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1. Supplementary001

A. Related work002

We situate our work amongst tool-use research.003

Planning evaluations. Although many tool-use variants004
have been proposed, evaluating LLMs on tool-use still005
lacks a standardized protocol. For instance, VisProg and006
ViperGPT evaluate their plan’s executions on vision tasks007
using a Python-like code format [6, 24]. HuggingGPT eval-008
uates only the plan accuracy (did the agent choose the right009
tools) without executing the proposed plans [18]. Tool-010
Former [17] and ToolLLaMA [14] both use natural lan-011
guage instead of code to interface with tools; while Tool-012
Former generates a multi-step plan all at once and evaluates013
the program’s execution, ToolLLaMA generates the plan014
step-by-step, with self-feedback to correct mistakes. ToolL-015
LaMA evaluates only the plans while ToolFormer evaluates016
both plans and executions. Unfortunately, no single bench-017
mark evaluates planning agents along this combinatorial de-018
sign space, which is what we contribute.019

Tool-use benchmarks. Today, tool-use evaluation is spread020
out across a number of diverse benchmarks, including Hot-021
potQA, WebShop, GQA, RefCOCO, and NLVR [9, 10, 22,022
32, 33]. None of these contains ground truth plans, conflat-023
ing planning errors with execution error. In other words,024
it is hard to separate whether an LLM failed to propose025
the correct plan or whether one of the tools used in the026
plan failed. In response, recent concurrent efforts have pro-027
posed new benchmarks, such as ToolEmu, TaskBench, and028
GAIA [12, 16, 19]. They do contain ground truth plans but029
fail to support evaluating plans’ execution results (Table 1).030

Planning strategies. There are multiple strategies for plan-031
ning. For instance, Psychology literature reveals that peo-032
ple rarely plan tasks in their entirety due to the cognitive033
cost of planning long-range tasks [3]. Instead, they plan034
the first couple of subtasks, and execute them before plan-035
ning the rest [1, 3]. In the tool-use literature, we iden-036
tify two primary forms of planning strategies: step-by-step037
planning [4, 14, 35] and multi-step planning [6, 18, 24].038
Similar to people, step-by-step planning generates plans se-039
quentially with one subtask at a time. By contrast, multi-040
step planning creates the entire plan before executing any041
subtask. Unfortunately, these two strategies have not been042
systematically compared; we systematically compare both043
across multiple open-source and close-source LLMs.044

Feedback mechanisms. LLM planners make mistakes,045
stitching together tools that fail to execute or worse, fail046
to compile. Although human feedback is one mecha-047
nism to align plans with human expectations and pref-048
erences [2, 28], they require real users, making evalua-049
tion stochastic. However, there have been several auto-050
matic mechanisms that can improve plans [27, 36]. For051
instance, syntactic mistakes can easily be detected using052

external verifiers and can guide planners to iterate on their 053
plans [7, 11, 13, 20]. Others require examining the output 054
of individual subtask executions [15, 23, 26, 35, 37]. In 055
this work, we compare plan parsing/verification feedback 056
as well as tool execution feedback. 057

B. Limitations 058

There are a few limitations to our benchmark and evalu- 059
ation. First, m&m’s only considers sequential task plans, 060
which represent a majority of real-world user requests. 061
However, some tasks might require dynamic task plans de- 062
pending on the output for one subtask [5]. Dynamic plans 063
require a more complex tool graph sampling procedure. 064
Second, as our main goal is to study the effects of differ- 065
ent planning formulations and types of feedback, we do not 066
investigate another dimension of planning design: prompt 067
style. We use direct and ReACT-style [35] prompting and 068
exclude more sophisticated prompting strategies such as 069
tree-of-thoughts prompting [29, 34]. Third, a few tools 070
in our benchmark are generative, which makes the eval- 071
uation of the actual execution results subjective (See Ap- 072
pendix) [21, 25]. 073

C. Additional data 074

We present more examples of query-plan pairs of m&m’s in 075
Figure 1, and a complete list of all 33 tools in Table 2. 076

