
Appendix

A Background

Reinforcement Learning (RL) We study RL as a discounted infinite-horizon Markov Decision
Process (MDP) [56, 57]. For pixel observations, the agent’s state is approximated as a stack of
consecutive RGB frames [58]. The MDP is of the form (O,A, P,R, �, d0) where O is the observation
space, A is the action space, P : O⇥A! �(O) is the transition function that defines the probability
distribution over the next state given the current state and action, R : O ⇥ A ! R is the reward
function, � is the discount factor and d0 is the initial state distribution. The goal is to find a policy
⇡ : O ! �(A) that maximizes the expected discount sum of rewards E⇡[⌃1

t=0�
tR(ot,at)], where

o0 ⇠ d0, at ⇠ ⇡(ot) and ot+1 ⇠ P (.|ot,at).

Imitation Learning (IL) The goal of imitation learning is to learn a behavior policy ⇡b given
access to either the expert policy ⇡e or trajectories derived from the expert policy T

e. While there
are a multitude of settings with differing levels of access to the expert [21], this work operates in the
setting where the agent only has access to observation-based trajectories, i.e. T e

⌘ {(ot, at)Tt=0}
N
n=0.

Here N and T denotes the number of trajectory rollouts and episode timesteps respectively. We
choose this specific setting since obtaining observations and actions from expert or near-expert
demonstrators is feasible in real-world settings [59, 60] and falls in line with recent work in this
area [13, 6, 7].

Inverse Reinforcement Learning (IRL) IRL [4, 22] tackles the IL problem by inferring the reward
function re based on expert trajectories T e. Then given the inferred reward re, policy optimization
is used to derive the behavior policy ⇡b. Prominent algorithms in IRL [7, 6] requires alternating
the inference of reward and optimization of policy in an iterative manner, which is practical for
restricted model classes [22]. For compatibility with more expressive deep networks, techniques such
as adversarial learning [6, 7] or optimal-transport [12, 13, 11] are needed. Adversarial learning based
approaches tackle this problem by learning a discriminator that models the gap between the expert
trajectories T e and behavior trajectories T b. The behavior policy ⇡b is then optimized to minimize
this gap through gap-minimizing rewards re. Such a training procedure is prone to instabilities since
re is updated at every iteration and is hence non-stationary for the optimization of ⇡b.

Optimal Transport for Imitation Learning (OT) To alleviate the non-stationary reward problem
with adversarial IRL frameworks, a new line of OT-based approaches have been recently proposed [12,
13, 11]. Intuitively, the closeness between expert trajectories T e and behavior trajectories T b can be
computed by measuring the optimal transport of probability mass from T

b
! T

e. During policy
learning, the policy ⇡� encompasses a feature preprocessor f� which transforms observations into
informative state representations. Some examples of a preprocessor function f� are an identity
function, a mean-variance scaling function and a parametric neural network. In this work, we use a
parametric neural network as f�. Given a cost function c : O ⇥O ! R defined in the preprocessor’s
output space and an OT objective g, the optimal alignment between an expert trajectory oe and a
behavior trajectory ob can be computed as

µ⇤
2 arg min

µ2M
g(µ, f�(ob), f�(oe), c) (5)

where M = {µ 2 RT⇥T : µ1 = µT1 = 1
T
1} is the set of coupling matrices and the cost c can be

the Euclidean or Cosine distance. In this work, inspired by [11], we use the entropic Wasserstein
distance with cosine cost as our OT metric, which is given by the equation

g(µ, f�(ob), f�(oe), c) = W
2(f�(ob), f�(oe))

=
TX

t,t0=1

C
t,t

0µt,t0
(6)

13

where the cost matrix C
t,t

0 = c(f�(ob), f�(oe)). Using Eq. 6 and the optimal alignment µ⇤ obtained
by optimizing Eq. 5, a reward signal can be computed for each observation using the equation

rOT (ob
t
) = �

TX

t0=1

C
t,t

0µ⇤
t,t

0 (7)

Intuitively, maximizing this reward encourages the imitating agent to produce trajectories that closely
match demonstrated trajectories. Since solving Eq. 5 is computationally expensive, approximate
solutions such as the Sinkhorn algorithm [61, 12] are used instead.

