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ABSTRACT

Large language models are versatile tools that have been recently used in the
materials science domain for tasks ranging from information extraction to acting
as scientific assistants in materials discovery. It is believed that using domain-
specific large language models will help improve performance on such tasks. In
this work, we address the challenge of efficiently accessing and utilizing vast
textual knowledge in materials science using continued pre-training of Meta’s
LLaMA-2-7B on curated materials science texts, enhancing its domain-specific
capabilities. We also developed LLaMat-Chat, an instruction fine-tuned variant of
LLaMat that is tailored through a dataset of one million instruction-output pairs,
enabling interactive applications and proficient performance in natural language
processing tasks within materials science. We show that LLaMat achieves state-of-
the-art performance on several information extraction tasks from materials science
text. Since the pre-training corpus also included crystallographic information files,
it will be interesting in future to evaluate the materials discovery applications of
LLaMat.

1 INTRODUCTION

Knowledge about materials has been reported in the form of text, which includes books, research
papers, patents, and technical reports, to name a few. It is humanly intractable for humans to go
through a large amount of text and find answers to specific questions related to different materials
science aspectsHira et al. (2024); Miret & Krishnan (2024). Dissemination of textual information in a
natural language is an important aspect of democratising access to knowledge about materials science.
However, developing a model capable of performing different types of tasks with high accuracy is a
challenging task, which has been taken up by several researchers trying to address it by developing
foundational models. Large language models are one of them.

Large language models have started revolutionizing both scientific and non-scientific domains. Due
to their capability to perform a variety of tasks by understanding input through human language, they
are also called foundational models. Recently, several researchers have attempted to develop and
understand the capabilities of foundational models for chemistry (Zhang et al. (2024); Mirza et al.
(2024)) and the medical domain(Chen et al. (2023)) or use general-purpose foundational models
for domain-specific tasks either directly or after finetuning(Dagdelen et al. (2024); Polak & Morgan
(2024); M. Bran et al. (2024); Boiko et al. (2023); Song et al. (2023b)). The benefits of domain
adaptation of foundational models are well documented. Considering the wide variety of sub-domains
for the part of materials science, a foundational model understanding the broad domain of materials
science will enable the researchers to get the answers to highly specialised questions.

In response to the growing need for a foundational language model tailored to the domain of materials
science, we propose LLaMat (Large Language Model for Materials Science). This model builds upon
the architecture of LLaMA-2-7BTouvron et al. (2023), undergoing further pretraining on a carefully
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curated corpus of high-quality materials science texts. This extended pretraining aims to enhance the
model’s domain-specific knowledge and performance.

To endow LLaMat with robust conversational abilities, we introduce LLaMat-Chat. This variant
has been instruction fine-tuned using a dataset comprising approximately one million instruction-
output pairs. The instruction fine-tuning process equips the model with the capability to understand
and generate responses based on given instructions, thus facilitating interactive and user-friendly
applications. This advanced model is proficient in performing classical natural language processing
(NLP) tasks such as Named Entity Recognition, Abstract Classification, Relation Extraction, and
Event Extraction within materials science datasets. In addition to these tasks, LLaMat-Chat can
provide succinct and detailed answers to questions related to materials science tailored to the user’s
requirements. Fig. 1 shows the pipeline of development of LLaMat and LLaMat-Chat models.

2 R2CID - PRETRAIN DATASET

Figure 1: LLaMat and LLaMat-Chat development
pipeline

For pretraining LLaMat, we consider the text
from Research papers, a subset of Redpajama
dataset, Cif (crystallographic information files)
files Dataset. We call our training corpus the
R2CID database. The details of each part are
provided as follows.

2.1 RESEARCH PAPERS

We sourced research papers from around 500
Elsevierels (a) journals and 300 Springerspr
journals to compile a comprehensive and high-
quality dataset. The inclusion criteria required
full-text availability in XML format for Elsevier
papers and HTML format for Springer papers,
ensuring compatibility with our data processing
pipeline. The choice of Elsevier and Springer
journals was influenced by the constraints of our
institution’s subscription contract, which pro-
vided access to a wide range of journals from
these publishers. This contractual limitation shaped the scope of our dataset. The selected research pa-
pers’ Digital Object Identifiers (DOIs) were retrieved using the CrossRef APIFarley. After obtaining
the DOIs, the full texts of the research papers were downloaded using the publisher specific APIsels
(b); spr. These APIs facilitated access to the papers in the specified formats (XML for Elsevier and
HTML for Springer), which were then incorporated into the R2CID corpus.