D. Dataset generation 077

It is worth noting that two of the steps in our dataset gen- 078
eration pipeline draw similarities with the recently released 079
concurrent TaskBench [19]. Similar to them, we also sam- 080
ple a subgraph of tools and query generation steps. How- 081
ever, we want to highlight two major differences: first, we 082
leverage real-world examples as inputs to the tool sequences 083
(in contrast to TaskBench’s “example.jpg”, “example.wav” 084
etc.), which not only leads to a more realistic instantiation 085
of queries but also enables plan execution on actual input 086
which is crucial for studying the role of feedback in plan- 087
ning agents. Second, we use a rule-based program instead 088
of GPT-4 to obtain the ground truth plans based on the sam- 089
pled tool sequences, which eliminates the possibility of hal- 090
lucinated and incorrect plans. 091

Below, we provide additional details about our dataset 092
generation: 093

D.1. Prompts 094

We generate the queries with the prompt in Figure 2, and 095
rewrite the argument values of text generation and 096
image generation with the prompt shown in Figure 097
3. 098
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Table 1. Compared to previous tool planning benchmarks, m&m’s contains multimodal queries that are more realistic and executable. *:
MetaTool only considers Open AI plugins as tools. #: The queries of TaskBench contain textural placeholder of other modality data such
as images, while queries of m&m’s come with real images.

ToolBench ToolEmu TaskBench MetaTool m&m’s
[14] [16] [19] [8] (ours)

Query Real multi-modal inputs? ✗ ✗ ✗# ✗ ✓
Verified by human? ✗ ✓ ✓ ✓ ✓

Tools Are all tools executable? ✓ ✗ ✗ ✓ ✓
Multi-modal models ✗ ✗ ✓ * ✓

Plan Format JSON JSON JSON JSON JSON/Code

Scale Number of unique tools 3,451 36 103 390 33
Number of queries 126k 144 17K 20k 1.5k

Table 2. We list all 33 tools across three categories - ML models, public APIs, and image processing modules - in m&m’s.

Tool category Tool name
ML model text generation, text summarization, text classification, question answering,

optical character recognition, image generation, image editing, image
captioning, image classification, image segmentation, object detection, visual
question answering, automatic speech recognition

Public APIs get weather, get location, get math fact, get trivia fact, get year fact, get date
fact, search movie, love calculator, wikipedia simple search

Image processing image crop, image crop top, image crop bottom, image crop left, image crop
right, select object, count, tag, color pop, emoji, background blur

D.2. Human verification statistics099

The pairwise agreement rates among the 3 annotators are100
74.95%, 81.43%, 70.88%, and the average pairwise agree-101
ment rate is 75.75% (std=4.34%).102

D.3. Data filtering103

We perform two types of data filtering on the 1565 human-104
verified examples: (1) we manually filter out 349 examples105
with poor execution results, especially those where inter-106
mediate tools return wrong or empty outputs (e.g. when107
question answering is the second tool in the se-108
quence and outputs an empty string); (2) we filter out109
a total of 334 examples whose plans involve image110
generation and have more than 4 unique queries. We111
perform the second filtering step because of two reasons.112
First, the frequency of the tools initially follows the distribu-113
tion in Figure 4 (blue), where image generation has a114
much higher count – 918 – than other tools. Thus, we would115
like to reduce the frequency of image generation in116
the dataset while maintaining the frequency of rare tools.117
To achieve this while also preserving the diversity of tool118
plans, we choose to filter out examples whose plans have 5-119
10 unique queries, as the average number of unique requests120
per tool plan before filtering is 4.20. We end up filtering out121
40% (or 349) of these examples. After these two filtering122

steps, we are left with 882 examples in total that follow the 123
distribution in Figure 4 (red). 124