B Challenges in Online Finetuning from a Pretrained Policy

In this section, we study the challenges with finetuning a pretrained policy with online interactions in
the environment. Fig. 2 illustrates a task where an agent is supposed to navigate the environment
from the top left to the bottom right, while dodging obstacles in between. The agent has access to a
single expert demonstration, which is used to learn a BC policy for the task. Fig. 2 (a) shows that this
BC policy, though close to the expert demonstration, performs suboptimally due to accumulating
errors on out-of-distribution states during online rollouts [5]. Further, Fig. 2 (b) uses this BC policy
as an initialization and naively finetunes it with OT rewards (described in Section 2). Such naive
finetuning of a pretrained policy (or actor) with an untrained critic in an actor-critic framework
exhibits a forgetting behavior in the actor, resulting in performance degradation as compared to
the pretrained policy. This phenomenon has also been reported by Nair et al. [9] and we provide
a detailed discussion in Appendix B.1. In this paper, we propose ROT which addresses this issue
by adaptively keeping the policy close to the behavior data during the initial phase of finetuning
and reduces this dependence over time. Fig. 2 (c) demonstrates the performance of our approach on
such finetuning. It can be clearly seen that even though the BC policy is suboptimal, our proposed
adaptive regularization scheme quickly improves and solves the task by driving it closer to the expert
demonstration. In Fig. 2 (d), we demonstrate that even if the agent was initialized at points outside
the expert trajectory, the agent is still able to learn quickly and complete the task. This generalization
to starting states would not be possible with regular BC.

B.1 Issue with Fine-tuning Actor-Critic Frameworks

In this paper, we use n-step DDPG proposed by Yarats et al. [8] as our RL optimizer for actor-
critic based reward maximization. DDPG [23] concurrently learns a deterministic policy ⇡� using
deterministic policy gradients (DPG) [15] and a Q-function Q✓ by minimizing a n-step Bellman
residual (for n-step DDPG). For a parameterized actor network ⇡�(s) and a critic function Q✓(s, a),
the deterministic policy gradients (DPG) for updating the actor weights is given by

r�J ⇡ Est⇠⇢�

h
r� Q✓(s, a)|s=st,a=⇡�(st)

i

= Est⇠⇢�

h
ra Q✓(s, a)|s=st,a=⇡�(st)

r� ⇡�(s)|s=st

i (8)

Here, ⇢� refers to the state visitation distribution of the data present in the replay buffer at time t.
From Eq. 8, it is clear that the policy gradients in this framework depend on the gradients with respect
to the critic value. Hence, as mentioned in [9, 10], naively initializing the actor with a pretrained
policy while using a randomly initialized critic results in the untrained critic providing an exceedingly
poor signal to the actor network during training. As a result, the actor performance drops immediately
and the good behavior of the informed initialization of the policy gets forgotten. In this paper, we
propose an adaptive regularization scheme that permits finetuning a pretrained actor policy in an
actor-critic framework. As opposed to Rajeswaran et al. [16], Jena et al. [17] which employ on-policy
learning, our method is off-policy and aims to leverage the sample efficient characteristic of off-policy
learning as compared to on-policy learning [7].

14

Algorithm 1 ROT: Regularized Optimal Transport
Require:
Expert Demonstrations T e

⌘ {(ot, at)Tt=0}
N
n=0

Pretrained policy ⇡BC

Replay buffer D, Training steps T , Episode Length L
Task environment env
Parametric networks for RL backbone (e.g., the encoder, policy and critic function for DrQ-v2)
A discriminator D for adversarial baselines

Algorithm:
⇡ROT

 ⇡BC . Initialize with pretrained policy
for each timestep t = 1...T do

if done then
r1:L = rewarderOT (episode) . OT-based reward computation
Update episode with r1:L and add (ot, at, ot+1, rt) to D

ot = env.reset(), done = False, episode = []
end if
at = ⇡ROT (ot)
ot+1, done = env.step(at)
episode.append([ot, at, ot+1])
Update backbone-specific networks and reward-specific networks using D

end for

C Algorithmic Details

C.1 Implementation

Algorithm 1 describes our proposed algorithm, Regularized Optimal Transport (ROT), for sample
efficient imitation learning for continuous control tasks. Further implementation details are as follows:

Algorithm and training procedure Our model consists of 3 primary neural networks - the encoder,
the actor and the critic. During the BC pretraining phase, the encoder and the actor are trained using
a mean squared error (MSE) on the expert demonstrations. Next, for finetuning, weights of the
pretrained encoder and actor are loaded from memory and the critic is initialized randomly. We
observed that the performance of the algorithm is not very sensitive to the value of ↵ and we set it
to 0.03 for all experiments in this paper. A copy of the pretrained encoder and actor are stored with
fixed weights to be used for computing �(⇡) for soft Q-filtering.

