reported in the original paper. Whether compared against the original results or the reproduced
ones, our ARB-LLM consistently outperforms BiLLM.

H DiALOoG EXAMPLES

As shown in Figure 5| we provide some dialogue examples of PB-LLM, BiLLM, and our ARB-
LLMpgc on LLaMA-13B and Vicuna-13B models.

19

Published as a conference paper at ICLR 2025

Table 2: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on LLaMA family. The
columns represent the perplexity results on the C4 dataset with different model sizes. N/A: LLaMA?2
lacks a 30B version, and LLaMA3 lacks both 13B and 30B versions. *: LLaMA has a 65B version,
while both LLaMA?2 and LLaMA3 have 70B versions.

Block Weight

Model Method Si . 7B/8B* 13B 30B 65B/70B*
ize Bits
Full Precision - 16.00 7.34 6.80 6.13 5.81
RTN - 3.00 28.24 13.24 28.58 12.76
GPTQ 128 3.00 9.95 7.16 6.51 6.03
RTN - 2.00 112668.16 58515.73 27979.50 22130.23
GPTQ 128 2.00 79.06 18.97 14.86 10.23
LLaMA RTN - 1.00 194607.78 1288356.88 13556.87 135027.31
GPTQ 128 1.00 186229.5 108958.73 9584.84 23965.75
PB-LLM 128 1.70 76.63 40.64 25.16 15.30
BiLLM 128 1.09 46.96 16.83 12.11 11.09
ARB-LLMx 128 1.09 22.73 13.86 10.93 9.64
ARB-LLMgc 128 1.09 17.92 12.48 10.09 8.91
Full Precision - 16.00 7.26 6.73 N/A 5.71
RTN - 3.00 384.02 12.50 N/A 10.03
GPTQ 128 3.00 7.95 7.06 N/A 5.88
RTN - 2.00 30843.15 51690.40 N/A 27052.53
GPTQ 128 2.00 35.27 19.66 N/A 9.55
LLaMA2 RTN - 1.00 115058.76 46250.21 N/A 314504.09
GPTQ 128 1.00 67954.04 19303.51 N/A 13036.32
PB-LLM 128 1.70 80.69 184.67 N/A NAN
BiLLM 128 1.08 39.38 25.87 N/A 17.30
ARB-LLMx 128 1.08 28.02 19.82 N/A 11.85
ARB-LLMgc 128 1.08 20.12 14.29 N/A 8.65
Full Precision - 16.00 9.45 N/A N/A 7.17
RTN - 3.00 566.43 N/A N/A 12285.45
GPTQ 128 3.00 17.68 N/A N/A 10.04
RTN - 2.00 777230.94 N/A N/A 447601.09
GPTQ 128 2.00 394.74 N/A N/A 122.55
LLaMA3 RTN - 1.00 1422473.38 N/A N/A 188916.13
GPTQ 128 1.00 1118313.13 N/A N/A 126439.66
PB-LLM 128 1.70 104.15 N/A N/A 40.69
BiLLM 128 1.06 61.04 N/A N/A 198.86
ARB-LLMx 128 1.06 41.86 N/A N/A 21.67
ARB-LLMgc 128 1.06 35.70 N/A N/A 15.44

Table 3: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on OPT family. The columns
represent the perplexity results on PTB datasets with different model sizes.

Block Weight

Method . . 1.3B 2.7B 6.7B 13B 30B 66B
Size Bits
Full Precision - 16.00 20.29 17.97 15.77 14.52 14.04 13.36
RTN - 3.00 8987.17 9054.89 4661.77 2474.14 1043.13 3647.87
GPTQ 128 3.00 17.54 15.15 12.86 11.93 11.28 11.42
RTN - 2.00 8030.18 5969.35 17222.70 72388.19 105760.72 462581.28
GPTQ 128 2.00 110.93 58.38 22.73 17.81 14.19 62.04
RTN - 1.00 11062.04 28183.08 11981.09 32157360.00 5435.99 147668.78
GPTQ 128 1.00 6524.99 8405.25 5198.99 3444847.25 7158.62 5737.15
PB-LLM 128 1.70 324.62 183.97 169.49 101.00 41.87 45.32
BiLLM 128 1.11 115.94 88.52 69.41 27.16 21.41 18.51
ARB-LLMy 128 1.11 71.96 54.28 31.23 23.46 19.28 17.64
ARB-LLMgc 128 1.11 43.34 31.77 22.31 18.81 16.88 15.66

20

Published as a conference paper at ICLR 2025

Table 4: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on OPT family. The columns
represent the perplexity results on C4 datasets with different model sizes.