D.4. Alternative plans 125

In addition to the one human verified groundtruth plan, 126
we have also generated alternative plans to supplement our 127
evaluation. Concretely, we generate these alternative plans 128
in three steps: first, we generate a set of syntactically valid 129
(i.e. the alternative tool’s input and output types are cor- 130
rect) and semantically valid (i.e. the alternative tool per- 131
forms the same functionality as the original tool) alterna- 132
tive tools for each tool in our toolset; second, we manu- 133
ally verify their validity and only keep the human-verified 134
valid tools in the alternative tools set; finally, we compose 135
all valid tools at each position in the plan to obtain all 136
combinations as the total set of valid plans. To generate 137
the syntactically valid tools, we create a graph with both 138
data (including input and output) and tools as nodes, and 139
we obtain the syntactic alternative tools talto of the orig- 140
inal tool to by searching for all possible paths from to’s 141
input to its output. As for semantic alternative tools, we 142
prompt GPT-4 to generate these for each tool in the toolset. 143
For example, for the plan image classification 144
→ text generation, we first obtain alternative tools 145
to each of them. For image classification, its 146
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Figure 1. We present additional examples of query-plan pairs along with the execution results of the plans in m&m’s.
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Figure 2. Query generation prompt. We present the full prompt used for query generation.

Table 3. We present the tool-F1, argname-F1 and pass rate of models with various feedback, where P, V, and E represent parsing, verifica-
tion, and execution feedback respectively. We use no feedback only (N/A) under multi-step planning and JSON-format language generation
as the basis, while showing the ∆ of those with other feedback combinations compared to no feedback.

tool-F1 argname-F1 pass rate
model N/A P PV PE PVE N/A P PV PE PVE N/A P PV PE PVE
Llama-2-7b 27.37 2.41 -0.53 -0.18 -0.18 30.71 3.31 5.34 4.56 4.47 24.83 3.40 21.54 13.72 17.12
Llama-2-13b 40.30 1.97 -1.48 -0.80 -2.60 43.30 1.77 5.72 4.86 5.06 37.30 0.79 30.73 33.79 24.72
Mixtral-8x7B 65.06 1.73 0.88 0.15 2.75 73.00 -0.49 1.12 -0.14 0.85 69.61 6.12 16.44 15.08 16.89
Gemini-pro 68.57 0.80 1.98 0.69 0.76 72.79 0.58 2.58 2.47 3.30 73.92 3.40 16.67 17.46 20.07
GPT-3.5-turbo-0125 79.83 0.68 0.03 -2.11 -1.88 83.94 0.92 1.57 0.00 0.06 88.44 1.02 7.71 8.28 7.94
GPT-4-0125-preview 88.96 -0.50 -1.10 -0.26 -1.42 89.88 -0.07 -0.25 0.41 0.25 97.39 0.34 1.47 -0.91 2.49

syntactic alternative tools include image captioning147
and visual question answering as these tools’ in-148
puts both include one image and their outputs are a text149
– the same as image classification’s. In addi-150
tion, GPT-4 identifies object detection as a seman-151
tic alternative to image classification. On the152
other hand, there are no human-verified alternative tools to153
text generation. Therefore, there are a total of 3 al-154
ternative plans to image classification → text155
generation.156

E. Planning agent157

To systematically evaluate the design space of planning158
agents, we design a modular planning system with these159
components: planning LLM, parser, verifier, and executor.160
We implement this system with AutoGen’s framework [30].161
Given the user query, the LLM must iteratively generate162
and refine the plan. Each iteration involves generating163
the whole or a part of the plan and receiving feedback164
on the generation. Given the raw text output from the165
LLM planner at the current iteration, m&m’s supports the166
following 3 kinds of feedback (Figure 9):167

168

Parsing feedback. The parser attempts to parse the LLM169
text output to either JSON or code formats and returns an170
error message in case of parsing failures.171

172

Plan verification feedback. The verifier checks the parsed 173
output according to pre-defined rules and returns an error 174
message in case of rule violations. Specifically, the verifier 175
checks if the predicted tool exists in our provided tool list, 176
if it forms a valid connection with the previous tool, and if 177
the predicted argument names match the ones specified in 178
the metadata document. 179

180

Plan execution feedback. In the case of JSON output, the 181
executor calls the functions with specified arguments in a 182
Python environment and returns the output or execution er- 183
rors. In the case of code output, the code is directly executed 184
with outputs or errors returned as feedback. 185