Actor-critic based reward maximization We use a recent n-step DDPG proposed by Yarats et al.
[8] as our RL backbone. The deterministic actor is trained using deterministic policy gradients
(DPG) [15] given by Eq. 8. The critic is trained using clipped double Q-learning similar to Yarats
et al. [8] in order to reduce the overestimation bias in the target value. This is done using two
Q-functions, Q✓1 and Q✓2. The critic loss for each critic is given by the equation

L✓k
= (s,a)⇠D�

⇥
(Q✓k

(s, a)� y)2
⇤
8 k 2 {1, 2} (9)

where D� is the replay buffer for online rollouts and y is the target value for n-step DDPG given by

y =
n�1X

i=0

�irt+i + �nmin
k=1,2

Q✓̄k
(st+n, at+n) (10)

Here, � is the discount factor, r is the reward obtained using OT-based reward computation and ✓̄1,
✓̄2 are the slow moving weights of target Q-networks.

Target feature processor to stabilize OT rewards The OT rewards are computed on the output
of the feature processor f� which is initialized with a parametric neural network. Hence, as the

15

weights of f� change during training, the rewards become non-stationary resulting in unstable training.
In order to increase the stability of training, the OT rewards are computed using a target feature
processor f

�
0 [11] which is updated with the weights of f� every Tupdate environment steps. For

state-based observations, f� corresponds to a ’trunk’ network which is a single layer neural network.
For pixel-based observations, f� includes DrQ-v2’s encoder followed by the ’trunk’ network.

C.2 Hyperparameters

The complete list of hyperparameters is provided in Table 1. Similar to Yarats et al. [8], there is
a slight deviation from the given setting for the Walker Stand/Walk/Run task from the DeepMind
Control suite where we use a mini-batch size of 512 and a n-step return of 1.

Method Parameter Value

Common Replay buffer size 150000

Learning rate 1e�4

Discount � 0.99

n-step returns 3

Action repeat 2

Seed frames 12000

Mini-batch size 256

Agent update frequency 2

Critic soft-update rate 0.01

Feature dim 50

Hidden dim 1024

Optimizer Adam

ROT Exploration steps 0

DDPG exploration schedule 0.1

Target feature processor update frequency(steps) 20000

Reward scale factor 10

Fixed weight ↵ 0.03

Linear decay schedule for �(⇡) linear(1,0.1,20000)

OT Exploration steps 2000

DDPG exploration schedule linear(1,0.1,500000)

Target feature processor update frequency(steps) 20000

Reward scale factor 10

DAC Exploration steps 2000

DDPG exploration schedule linear(1,0.1,500000)

Gradient penalty coefficient 10

Table 1: List of hyperparameters.

16

D Environments

Table 2 lists the different tasks that we experiment with from the DeepMind Control suite [18, 25],
OpenAI Robotics suite [26] and the Meta-world suite [27] along with the number of training steps
and the number of demonstrations used. For the tasks in the OpenAI Robotics suite, we fix the goal
while keeping the initial state randomized. No modifications are made in case of the DeepMind
Control suite and the Meta-world suite. The episode length for all tasks in DeepMind Control is 1000
steps, for OpenAI Robotics is 50 steps and Meta-world is 125 steps (except bin picking which runs
for 175 steps).

E Demonstrations

For DeepMind Control tasks, we train expert policies using pixel-based DrQ-v2 [8] and collect 10
demonstrations for each task using this expert policy. The expert policy is trained using a stack
of 3 consecutive RGB frames of size 84⇥ 84 with random crop augmentation. Each action in the
environment is repeated 2 times. For OpenAI Robotics tasks, we train a state-based DrQ-v2 with
hindsight experience replay [28] and collect 50 demonstrations for each task. The state representation
comprises the observation from the environment appended with the desired goal location. For this, we
did not do frame stacking and action repeat was set to 2. For Meta-World tasks, we use a single expert
demonstration obtained using the task-specific hard-coded policies provided in their open-source
implementation [27].

F Robot Tasks

In this section, we describe the suite of manipulation experiments carried out on a xArm robot in this
paper.

(a) Door Close: Here, the robot arm is supposed to close an open door by pushing it to the target.

(b) Hang Hanger: While holding a hanger between the grippers, the robot arm is initialized at a
random position and is tasked with putting the hanger at a goal region on a closet rod.

