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A Ensemble gradient diversification

A.1 Proofs

Lemma 1. The total variance of the matrix Var
(
∇aQφj (s,a)

)
is equal to 1 − ‖q̄‖22, where q̄ =
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N
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j=1∇aQφj (s,a).

Proof. For simplicity, we denote ∇aQφj (s,a) by qj and their average by q̄ = 1
N

∑
j qj . Then, the

total variance of the matrix, which is equivalent to the trace of the matrix by definition, formulates as
below:
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Proposition 1. Suppose Qφj (s,a) = Q(s,a) and Qφj (s, ·) is locally linear in the neighbor-
hood of a for all j ∈ [N ]. Let λmin and wmin be the smallest eigenvalue and the correspond-
ing normalized eigenvector of the matrix Var

(
∇aQφj (s,a)

)
and ε > 0 be the value such that

mini 6=j
〈
∇aQφi(s,a),∇aQφj (s,a)

〉
= 1 − ε. Then, the variance of the Q-values for an OOD
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action in the neighborhood along the direction of wmin is upper-bounded as follows:

Var
(
Qφj (s,a + kwmin)

)
≤ 1

|A|
N − 1

N
k2ε,

where |A| is the action space dimension.

Proof. We first prove that the smallest eigenvalue λmin of Var
(
∇aQφj (s,a)

)
is upper-bounded

by some constant multiple of ε. For simplicity, we denote ∇aQφj (s,a) by qj and their average by
q̄ = 1

N

∑
j qj . We first compute the norm of the average of the gradients, which can be expressed by
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=
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N
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By Lemma 1, the total variance of the matrix is less or equal to N−1
N ε. Using the fact that the total

variance is equivalent to the sum of the eigenvalues and the eigenvalues of a variance matrix is
non-negative, we have

λmin ≤
1

|A|

|A|∑
j=1

λj

=
1

|A|
tr
(
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(
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))
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where λ1, . . . , λ|A| are the eigenvalues of Var
(
∇aQφj (s,a)

)
.

Note that, using the fact that the Q-values coincide at the action a and the local linearity of the
Q-functions, we have derived

Var(Qφj (s,a + kw)) = k2wᵀVar
(
∇aQφj (s,a)

)
w. (2)

Plugging w = wmin in Equation (2) and using Equation (1), we have

Var(Qφj (s,a + kwmin)) = k2wᵀ
minVar

(
∇aQφj (s,a)

)
wmin

= k2λmin

≤ 1

|A|
N − 1

N
k2ε.

.

A.2 Relationship between maximizing the total variance and maximizing the smallest
eigenvalue

As we have shown in Section 4, maximizing the total variance of the matrix Var (∇aQφi(s,a))
is equivalent to minimizing the cosine similarity of all distinct pairs of the gradients ∇aQφi(s,a),
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which makes the gradients uniformly distributed on the unit sphere S|A|−1. Therefore, if the trace is
sufficiently maximized, then we can see Var (∇aQφi(s,a)) as a sample variance matrix of a uniform
spherical distribution. It can be easily proved that the variance matrix of a uniform distribution on is

1
|A|I , whose all eigenvalues are equal to 1

|A| , by Proposition 2.

Proposition 2. The variance matrix of the uniform spherical distribution X ∼ U(Sn−1) is 1
nI .

Proof. Let X = (X1, . . . , Xn). Then X−i = (X1, . . . ,−Xi, . . . , Xn) is also from the uniform
spherical distribution. Therefore, we have E[Xi] = E[−Xi] = 0 and E[XiXj ] = E[−XiXj ] =
0, ∀i 6= j. For the diagonal entries of the variance matrix, we have E[

∑n
i=1X

2
i ] =

∑n
i=1 E[X2

i ] = 1
by the definition of the spherical distribution and E[X2

i ] = E[X2
j ] by the symmetry of the distribution.

Therefore, we have E[X2
i ] = 1

n and Var(X) = 1
nI .

Note that the smallest eigenvalue of Var (∇aQφi(s,a)) is less or equal to 1
|A| , since the total variance

is upper-bounded by 1 due to Lemma 1. Therefore, as the number of Q-ensembles goes to infinity,
Var (∇aQφi(s,a)) converges to 1

|A|I , attaining the maximum value for the smallest eigenvalue.

B Implementation details

SAC We use the SAC implementation built on rlkit1. We use its default parameters except for
increasing the number of layers for both the policy network and the Q-function networks from 2 to 3,
following the protocol of CQL.