Block Weight

Method . . 1.3B 2.7B 6.7B 13B 30B 66B
Size Bits
Full Precision - 16.00 16.07 14.34 12.71 12.06 11.45 10.99
RTN - 3.00 5039.85 11165.54 5022.57 2550.72 1030.62 3394.97
GPTQ 128 3.00 16.11 14.17 12.29 11.54 10.91 11.05
RTN - 2.00 7431.04 7387.40 13192.40 89517.66 61213.64 823566.00
_GPTQ] 128 200 6306 _ 3581 _ 1860 1629 1292 ~ 33.03
RTN - 1.00 9999.56 23492.89 9617.07 23436088.00 5041.77 113236.92
GPTQ 128 1.00 6364.65 6703.36 5576.82 1799217.88 7971.37 7791.47
PB-LLM 128 1.70 168.12 222.15 104.78 57.84 27.67 27.73
_BiLLM 128 L1l 6414 4477 4213 1983 1617 1416
ARB-LLMx 128 1.11 47.60 34.97 22.54 17.71 14.71 13.32
ARB-LLMgc 128 1.11 28.19 21.46 16.97 15.01 13.34 12.43

Table 5: Accuracy of 7 QA datasets on OPT family. We compare the results among GPTQ, PB-LLM,
BiLLM, ARB-LLMy, and ARB-LLMgc to validate the quantization effect.

Model Method ng:tgsht PIQA 1 BoolQ T OBQA 1 Winogrande 1 ARC-e T ARC-c T Hellaswag 1 Average 1
GPTQ 2.00 5947 42.66 15.80 50.04 37.21 21.42 30.92 36.79
PB-LLM 1.70 5457 61.77 13.00 50.99 28.79 20.56 26.55 36.60
OPT-13B BiLIM 109 5952 6L74 1480 5217 3653 1783 = 2964 3889
ARB-LLMx 1.09 62.84 61.99 13.40 52.17 43.43 18.94 30.86 40.52
ARB-LLMgc 1.09 6545 60.31 15.40 53.04 48.27 19.37 33.44 42.18
GPTQ 200 61.81 5443 15.40 52.33 40.15 20.56 32.55 39.60
PB-LLM 1.70 5642 62.23 12.80 50.12 31.61 18.60 27.61 37.06
OPT-27B BiLILM _ 109 6257 6220 1540 _ 5257 _ 3965 1980 _ 3083 4044
ARB-LLMyx 1.09 65.61 62.08 14.80 53.59 47.22 19.62 32.57 42.21
ARB-LLMgc 1.09 68.50 6199 21.60 58.33 52.82 22.27 37.50 46.14
GPTQ 2.00 6937 55.05 21.20 55.80 56.06 23.38 41.29 46.02
PB-LLM 1.70 56.47 55.57 13.20 50.28 29.97 18.69 27.50 35.95
OPT:67B BILLM 109 5860 6214 1320 53.02 3375 1826 _ 28.83 3827
ARB-LLMyx 1.09 69.75 62.20 17.80 58.64 55.47 24.32 37.78 46.57
ARB-LLMgc 1.09 7247 62.87 2220 60.62 59.09 26.79 42.08 49.45
GPTQ 200 66.54 5651 18.60 59.12 48.53 24.06 41.34 44.96
PB-LLM 1.70 5729 62.17 12.80 51.22 30.93 20.56 26.83 37.40
OPT-I3B BILLM 109 6872 6232 1800 5991 5471 _ 2637 _ 3902 4700
ARB-LLMyx 1.09 7198 62.57 21.20 61.40 59.72 26.02 41.45 49.19
ARB-LLMgc 1.09 7356 6593 24.20 64.25 62.54 29.52 45.14 52.16
GPTQ 200 7388 63.94 2420 62.19 60.77 28.24 47.88 51.59
PB-LLM 1.70 66.76 62.29 17.40 51.07 49.33 22.53 36.53 43.70
OPT:30B BILLM 100 7274 6235 2100 6014 6069 2756 _ 4281 4961
ARB-LLMyx 1.09 7427 6239 23.60 64.25 63.51 28.33 46.04 51.77
ARB-LLMgc 1.09 75.08 6578 26.40 65.43 64.81 29.69 48.59 53.68
GPTQ 200 57.62 57.13 13.20 51.85 36.11 21.67 34.01 38.80
PB-LLM 1.70 72774 62.54 2420 63.46 60.10 30.20 43.13 50.91
OPL66B BILLM 109 7508 6526 2560 6543 6566 3140 _ 4754 5371
ARB-LLMx 1.09 7579 66.27 27.00 66.77 67.51 32.76 49.33 55.06
ARB-LLMgc 1.09 76.88 70.89 28.60 66.22 69.28 33.62 51.23 56.67