(c) Erase Board: While holding a board duster between the grippers, the robot arm is tasked with
erasing markings drawn on the board while being initialized at a random position.

(d) Reach: The robot arm is required to reach a specific goal after being initialized at a random
position.

(e) Hang Mug: While holding a mug between the grippers, the robot arm is initialized at a random
position and is tasked with hanging the mug on a specific hook.

(f) Hang Bag: While holding a tote between the grippers, the robot arm is initialized at a random
position and is tasked with hanging the tote bag on a specific hook.

(g) Turn Knob: The robot arm is tasked with rotating a knob placed on the table by a certain angle
after being initialized at a random position. We consider a 90 degree rotation as success.

(h) Stack Cups: While holding a cup between the gripper, the robot arm is required with stacking
it on another cup placed on the table.

(i) Press Switch: With the gripper kept closed, the robot arm is required to press a switch (with an
LED light) placed on the table.

(j) Peg (Easy, Medium, Hard): The robot arm is tasked with inserting a peg, hanging by a wire,
into a bucket placed on the table. This task has 3 variants - Easy, Medium, Hard - with the size
of the bucket decreasing from Easy to Hard.

(k) Box Open: In this task, the robot arm is supposed to open the lid of a box placed on the table by
lifting a handle provided in the front of the box.

(l) Pour: While holding a cup containing some item (in our case, almonds), the robot arm is
supposed to move towards another cup placed on the table and pour the item into this cup.

17

Suite Tasks Allowed Steps # Demonstrations

DeepMind Control Acrobot Swingup 2⇥ 106 10

Cartpole Swingup

Cheetah Run

Finger Spin

Hopper Stand

Hopper Hop

Quadruped Run

Walker Stand

Walker Walk

Walker Run

OpenAI Robotics Fetch Reach 1.5⇥ 106 50

Fetch Push

Fetch Pick and Place

Meta-World Hammer 1⇥ 106 1

Drawer Close

Door Open

Bin Picking

Button Press Topdown

Door Unlock.

xArm Robot Close Door 6⇥ 103 1

Hang Hanger

Erase Board

Reach

Hang Mug

Hang Bag

Turn Knob

Stack Cups

Press Switch

Peg (Easy)

Peg (Medium)

Peg (Hard)

Open Box

Pour

Table 2: List of tasks used for evaluation.

Evaluation procedure For each task, we obtained a set of 20 random initializations and evaluate
all of the methods (BC, RDAC and ROT) over 20 trajectories from the same set of initializations.
These initializations are different for each task based on the limits of the observation space for the
task.

18

C
lo

se
 D

oo
r

H
an

g
H

an
ge

r
Er

as
e

B
oa

rd
Po

ur
O

pe
n

B
ox

Pe
g

(H
ar

d)
Pe

g
(M

ed
)

Pe
g

(E
as

y)
Pr

es
s S

w
itc

h
St

ac
k

C
up

s
Tu

rn
 K

no
b

H
an

g
B

ag
H

an
g

M
ug

R
ea

ch

Figure 7: Examples of randomized initializations for the real robot tasks.

19

Tu
rn

 K
no

b
H

an
g

B
ag

Pe
g

(H
ar

d)
Er

as
e

B
oa

rd
O

pe
n

B
ox

Figure 8: An example of trajectories for selected real robot tasks.

G Baselines

Throughout the paper, we compare ROT with several prominent imitation learning and reinforcement
learning methods. Here, we give a brief description of each of the baseline models that have been
used.

(a) Expert: For each task, the expert refers to the expert policy used to generate the demonstrations
for the task (described in Appendix E).

(b) Behavior Cloning (BC): This refers to the behavior cloned policy trained on expert demonstra-
tions.

(c) Adversarial IRL (DAC): Discriminator Actor Critic [7] is a state-of-the-art adversarial imi-
tation learning method [6, 29, 7]. Since DAC outperforms prior work such as GAIL[6] and
AIRL[30], it serves as our primary adversarial imitation baseline.

(d) State-matching IRL (OT): Sinkhorn Imitation Learning [12, 13] is a state-of-the-art state-
matching imitation learning method [31] that approximates OT matching through the Sinkhorn
Knopp algorithm. Since ROT is derived from similar OT-based foundations, we use SIL as our
primary state-matching imitation baseline.

(e) RDAC: This is the same as ROT, but instead of using state-matching IRL (OT), adversarial IRL
(DAC) is used.