REM We implement a continuous control version of REM on top of SAC by modifying the Bellman
residual term to

min
φ

Es,a,s′∼D,ξ∼P∆

( N∑
j=1

ξjQφj (s,a)−

(
r(s,a) + γ Ea′∼πθ(·|s′)

[
N∑
j=1

ξjQφ′
j

(
s′,a′

)]))2
 ,

where P∆ represents a probability distribution over the standard (N − 1)-simplex ∆N−1 = {ξ ∈
RN : ξ1 + ξ2 + · · · + ξN = 1, ξn ≥ 0, n = 1, . . . , N}. Following the original REM paper, we
use a simple probability distribution: ξn = ξ′n/

∑
k ξ
′
k, where ξ′k ∼ U(0, 1) for k = 1, . . . , N .

For a fair comparison with our ensemble algorithms, we sweep the ensemble size N within
{2, 5, 10, 20, 50, 100, 200, 500, 1000} and report the best number.

CQL We use the official implementation by the authors2. For MuJoCo Gym tasks, the recom-
mended hyperparameters in the codebase differ from the original paper due to the updates in the
D4RL datasets. We tried both versions of hyperparameter settings and found the codebase version
outperforms the paper version while matching the numbers in the paper reasonably well. Therefore,
we follow the guidelines from the official code and use the fixed α version, searching for the parame-
ters within α ∈ {5, 10} and policy learning rate ∈ {1e− 4, 3e− 4}. We chose α = 10.0 with policy
learning rate = 1e − 4 as the default as it gives the best results in most of the datasets. However,
we use the dual gradient descent version with τ = 10.0 and policy learning rate= 1e− 4 on some
datasets, such as halfcheetah-random, since the fixed α version could not reproduce the results from
the paper on those datasets. For the Adroit tasks, the codebase does not provide separate guidelines,
and we use the hyperparameters listed in the paper.

SAC-N (Ours) We keep the default setting from the SAC experiments other than the ensem-
ble size N . On halfcheetah and walker2d environments, we tune N in the range of {5, 10, 20}
except for walker2d-expert, which requires up to N = 100. For hopper, we tune within N ∈
{100, 200, 500, 1000}. The hyperparameters selected are listed in Table 1. As we noted in our main
paper’s Figure 5, some datasets can be dealt with less N (e.g., ∗-replay). However, we tried to keep
the hyperparameters within an environment consistent in order to reduce hyperparameter sensitivity.
Also, we find reward normalization to help stabilize the uncertainty penalization in some of the

1https://github.com/vitchyr/rlkit
2https://github.com/aviralkumar2907/CQL
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datasets (e.g., walker2d-expert). For Adroit tasks, we sweep N in the range of {20, 50, 100, 200} and
adopt max Q backup from CQL for training stability. We report the selected N in Table 2.

EDAC (Ours) For Mujoco Gym tasks, we tune the ensemble sizeN within the range of {10, 20, 50}
and the weight of the ensemble gradient diversity term η within {0.0, 1.0, 5.0}. Note that we use
the same N on each environment. For Adroit tasks, we sweep the parameters on N ∈ {20, 50, 100}
and η ∈ {100, 200, 500, 1000} except for pen-cloned, which uses η = 10.0. While we can also
achieve competitive performance on pen-cloned with larger η, we found lower η helps to mitigate the
performance degradation on further training steps. As from SAC-N , we use max Q backup on some
of the datasets (pen-cloned). The selected N and η for each environment are listed in Table 1 and
Table 2, respectively.

Table 1: Hyperparameters used in the D4RL MuJoCo Gym experiments.

Task Name SAC-N (N ) EDAC (N , η)

halfcheetah-random 10 10, 0.0
halfcheetah-medium 10 10, 1.0
halfcheetah-expert 10 10, 1.0
halfcheetah-medium-expert 10 10, 5.0
halfcheetah-medium-replay 10 10, 1.0
halfcheetah-full-replay 10 10, 1.0

hopper-random 500 50, 0.0
hopper-medium 500 50, 1.0
hopper-expert 500 50, 1.0
hopper-medium-expert 200 50, 1.0
hopper-medium-replay 200 50, 1.0
hopper-full-replay 200 50, 1.0

walker2d-random 20 10, 1.0
walker2d-medium 20 10, 1.0
walker2d-expert 100 10, 5.0
walker2d-medium-expert 20 10, 5.0
walker2d-medium-replay 20 10, 1.0
walker2d-full-replay 20 10, 1.0

Table 2: Hyperparameters used in the D4RL Adroit experiments.