I LIMITATIONS

Combination of ARB-X and ARB-RC. We find that it is hard to incorporate the calibration data
into the update of column scaling factors. After initializing the row and column scaling factors, we
take the derivative of quantization error £, with respect to ¢ and set it to zero:

oL
Bt Z Sit Z(—a?Bthjk + (ag)QaZBthjk) =0, wheret=1,2,...,m. (143)
t 3 S

21

Published as a conference paper at ICLR 2025

Table 6: Comparison on SQuUADV2 (F1 score) and WMT2014 En-Fr (chrF).

Method SQuADvV2 (F1 score?) WMT2014 En-Fr (chrF1)
FP16 19.45 28.89
PB-LLM 2.78 14.27
BiLLM 3.55 17.45
ARB-LLMx 8.23 23.90
ARB-LLMgc 12.24 19.22

Table 7: Comparison on SQuADvV2, SWAG, and MMLU College Mathematics datasets.

Method SQuADv2 (F11) SWAG (Acct) MMLU College Mathematics (Acct)
FP16 19.45 0.57 0.36
PB-LLM 2.78 0.31 0.20
BiLLM 3.55 0.36 0.21
ARB-LLMy 8.23 0.41 0.22
ARB-LLMgc 12.24 0.44 0.23

Table 8: Perplexity of WikiText2 on Phi-3 models.

Model Phi-3-mini (3.8B) Phi-3-medium (14B)
FP16 5.82 4.02
PB-LLM 377.98 754.27
BiLLM 21.03 10.33
ARB-LLMy 18.32 9.31
ARB-LLMgc 17.32 8.97

Table 9: Comparison of runtime inference (ms) on LLaMA-1/2-7B and LLaMA-1/2-13B.

Model LLaMA-1/2-7B LLaMA-1/2-13B

Weight Size 4096x4096 4096x11008 11008x4096 5120x5120 5120x13824 13824x5120
FP16 0.76595 1.63532 1.76949 0.91443 2.68492 2.71254
PB-LLM 0.73363 1.44076 1.69881 0.83148 2.17292 2.19443
BiLLM 0.34201 0.36777 0.37689 0.35948 0.48947 0.49406
ARB-LLMgc 0.35974 0.37218 0.37981 0.36312 0.49801 0.50038
ARB-LLMx 0.33180 0.35539 0.36792 0.35505 0.47788 0.48275

Table 10: Perplexity of WikiText2 on LLaMA-1 and LLaMA-2. ¥We reproduce BiLLM based on
their codebase.

Model LLaMA-1 LLaMA-2

7B 13B 30B 65B 7B 13B 70B
BiLLM 35.04 15.14 10.52 8.49 3248 16.77 8.41
BiLLM? 4979 1458 990 837 3231 2135 13.32
ARB-LLMx 21.81 1120 8.66 7.27 21.61 14.86 7.88
ARB-LLMgc 14.03 10.18 7.75 6.56 16.44 11.85 6.16

We observe that during the process of updating «y, the derivative of the quantization error with
respect to of includes terms involving other «f. This indicates that introducing a calibration set
results in coupling between ¢ values, complicating their updates. Incorporating calibration data into
ARB-RC presents a promising direction for future work.

22

Published as a conference paper at ICLR 2025

60 T —
—— FP16

—— GPTQ-8bit

—x— GPTQ-4bit

55 GPTQ-3bit

—— GPTQ-2bit

—o— PB-LLM

—a— BiLLM

—#— ARB-LLMg¢ (Ours)

45 [

Avg. Accuracy

40 -

35 L L L L T L L L L L L T L L L L L L L
100 10° 102
Model Size (GB, log scale)

Figure 4: The Pareto curves of binarization and low-bit quantization methods demonstrate that our
ARB-LLM outperforms all other approaches within the same memory constraints. Low-bit methods
like GPTQ suffer significant performance degradation at extremely low bit levels (e.g., 2-bit), whereas
our method maintains strong performance.