2.2 REDPAJAMA SAMPLE

The RedPajama datasetred (2024) was employed as the foundational corpus for the initial training
phase of the LLaMA-2 model. We systematically extracted approximately 700 million tokens
from this corpus to ensure a representative sample. The primary objective of incorporating this
subset into R2CID is to address the issue of catastrophic forgetting, thereby preserving the model’s
comprehension and utility derived from its original, general-purpose training corpus. This ensures
the model retains its foundational knowledge while effectively assimilating new information.

2.3 CRYSTALLOGRAPHIC INFORMATION FILES

Material structures are best obtained through diffraction studies and are reported as Crystallography
Information Files. These are standardized text files used for storing and exchanging crystallographic
data. These files contain unit cell parameters like the lengths of cell edges and angles between them.
They also include symmetry information, such as the space group and symmetry operations, and
atomic coordinates that specify the positions of atoms within the unit cell. To allow an increased
understanding of CIF files, we considered a total of 470k CIF files and obtained their description in
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natural language using RoboCrystallographerGanose & Jain (2019). The R2CID consists of these
CIF files and their descriptions from the Materials ProjectJain et al. (2020), Google GNoMEMerchant
et al. (2023), and AMSCSD databaseamc.

Merging the components to form R2CID: To enhance the effectiveness of model training and
mitigate catastrophic forgetting, research papers were periodically interleaved with text from the
RedPajama corpus. The periodic interleaving strategy was refined through a series of empirical
evaluations. The selected interleaving period of 100 million research-related tokens with 2.3 million
RedPajama tokens provided a balance that enhanced the model’s ability to generalize and retain
relevant information from both datasets. The CIF files were included in the posterior 10% of the
corpus and interleaved with research papers.

3 PRETRAINING METHODOLOGY

LLaMat was initialised with weights of LLaMA-2-7B and pretrained on R2CID for one epoch. The
learning rate was initialised at 0, increased to 3× 10−4 and then adhered a cosine decay schedule
to stop at 3 × 10−5. The pretraining was done using the Megatron-LLM library introduced by
Shoeybi et al. (2019) and extended to LLaMA-2-7B by Chen et al. (2023), that utilises 3D model
parallelism for efficient training of LLMs. The pretraining was done on 16 A100 NVIDIA GPUs for
approximately 9 days. The loss curve can be seen in the Appendix (Fig. 2).

4 INSTRUCTION FINE-TUNE METHODOLOGY

LLaMat-Chat was initialized with the weights of LLaMat. The instruction fine-tuning process was
conducted in three distinct stages:

• Stage 1: LLaMat-Chat was first fine-tuned on the OpenOrca dataset for one epoch. The
objective of this stage was to enable the pretrained model to learn how to follow common
English instructions.

• Stage 2: The model was further fine-tuned on a dataset of mathematical questions for three
epochs. This stage aimed to enhance the mathematical reasoning capabilities of LLaMat-
Chat. Due to the relatively small size of this dataset, we observed a decrease in validation
loss over the three epochs.

• Stage 3: In the final stage, LLaMat-Chat was fine-tuned on a combined dataset constructed
from MatSciInstruct, MatSciNLP, MatBookQA, and MaScQA (for one epoch).

The fine-tuning process utilized the Megatron-LLM library. The learning rate for each stage was
initialized at 2× 10−6 and increased to 2× 10−5 over the first 10% of the total iterations. Following
this initial increase, the learning rate adhered to a cosine decay schedule.