Task Name SAC-N (N ) EDAC (N , η)

pen-human 100 20, 1000.0
pen-cloned 100 20, 10.0

hammer-human 100 50, 200.0
hammer-cloned 100 50, 200.0

door-human 100 50, 200.0
door-cloned 100 50, 200.0

relocate-human 100 50, 200.0
relocate-cloned 100 50, 200.0

C Experimental settings

MuJoCo Gym We use the v2 version of each dataset (e.g., halfcheetah-random-v2) which fixes
some of the bugs from the previous versions. We run each algorithm for 3 million training steps
and report the normalized average return of each policy. While the CQL paper originally used 1
million steps, we found increasing this to 3 million helps the algorithms to converge on more complex
datasets such as ∗-medium-expert.
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Adroit We use the v1 version of each dataset and normalize the rewards. As we will discuss in
Appendix D, the performance of the baseline algorithm CQL degrades after some steps of training.
Therefore, for a fair comparison, we run each algorithm for 200,000 steps and report the normalized
average return.

Measuring minimum required Q-ensembles (main paper Figure 5) To check the mini-
mum required number of Q-ensembles for each dataset, we sweep N within the range of
{2, 3, 5, 10, 20, 50, 100, 200, 500, 1000} and report the minimum N that achieves the performance
similar to Table 1 of the main paper. We find EDAC successes to reduce the required N significantly
when the original requirement is high (e.g., hopper, walker2d-expert).

Action distance histograms (main paper Figure 6) To draw the histogram, we sample 500,000
random (s,a) pairs from each dataset and measure the `2 distance between the action sampled from
each policy after full training and the dataset action.

D Reproducing CQL in Adroit

Since the pen-∗ tasks are where the considered algorithms show meaningful performance, we focused
on reproducing the reported results for those tasks. After running CQL with the parameters given
in the original paper, we found that the performance of CQL degrades after about 200,000 steps, as
shown in Figure 1. While we are not sure of the cause of this performance gap, it could be due to the
difference in the min_q_weight parameter setting, which was not specified in the original paper, or
a minor modification we applied to the code to fix the backpropagation issue3. Meanwhile, for a fair
comparison, on Adroit we chose to use early-stopping and train each algorithm for 200,000 steps.
Also, we include the reported CQL numbers for all experiments.
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Figure 1: Performance of EDAC and CQL on pen-∗ datasets. ‘Average Return’ denotes the undis-
counted return of each policy on evaluation. Results averaged over 4 seeds.

E Comparison with more baselines

We additionally compared our methods with more baselines on D4RL Gym datasets. First, we add
comparisons with some of the well-known offline RL methods, BCQ [1], BEAR [3], BRAC [4], and
MOReL [2]. Also, we include the results of UWAC [5], a concurrent work that also utilizes Q-value
uncertainty. We reproduced all the methods by following the hyperparameter search procedure listed
in each paper and selected the best results. We report the normalized average return results in Table 3.

3https://github.com/aviralkumar2907/CQL/issues/5

5

https://github.com/aviralkumar2907/CQL/issues/5


Table 3: Extended results of normalized average returns on D4RL Gym tasks, averaged over 4 random
seeds. CQL (Paper) denotes the results reported in the original paper.

Task Name BC SAC REM BCQ BEAR BRAC MOReL UWAC CQL CQL SAC-N EDAC
(Paper) (Reproduced) (Ours) (Ours)

halfcheetah-random 2.2±0.0 29.7±1.4 -0.8±1.1 2.2±0.0 12.6±1.0 24.3±0.7 38.9±1.8 2.3±0.0 35.4 31.3±3.5 28.0±0.9 28.4±1.0
halfcheetah-medium 43.2±0.6 55.2±27.8 -0.8±1.3 46.6±0.4 42.8±0.1 51.9±0.3 60.7±4.4 43.7±0.4 44.4 46.9±0.4 67.5±1.2 65.9±0.6
halfcheetah-expert 91.8±1.5 -0.8±1.8 4.1±5.7 89.9±9.6 92.6±0.6 39.0±13.8 8.4±11.8 94.7±1.1 104.8 97.3±1.1 105.2±2.6 106.8±3.4
halfcheetah-medium-expert 44.0±1.6 28.4±19.4 0.7±3.7 95.4±2.0 45.7±4.2 52.3±0.1 80.4±11.7 47.0±6.0 62.4 95.0±1.4 107.1±2.0 106.3±1.9
halfcheetah-medium-replay 37.6±2.1 0.8±1.0 6.6±11.0 42.2±0.9 39.4±0.8 48.6±0.4 44.5±5.6 38.9±1.1 46.2 45.3±0.3 63.9±0.8 61.3±1.9
halfcheetah-full-replay 62.9±0.8 86.8±1.0 27.8±35.4 69.5±4.0 60.1±3.2 78.0±0.7 70.1±5.1 65.1±0.5 - 76.9±0.9 84.5±1.2 84.6±0.9