We provide concrete examples of the parsing, verifica- 186
tion and Execution feedback in Figure 9. 187

We present a side-by-side comparison of (Figure 5) as 188
well as the full prompts used for multi-step JSON-format 189
planning (Figure 6), step-by-step JSON-format planning 190
(Figure 7, excluding details in the TOOL LIST which are 191
the same as the ones in Figure 6) as well as code generation 192
(Figure 8). 193

F. Qualitative analysis 194

Through qualitative analysis, we find out the common errors 195
that lead to the findings. First, regarding the performance 196
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Figure 3. Argument value rewrite prompt. We present the full prompt used for rewriting the argument values of text generation
and image generation.

drop from multi-step to step-by-step planning, we find that,197
when models are instructed to perform step-by-step predic-198
tion, they tend to output “TERMINATE” after they receive199
positive feedback (e.g. “Parsing/verification/execution suc-200

ceeded”) from the environment, disregarding whether the 201
user request has been fulfilled. This means that they often 202
predict fewer steps than required and miss necessary tools 203
to resolve the requests. (Figure 12 A) As for the mixed and 204
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Figure 4. Tool distribution before and after filtering.

Table 4. argvalue-F1. We present the argvalue-F1 of step-by-step and multi-step planning with JSON-format generation and different
types of feedback.

argvalue-F1
model strategy P PV PE PVE

Llama-2-7b step-by-step 4.63 8.28 9.68 9.57
multi-step 10.34 9.88 9.47 10.57

Llama-2-13b step-by-step 7.10 11.30 12.59 12.64
multi-step 15.39 17.11 15.84 16.71

Mixtral-8x7B step-by-step 20.44 24.32 21.77 21.69
multi-step 36.45 36.70 35.70 36.73

Gemini-pro step-by-step 32.28 27.81 32.22 31.37
multi-step 37.22 39.89 36.30 38.33

GPT-3.5-turbo-0125 step-by-step 29.58 28.32 23.61 23.24
multi-step 45.64 46.54 45.15 45.56

GPT-4-0125-preview step-by-step 47.37 46.91 34.49 34.84
multi-step 51.02 51.08 51.70 51.99

even negative effects of feedback, we learn that this is be-205
cause models can change some correct tools to the wrong206
ones or remove them even though the feedback instructs207
them to only fix the erroneous parts in the plan (Figure 12208
B). One way to mitigate this error can be using more fine-209
grained and localized feedback [31]. Additionally, neither210

verification feedback nor execution feedback provides use- 211
ful information on the correctness of the tool selection and 212
increases their performance on tool-F1. 213

Last but not least, when it comes to code generation vs. 214
json-format generation, we find that one common execution 215
error in code generation is failing to access the output from 216
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Figure 5. Illustrating the three main planning setups in our evaluation: (1a) multi-step and (1b) step-by-step JSON-format language
generation [35], and (2) code generation. (Note that the prompts have been simplified for illustration. Please see the Appendix for the full
prompts).

a tool (Figure 12 C), which can be due to missing the output217
or accessing the output differently from what the instruction218
specifies and the tool implementation expects. While the219
same error also happens to JSON-format generation, it oc-220
curs less frequently due to the more rigid structure of JSON.221

G. Additional plan evaluation results222

Apart from the three main metrics in the main paper, we223
have also evaluated all six large language models on 10+224
other metrics. We report these additional evaluation results225
below.226

G.1. Pass rate vs. tool-F1 227

While we see generally positive effects of feedback on 228
argname-F1 and pass rate, we also observe that feedback 229
can lead to a small decrease (up to 4.5%) in models’ 230
tool-F1. Nevertheless, we note that the decrease in tool-F1 231
with feedback is a lot smaller compared to the gains in 232
pass rate (Figure 10), which suggests feedback can greatly 233
improve tool invocation at a small cost to tool selection. 234