23

Published as a conference paper at ICLR 2025

LLaMA-13B

Prompt

:Florida is a state of ____

PB-LLM-1.7bit :

BiLLM-1.1bit
ARB-LLMg-1.1bit

:Florida is a state of the

Florida is a atate of is a is that is a is that is a is that is that is

‘Florida is a state of the art business in the works.

and covers an area of 57,680 hectares.
The Florida surface comprises mostly of salt beaches.

Prompt

: Amazon River locate in

PB-LLM-1.7bit :
BiLLM-1.1bit :
ARB-LLMgc-1.1bit :

Amazon River locate in all of this way. You can see me, and you can hear me.

Amazon River locate in front of the road, in the rear, in the lane, in the lane.
Amazon River locate in . Amazon River is a river with the longest

length in the world.

Prompt :

Having hiked through the steep mountain trail for hours, he was exhausted, his clothes
soaked with sweat, and his legs trembling from the effort. Seeing his condition, |
suggested he

PB-LLM-1.7bit :
BiLLM-1.1bit :
ARB-LLMgc-1.1bit :

| suggested he could was a piss, with his hiked piss wisp. He was sopped. He had a bust.

| suggested he to come close. And he was glad. | could be a good thing by a good action.

| suggested he went up to mountain for 8km again but when he
. He went back to the bottom and went to the mountain for

another time.

Vicuna-13B
Prompt : | failed my physics exam, and | am unsure what steps to take next. What should | do?
PB-LLM-1.7bit : Ne Ne and it looked like much o Ne' ne because sheadNe ne
BiLLM-1.1bit : Please assist me.

ARB-LLMgc-1.1bit :

Well, it could be best first to about how exactly you can try
to improve your performance. If you are sure that you failed the exam, .

Prompt :

My friend is studying in Rome, and | want to visit. What's the easiest way to get there
from Madrid?

PB-LLM-1.7bit :

BiLLM-1.1bit :

ARB-LLMgc-1.1bit :

Mr.” I’ leads she_home inside of no is often. | didn. | needed outside off. | didn. |
needed outsideoff. | was. | looked inside. | am! Unmann. | needs. I. | would. I. L. | would.
I. It.I. would have. | had.

Can you guide me through the process of buying tickets from Madrid? Can you help me
travel from Madrid to a specific destination in Japan where | could go to the place
because | don't want to do it. | don't have the ability to do it, but if you could tell me.

The easiest way to get from Madrid to Rome is to . The
flight will take approximately 3-5 hours, depending on the specific airline and the time it
takes to get to Rome. The flight from Madrid to Rome is usually relatively cheap and can
be done by any Spanish airline, like Vuelta, Iberia and many other.

Prompt :

After running a marathon, | was completely exhausted and out of breath. What should
| do to recover?

PB-LLM-1.7bit :
BiLLM-1.1bit :

ARB-LLMgc-1.1bit :

I. 1 was too and she said.l. | didn. It would give. It was. | was. It. Itis. It’ It was.

| already asked my doctor friend. He suggested what to do now but what to do, how to
do it, or to do, how to do, how to do, how to do...

During recovery, it's important to . You may need to
rest for at least a week to recover, or you might be a little better. Some people might
feel better after a day after running a marathon. In order to recover, | recommend that
you rest on Sunday and Monday, and then be ready and full of energy by Tuesday.

Figure 5: Conversation examples on LLaMA-13B (language supplementary) and Vicuna-13B (Q&A).
We compare our best method ARB-LLMgc with PB-LLM and BiLLM. Inappropiate and
responses are shown in corresponding colors.

24

	First-order ARB-X and ARB-RC
	First-order ARB-X
	First-order ARB-RC

	Second-order ARB, ARB-X, and ARB-RC
	Second-order ARB
	Second-order ARB-X
	Second-order ARB-RC

	Proof of Theorem 1
	Proof of Theorem 2
	Memory Computation
	Visualization during Alternating Refinement
	Distribution Shift
	Column-wise Quantization Error
	Binarization Parameters

	More Experimental Results
	Dialog Examples
	Limitations