hopper-random 3.7±0.6 9.9±1.5 3.4±2.2 7.8±0.6 3.6±3.6 8.1±0.6 38.1±10.1 2.6±0.3 10.8 5.3±0.6 31.3±0.0 25.3±10.4
hopper-medium 54.1±3.8 0.8±0.0 0.7±0.0 59.4±8.3 55.3±3.2 77.8±6.1 84.0±17.0 52.6±4.0 86.6 61.9±6.4 100.3±0.3 101.6±0.6
hopper-expert 107.7±9.7 0.7±0.0 0.8±0.0 109±4.0 39.4±20.5 78.1±52.3 80.4±34.9 111.0±0.8 109.9 106.5±9.1 110.3±0.3 110.1±0.1
hopper-medium-expert 53.9±4.7 0.7±0.0 0.8±0.0 106.9±5.0 66.2±8.5 81.3±8.0 105.6±8.2 54.8±3.2 111.0 96.9±15.1 110.1±0.3 110.7±0.1
hopper-medium-replay 16.6±4.8 7.4±0.5 27.5±15.2 60.9±14.7 57.7±16.5 62.7±30.4 81.8±17.0 31.1±14.8 48.6 86.3±7.3 101.8±0.5 101.0±0.5
hopper-full-replay 19.9±12.9 41.1±17.9 19.7±24.6 46.6±13.0 54.0±24.0 107.4±0.5 94.4±20.5 21.9±8.4 - 101.9±0.6 102.9±0.3 105.4±0.7

walker2d-random 1.3±0.1 0.9±0.8 6.9±8.3 4.9±0.1 4.3±1.2 1.3±1.4 16.0±7.7 1.5±0.3 7.0 5.4±1.7 21.7±0.0 16.6±7.0
walker2d-medium 70.9±11.0 -0.3±0.2 0.2±0.7 71.8±7.2 59.8±40.0 59.7±39.9 72.8±11.9 66.0±9.0 74.5 79.5±3.2 87.9±0.2 92.5±0.8
walker2d-expert 108.7±0.2 0.7±0.3 1.0±2.3 106.3±5.0 110.1±0.6 55.2±62.2 62.6±29.9 108.4±0.5 121.6 109.3±0.1 107.4±2.4 115.1±1.9
walker2d-medium-expert 90.1±13.2 1.9±3.9 -0.1±0.0 107.7±3.8 107.0±2.9 9.3±18.9 107.5±5.6 85.7±14.0 98.7 109.1±0.2 116.7±0.4 114.7±0.9
walker2d-medium-replay 20.3±9.8 -0.4±0.3 12.5±6.2 57.0±9.6 12.2±4.7 40.1±47.9 40.8±20.4 27.1±9.6 32.6 76.8±10.0 78.7±0.7 87.1±2.3
walker2d-full-replay 68.8±17.7 27.9±47.3 -0.2±0.3 71.0±21.8 79.6±15.6 96.9±2.2 84.8±13.1 60.7±15.6 - 94.2±1.9 94.6±0.5 99.8±0.7

Average 49.9 16.2 6.2 64.2 52.4 54.0 65.1 50.8 - 73.7 84.5 85.2

The results show our methods outperform all the baseline methods on most of the datasets considered.
Also, we reiterate that while the performance of EDAC is marginally better than SAC-N , EDAC
achieves this result with a much smaller Q-ensemble size.

F CQL with N Q-networks

Since other offline RL methods may also benefit from larger N or ensemble diversification, here
we evaluate CQL-N and CQL with ensemble diversification for ablation. For CQL-N , we tried
N ∈ {2, 5, 10, 50, 100}, where N = 2 denotes the original version of CQL. For CQL with ensemble
diversification, we added our diversification term to the CQL loss function and swept the coefficient
η in the range of {0.5, 1.0, 5.0}, which is the same range used in EDAC. The normalized return
evaluation results on D4RL Gym ∗-medium datasets are shown in Table 4.