5 RESULTS

5.1 DOWNSTREAM TASKS

To continuously evaluate the improved understanding of Materials Science principles gained by
pretraining on R2CID as well as to measure any potential degradation in understanding conversational
or informal English, we curated a dataset consisting of Materials Science and English Comprehension
tasks. Table 1 shows the list of different tasks, datasets, and the number of samples in training
and validation sets. The dataset has the following tasks: sc: sentence classification, re: relation
extraction, ner: named entity extraction, sar: synthesis action retrieval, a type of classfification task,
pc: paragraph classification, ee: entity extraction, sf: slot filling, qna: question answering, and mcq :
multiple choice question answering. The details of these task can be found in Song et al. (2023a). The
samples from the training set were used to fine-tune the models before evaluation on the validation set
to ensure that the models learned to follow the instructions. The performance of different models on
these datasets is shown in Table 2. The Macro and Micro F1 scores were averaged over all the tasks.
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Table 1: Details of downstream datasets

Task Dataset Train Val
sc sofc_sent 1893 1889
re structured_re 1788 1786

ner matscholar 1062 1061
ner sc_comics 937 936
sar synthesis_actions 565 569
re sc_comics 376 373
pc glass_non_glass 300 299
ee sc_comics 287 288

ner sofc_token 175 177
sf sofc_token 175 179

qna squad 1042 1042
mcq hellaswag 981 980
mcq boolqa 500 499

Table 2: Performance on validation set
for downstream tasks

Model Macro F1 Micro F1
LLaMA-2-7B 77.745 84.239

LLaMat 82.26 87.85
LLaMat-Chat 84.66 89.51

5.2 MATSCI-NLP

To benchmark and compare the performance of LLaMat-Chat against other state-of-the-art models
within the materials science domain, we utilized the MatSci-NLP dataset, a comprehensive benchmark
for materials science NLP tasks Song et al. (2023a). The evaluation was conducted in a zero-shot
manner. The substantial improvement in performance indicates that our pretraining corpus effectively
imparts knowledge of various materials science principles to LLaMat-Chat, while our fine-tuning
process enhances its instruction-following capabilities. Table ?? shows the performance of various
models on the MatSci-NLP. Performance numbers for other models have been adapted from Song
et al. (2023c) while ensuring identical experimental settings. The scores are Macro-F1(Top) and
Micro-F1(Bottom).

Table 3: Zero-shot performance of LLMs based on MatSci-NLP by Song et al. (2023a).

Model Named Entity
Recognition

Relation
Extraction

Event Argument
Extraction

Paragraph
Classification

Synthesis Action
Retrieval

Sentence
Classification

Slot
Filling

Overall
(All Tasks)

Zero-Shot LLM Performance

LLaMA-7b
(Touvron et al., 2023)

0.042
0.064

0.094
0.013

0.160
0.042

0.279
0.218

0.052
0.013

0.096
0.087

0.142
0.010

0.208
0.064

LLaMA-13b
(Touvron et al., 2023)

0.057
0.066

0.109
0.016

0.042
0.054

0.233
0.189

0.039
0.009

0.079
0.074

0.138
0.008

0.1
0.059

Alpaca-7b
(Taori et al., 2023)

0.031
0.018

0.053
0.037

0.029
0.009

0.375
0.294

0.179
0.129

0.180
0.180

0.139
0.039

0.141
0.101

Alpaca-13b
(Taori et al., 2023)

0.053
0.046

0.016
0.035

0.111
0.072

0.310
0.237

0.442
0.278

0.375
0.334

0.110
0.015

0.202
0.145

Chat-GPT
(OpenAI, 2022)

0.063
0.052

0.232
0.145

0.204
0.203

0.433
0.450

0.300
0.183

0.320
0.318

0.368
0.280

0.274
0.233

Claude
(Bai et al., 2022)

0.063
0.048

0.232
0.143

0.195
0.169

0.442
0.467

0.280
0.177

0.329
0.326

0.393
0.305

0.276
0.234

GPT-4
(OpenAI, 2023)