235
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Table 5. edge-F1. We present the edge-F1 of step-by-step and multi-step planning with JSON-format generation and different types of
feedback.

edge-F1
model strategy P PV PE PVE

Llama-2-7b step-by-step 1.61 2.35 3.98 3.37
multi-step 12.44 11.61 12.10 11.27

Llama-2-13b step-by-step 5.74 6.22 6.96 8.22
multi-step 23.27 23.98 24.00 23.58

Mixtral-8x7B step-by-step 15.41 21.88 24.00 24.77
multi-step 55.72 53.10 53.08 53.52

Gemini-pro step-by-step 41.39 17.86 45.82 45.08
multi-step 54.98 56.63 53.60 55.22

GPT-3.5-turbo-0125 step-by-step 31.37 27.23 39.40 39.72
multi-step 69.52 71.03 67.98 69.05

GPT-4-0125-preview step-by-step 73.68 72.67 68.28 68.12
multi-step 78.80 78.79 79.47 79.60

Table 6. Normalized edit distance. We present the normalized edit distance of step-by-step and multi-step planning with JSON-format
generation and different types of feedback.

Normalized edit distance ↓
model strategy P PV PE PVE

Llama-2-7b step-by-step 80.39 75.24 76.00 74.55
multi-step 61.14 64.43 62.82 63.12

Llama-2-13b step-by-step 72.81 68.57 68.60 67.84
multi-step 47.57 48.69 49.63 49.73

Mixtral-8x7B step-by-step 60.81 56.28 56.86 56.78
multi-step 23.97 25.97 26.64 26.26

Gemini-pro step-by-step 36.23 47.89 34.70 36.00
multi-step 28.18 27.34 25.96 24.77

GPT-3.5-turbo-0125 step-by-step 51.46 52.38 47.93 47.44
multi-step 16.08 15.55 17.44 17.86

GPT-4-0125-preview step-by-step 14.26 14.70 16.92 16.62
multi-step 10.96 11.39 10.59 10.81

G.2. No feedback236

In the main paper, we present the results of models with237
verification and/or execution of feedback (on top of parsing238
feedback) using the experiment with parsing (P) feedback239
as a baseline. Here, we report the results using the exper-240
iment with no feedback at all as the baseline in Table 3.241
We see that our main takeaway remains the same with this242
change: feedback helps improve models’ argname-F1 by a243
small amount and pass rate by a lot, although it can lead244
to a small decrease in tool-F1. We additionally observe the245
improvement of verification and/or execution feedback on246
pass rate is larger than that of parsing feedback.247

G.3. Step-level metrics 248

Besides tool-F1 and argname-F1, we also report the follow- 249
ing step-level metrics: argvalue-F1 (Table 4), edge-F1 (Ta- 250
ble 5), and normalized edit distance (Table 6). We adapted 251
TaskBench’s [19] implementation of these metrics on our 252
benchmark. We caution readers about argvalue-F1 as it is 253
computed based on exact matching to one groundtruth value 254
even though there can be multiple valid values. 255

G.4. Plan-level accuracy 256

Since step-level metrics do not take into account the order- 257
ing of the predicted tools, we additionally include plan-level 258
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Table 7. Plan accuracy

Plan accuracy (tool) (tool+argname)
model strategy P PV PE PVE P PV PE PVE

Llama-2-7b step-by-step 1.13 2.27 3.29 3.29 1.13 2.27 3.29 3.29
multi-step 4.20 3.40 2.95 4.20 2.95 3.29 2.04 3.51

Llama-2-13b step-by-step 1.25 3.17 3.74 4.99 1.13 3.17 3.74 4.99
multi-step 11.90 13.83 10.88 12.13 9.52 13.27 9.98 11.79

Mixtral-8x7B step-by-step 9.41 14.63 14.06 14.97 9.41 14.63 14.06 14.97
multi-step 45.80 45.12 45.12 45.35 45.12 45.01 44.90 45.24

Gemini-pro step-by-step 24.83 10.66 30.27 28.57 24.38 10.66 30.16 28.57
multi-step 41.84 42.18 40.70 42.40 40.48 42.18 40.59 42.40

GPT-3.5-turbo-0125 step-by-step 19.27 14.97 18.59 19.16 19.27 14.97 18.59 19.16
multi-step 59.64 60.20 57.48 58.39 59.52 60.20 57.48 58.39

GPT-4-0125-preview step-by-step 61.68 60.88 51.93 53.17 61.68 60.88 51.93 53.17
multi-step 70.63 69.50 71.43 70.63 70.63 69.50 71.43 70.63

Table 8. ∆ in plan accuracy considering alternative plans.