Table 4: Performance of CQL with N Q-networks on D4RL Gym ∗-medium datasets.

halfcheetah-medium hopper-medium walker2-medium

CQL-N

N = 2 46.9±0.4 61.9±6.4 79.5±3.2
N = 5 47.1±0.3 61.6±6.0 80.8±4.9
N = 10 45.9±0.3 60.1±4.8 70.9±0.9
N = 50 44.2±0.4 54.3±2.0 69.4±0.0
N = 100 43.7±0.2 43.7±0.8 71.3±3.8

CQL w/ diversification
η = 0.5 46.5±0.4 65.8±11.2 82.2±0.6
η = 1.0 47.2±0.1 69.2±8.8 80.5±3.1
η = 5.0 47.4±0.5 60.9±3.2 82.1±1.2

SAC-N 67.5±1.2 100.3±0.3 87.9±0.2
EDAC 65.9±1.6 101.6±0.6 92.5±0.8

We observe that even though increasing the number of Q-networks or applying gradient diversification
do help CQL on some of the datasets, the improved performance still falls far behind our methods
(SAC-N , EDAC).

G Comparison to variance regularization

In this section, we compare EDAC with increasing the variance of the Q-estimates for in-distribution
actions, which is another possible option for ensemble diversification. Table 5 shows the average
return and the Q-value estimation statistics on the walker2d-expert dataset when using the Q-estimate
variance regularizer, compared to EDAC. Var reg adds to SAC-N a regularizing term that explicitly
increases the variance of the Q-estimates, weighted by a coefficient c. Q Avg denotes the estimated
Q-values of each model in evaluation. Q Std means the standard deviation of Q-estimates from a
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ensemble on the given actions. Q Std gap means the gap of standard deviations from behavior and
random actions.

Table 5: Comparison of EDAC with Q-estimate variance regularization on walker2d-expert dataset.
Same number of Q-networks is used for all methods.

Return Q Avg Q Std Q Std Q Std gap
(behavior action) (random action)

Var reg
c = 50 511 overflow N/A N/A N/A
c = 100 20 -95 5.3 7 1.7
c = 200 368 -929 10.6 15.1 4.5

EDAC 5236 392 1.2 10.5 9.3

On the walker2d-expert dataset, adding the variance-enhancing regularizer either leads to two
results: (1) Exploding Q-values when the regularization is not strong (c = 50) or (2) severe Q-value
underestimation when the regularization is stronger (c = 100, 200). The reason behind these two
extreme modes is that the gap of the Q-estimate variance between behavior actions and OOD actions,
which is crucial for conservative learning, increases much slower than the absolute increase of
the Q-estimate variances. For example, on c = 200, the Q-estimate Std gap is 4.5. This gap is
about half of EDAC, whereas the absolute Q-estimate Stds on both actions are much higher. In
EDAC, the variance of Q-estimates on behavior actions remains small even though the OOD actions
are sufficiently penalized, as we only diversify the Q-networks’ gradients instead of the Q-values
themselves.

H Hyperparameter sensitivity

To measure the hyperparameter sensitivity of EDAC, we sweep the weight of the gradient diversifi-
cation term η in the range of {0.0, 0.5, 1.0, 2.0, 5.0} on the hopper datasets, fixing the number of
Q-networks to N = 50, and present the results in Table 6.

Table 6: Performance of EDAC over various η on the D4RL Gym hopper datasets.

Dataset type η = 0.0 η = 0.5 η = 1.0 η = 2.0 η = 5.0

random 25.3±10.4 9.3±6.2 6.7±0.8 3.8±1.5 1.9±0.8
medium 7.3±0.1 102.2±0,4 101.6±0.5 94.5±12.4 75.5±24.1
expert 2.3±0.1 110.3±0.2 110.1±0.1 109.8±0.2 109.9±0.2
medium-expert 46.9±33.0 103.8±12.4 110.7±0.1 109.8±0.2 109.8±0.2
medium-replay 100.9±0.4 100.3±0.8 101.0±0.4 100.2±0.5 20.6±0.7
full-replay 105.6±0.4 104.9±0.5 4105.4±0.6 104.0±0.2 106.3±0.9

The results show that except for the random dataset, there exists a large well of hyperparameters where
EDAC achieves expert-level performance. We also observe that increasing η sometimes degrades the
performance on random, medium, and medium-replay datasets which contain trajectories drawn from
suboptimal policies. Intuitively, the gradient diversification term induces the learned policy to favor
in-distribution actions over OOD actions. Therefore, increasing η can lead to a more conservative
policy, which is undesirable if the behavior policy is suboptimal.
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