(f) Finetune with fixed weight: This is similar to ROT where instead of using a time-varying
adaptive weight �(i), only the fixed weight �0 is used. �0 is set to a fixed value of 0.03.

(g) Finetune with fixed schedule: This is similar to ROT that uses both the fixed weight �0 and
the time-varying adaptive weight �1(i). However, instead of using Soft Q-filtering to compute
�1(i), a hand-coded linear decay schedule is used.

(h) DrQ-v2 (RL): DrQ-v2 [8] is a state-of-the-art algorithm for pixel-based RL. DrQ-v2 is assumed
to have access to environment rewards as opposed to ROT which computes the reward using
OT-based techniques.

(i) Demo-DrQ-v2: This refers to DrQ-v2 but with access to both environment rewards and expert
demonstrations. The model is initialized with a pretrained BC policy followed by RL finetuning
with an adaptive regularization scheme like ROT. During RL finetuning, this baseline has access
to environment rewards.

(j) BC+OT: This is the same as the OT baseline but the policy is initialized with a pretrained BC
policy. No adaptive regularization scheme is used while finetuning the pretrained policy.

(k) OT+BC Reg.: This is the same as the OT baseline with randomly initialized networks but
during training, the adaptive regularization scheme is added to the objective function.

20

Expert BC OT DAC ROT (Ours)

Figure 9: Pixel-based continuous control learning on 10 DMC environments. Shaded region represents
±1 standard deviation across 5 seeds. We notice that ROT is significantly more sample efficient
compared to prior work.

H Additional Experimental Results

H.1 How efficient is ROT for imitation learning?

In addition to the results provided in Sec. 4.1, Fig. 9 and Fig. 10 shows the performance of ROT
for pixel-based imitation on 10 tasks from the DeepMind Control suite, 3 tasks from the OpenAI
Robotics suite and 7 tasks from the Meta-world suite. On all but one task, ROT is significantly
more sample efficient than prior work. Finally, the improvements from ROT hold on state-based
observations as well(see Fig. 11). Table 3 provides a comparison between the factor of speedup of
ROT to reach 90% of expert performance compared to prior state-of-the-art [7, 11] methods.

H.2 Does soft Q-filtering improve imitation?

Extending the results shown in Fig. 6, we provide training curves from representative tasks in each
suite in Fig. 12. We observe that our adaptive soft-Q filtering regularization is more stable compared

21

Expert BC OT DAC ROT (Ours)

Figure 10: Pixel-based continuous control learning on 3 OpenAI Gym Robotics and 7 Meta-World
tasks. Shaded region represents ±1 standard deviation across 5 seeds. We notice that ROT is
significantly more sample efficient compared to prior work.

to prior hand-tuned regularization schemes. ROT is on par and in some cases exceeds the efficiency
of a hand-tuned decay schedule, while not having to hand-tune its regularization weights.

H.3 How does ROT compare to standard reward-based RL?

Extending the results shown in Fig. 5, we provide training curves from representative tasks in each
suite in Fig. 13, thus showing that ROT can outperform standard RL that requires explicit task-
reward. We also show that this RL method combined with our regularization scheme (represented by
Demo-DrQ-v2 in Fig. 13 provides strong results.

H.4 How important are the design choices in ROT?

Importance of pretraining and regularizing the IRL policy Fig. 14 compares the following
variants of ROT on set of pixel-based tasks: (a) Training the IRL policy from scratch (OT); (b)
Finetuning a pretrained BC policy without BC regularization (BC+OT); (c) Training the IRL policy
from scratch with BC regularization (OT+BC Reg.). We observe that pretraining the IRL policy

22

Expert BC OT DAC ROT (Ours)

Figure 11: State-based continuous control learning on DMC and Meta-World tasks. We notice that
ROT is significantly more sample efficient compared to prior work.

(BC+OT) does not provide a significant difference without regularization. This can be attributed to
the ‘forgetting behavior’ of pre-trained policies, studied in Nair et al. [9]. Interestingly, we see that
even without BC pretraining, keeping the policy close to a behavior distribution (OT+BC Reg.) can
yield improvements in efficiency over vanilla training from scratch. Our key takeaway from these
experiments is that both pretraining and BC regularization are required to obtain sample-efficient
imitation learning.