0.189
0.121

0.445
0.432

0.453
0.353

0.679
0.522

0.743
0.677

0.788
0.689

0.502
0.483

0.543
0.468

LLaMat-Chat 0.827
0.898

0.968
0.952

0.633
0.836

0.843
0.871

0.938
0.962

0.773
0.917

0.744
0.839

0.813
0.894

6 CONCLUSION AND FUTURE WORK

The results indicate that domain-specific continued pre-training helps improve performance on
several downstream tasks, which are useful for materials discovery. Since the training corpus included
information about different tasks related to materials discovery, like, research papers, crystallography
information files, information extraction tasks, and question-answering pair, it will be interesting
to evaluate the effect of each component of corpus on the final performance of the model. Further,
Several open-source small and large language models are being released, which also lack materials
science domain knowledge. Therefore, in future, it will be interesting to see the effect of continued
pre-training on the performance of these models and deploy them in materials discovery pipelines.
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A APPENDIX

A.1 INSTRUCTION FINE-TUNE DATASET

We use various openly available instruction fine-tuning datasets related to Material science and
general English question answering. We also construct a dataset for free-form question answering for
material science questions by prompting GPT4 with a context and asking it to generate questions. We
call this dataset MatBookQA (Material Science Book-based Question Answering dataset). We also
introduce another question-answering dataset based on questions asked in the GATE examination in
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India, which is taken by undergraduate students to apply for admissions in Masters and PhD programs
in premier institutes in India and some foreign institutions of repute. The details of each dataset are
provided as follows.

A.1.1 OPENORCA

This dataset comprises 800, 000 high-quality and diverse textual instructions. A model fine-tuned on
this dataset may demonstrate enhanced performance in comprehending technical jargon, responding
to complex queries, and producing coherent and contextually appropriate text across various domains.
Previous research, as detailed in Mukherjee et al. (2023), has demonstrated that large language models
(LLMs) fine-tuned on this dataset outperform other models on a range of benchmarks.

A.1.2 MATH

To induce the ability of mathematical problem-solving in our model, we train our model on the MATH
dataset introduced by Hendrycks et al. (2021). It consists of 7500 instructions aimed at complex
mathematical reasoning.

A.1.3 MATSCI

We utilize openly available instruction fine-tuning datasets for material science, complemented by
a curated dataset generated through GPT-4(gpt-4-0613). By prompting GPT-4 with open-source
material science textbooks, we elicit contextually complete questions covering various subdomains
of material science. This diverse prompting ensures comprehensive coverage of the field.

We incorporate MatSciInstruct, as introduced in Song et al. (2023c). MatSciInstruct generates
specialized instruction data through a two-step framework—Generation and Verification. In the
Generation step, an instructor model creates domain-specific instruction data focused on materials
science. The Verification step involves a separate verifier model for cross-verifying the instruction
data for accuracy and relevance. Additionally, we employ the MatSciNLP training dataset and
augment it with our MatBookQA dataset, as discussed below.

A.1.4 MATBOOKQA

We use an open-source book on Material Science and prompt GPT4 with one chapter at a time. We
ask it to generate both short and long question-answer pairs for each chapter. We first curate a list
of ten prompts each (see Appendix) to obtain short and long descriptions. This resulted in 2069
question-answer pairs, of which 1887 are short and 182 are long.

A.1.5 MASCQA

This dataset consists of 1036 and 549 questions from the civil and chemical engineering exams,
respectively. The questions in this dataset can be divided into four types based on their structure:
multiple-choice questions, matching-type questions, numerical answer questions with multiple
choices, and numerical answer-based questions with no options. More details about the question
structure can be found in Zaki et al. Zaki et al. (2024) An earlier version of MaScQA reported by
Zaki et al.Zaki et al. (2024) also comprises 650 questions from the same materials science-related
questions from the GATE exam. These questions come from various subdomains of materials science,
like atomic structure, thermodynamics, electrical and magnetic behaviour of materials, materials
manufacturing, applications, processing, and testing. Both these datasets cover vast subdomains of
materials science, therefore serving as a challenging benchmark for evaluating the performance of
large language models.

A.2 PRE-TRAINING LOSS CURVE

The loss curves indicate that performance on RedPajama, the original corpus of LLaMA-2, degrades
over time. However, we were able to contain the degradation by our methods of combining the
corpus.
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Figure 2: Pre-training and validation loss curve for LLaMat
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