23

Suite Tasks ROT 2nd Best Model Speedup Factor

DeepMind Control Acrobot Swingup 200k 600k (OT) 3

Cartpole Swingup 100k 350k (OT) 3.5

Finger Spin 20k 700k (OT) 35

Cheetah Run 400k 2M (DAC) 5

Hopper Stand 60k. 750k (OT) 12.5

Hopper Hop 200k >2M (DAC) 10

Walker Stand 80k 400k (DAC) 5

Walker Walk 200k 750k (DAC) 3.75

Walker Run 320k >2M (OT) 6.25

Quadruped Run 400k >2M (DAC) 5

OpenAI Robotics Fetch Reach 300k 1.1M (DAC) 3.67

Fetch Push 1.1M 600k (DAC) 0.54

Fetch Pick and Place 750k >1.5M (OT) 2

Meta-World Hammer 200k >1M (DAC) 5

Drawer Close 20k >1M (OT) 50

Drawer Open >1M >1M (OT) 1

Door Open 400k >1M (OT) 2.5

Bin Picking 700k >1M (OT) 1.43

Button Press Topdown >1M >1M (OT) 1

Door Unlock 1M >1M (OT) 1

Table 3: Task-wise comparison between environment steps required to reach 90% of expert perfor-
mance for pixel-based ROT compared to the strongest baseline for each task.

Choice of IRL method In ROT, we build on OT-based IRL instead of adversarial IRL. This is
because adversarial IRL methods require iterative reward learning, which produces a highly non-
stationary reward function for policy optimization. In Fig. 15, we compare ROT with adversarial
IRL methods that use our pretraining and adaptive BC regularization technique (RDAC). We find
that our soft Q-filtering method does improve prior state-of-the-art adversarial IRL (RDAC vs. DAC
in Fig. 15). However, our OT-based approach (ROT) is more stable and on average leads to more
efficient learning.

Choice of Q-filtering method In ROT, we adopt a soft Q-filtering method as opposed to the
hard assignment strategy proposed by Nair et al. [24]. Fig. 16 shows a comparison between the
performance of soft Q-filtering and hard Q-filtering. We observe that though the two strategies have
comparable performance in most cases, soft Q-filtering exhibits better sample efficiency and more
stable training in some tasks. This justifies our choice of opting for soft Q-filtering as opposed to
hard assignment.

24

Expert BC Finetune with fixed weight Finetune with fixed schedule ROT (Ours)

Figure 12: Pixel-based ablation analysis on the effect of varying BC regularization schemes. We
observe that our adaptive soft-Q filtering regularization is more stable compared to prior hand-tuned
regularization schemes.

25

Expert BC OT DrQ-v2(RL) Demo-DrQ-v2 ROT (Ours)

Figure 13: Pixel-based ablation analysis on the performance comparison of ROT against DrQ-v2,
a reward-based RL method. Here we see that ROT can outperform plain RL that requires explicit
task-reward. However, we also observe that this RL method combined with our regularization scheme
provides strong results.

26

BC OT BC+OT OT+BC Reg. ROT (Ours)

Figure 14: Pixel-based ablation analysis on the importance of pretraining and regularizing the IRL
policy. The key takeaway from these experiments is that both pretraining and BC regularization are
required to obtain sample-efficient imitation learning.

27

Expert BC DAC OT RDAC ROT (Ours)

Figure 15: Pixel-based ablation analysis on the choice of base IRL method. We find that although
adversarial methods benefit from regularized BC, the gains seen are smaller compared to ROT.

28

Expert BC ROT with Hard Q-Filtering ROT with Soft Q-Filtering

Figure 16: Pixel-based ablation analysis on the choice of Q-filtering method. We find that although
the two strategies have comparable performance in most cases, soft Q-filtering exhibits better sample
efficiency and more stable training in some tasks.

29

	Introduction
	Background
	Regularized Optimal Transport
	Phase 1: BC Pretraining
	Phase 2: Online Finetuning with IRL

	Experiments
	How efficient is ROT for imitation learning?
	How does ROT perform on real-world tasks?
	How important is the choice of IRL method in ROT?
	Does soft Q-filtering improve imitation?
	How does ROT compare to standard reward-based RL?

	Related Work
	Conclusion and Limitations
	Background
	Challenges in Online Finetuning from a Pretrained Policy
	Issue with Fine-tuning Actor-Critic Frameworks

	Algorithmic Details
	Implementation
	Hyperparameters

	Environments
	Demonstrations
	Robot Tasks
	Baselines
	Additional Experimental Results
	How efficient is ROT for imitation learning?
	Does soft Q-filtering improve imitation?
	How does ROT compare to standard reward-based RL?
	How important are the design choices in ROT?