∆ in plan accuracy (tool) (tool+argname)
model strategy P PV PE PVE P PV PE PVE

Llama-2-7b step-by-step 0.00 0.11 0.11 0.11 0.00 0.11 0.11 0.11
multi-step 0.79 0.34 0.68 0.57 0.00 0.11 0.11 0.23

Llama-2-13b step-by-step 0.57 0.57 0.68 0.91 0.45 0.57 0.68 0.91
multi-step 1.36 1.47 1.47 1.47 0.91 1.36 1.25 1.25

Mixtral-8x7B step-by-step 0.79 2.15 1.93 2.04 0.79 1.93 1.93 1.93
multi-step 4.08 3.40 3.74 2.83 3.40 3.40 3.29 2.61

Gemini-pro step-by-step 1.36 2.83 2.49 1.93 1.36 2.83 2.38 1.93
multi-step 3.74 2.83 4.65 3.51 3.40 2.83 4.65 3.51

GPT-3.5-turbo-0125 step-by-step 1.02 0.34 1.02 0.68 1.02 0.34 1.02 0.68
multi-step 3.17 3.06 3.40 3.74 3.17 3.06 3.40 3.74

GPT-4-0125-preview step-by-step 2.15 1.81 2.95 3.06 2.15 1.81 2.95 3.06
multi-step 1.81 1.81 1.59 1.59 1.81 1.81 1.59 1.59

accuracy to evaluate the whole plan’s correctness (Table 7).259
We highlight two main variants of plan accuracy in Table260
7, where the first one considers a list of tool names as a261
plan and the second considers a list of (tool name, argument262
names) tuples as a plan. As there could be multiple valid263
plans of the same query, we have also included the ∆ in plan264
accuracy considering alternative plans in Table 8 and shown265
that our set of alternative plans can recover 1-5% examples266
where the models could have output potential valid plans267
different from the one human-verified groundtruth plan. Fi-268
nally, we also present the strictest form of plan accuracy,269
which considers a list of tool names, argument names and270
values as a plan in Table 9. We note that exact matching271
gives us (Table 9 left) extremely low scores while using en-272
tailment in the case of text values – if the predicted argu-273
ment text entails the label text – gives us more reasonable274
scores (Table 9 right).275

G.5. Code-specific metrics: AST accuracy and 276
CodeBLEU 277

To evaluate code generation properly, we have also included 278
code-specific metrics such as AST accuracy and Code- 279
BLEU (Table 10). AST accuracy measures if the AST tree 280
of the predicted code is the same as the label code, whereas 281
CodeBLEU measures the similarity of the predicted code to 282
the reference code. We find that feedback, especially veri- 283
fication feedback, can help improve models’ AST accuracy 284
but not necessarily CodeBLEU scores. 285

G.6. Efficiency 286

Besides models’ planning performance, we also kept track 287
of their token usage (Table 12) and numbers of conversa- 288
tion turns (Table 11). As expected, step-by-step planning 289
generally requires more conversation turns and more tokens 290
than multi-step planning. Similarly, feedback also increases 291
token usage. 292
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Table 9. Plan accuracy considering argument values

Plan accuracy (tool+argname+argvalue) exact matching entailment
model strategy P PV PE PVE P PV PE PVE

Llama-2-7b step-by-step 0.57 1.02 1.81 1.59 0.91 1.81 2.95 2.38
multi-step 0.57 0.34 0.23 0.57 1.02 1.59 0.68 1.59

Llama-2-13b step-by-step 0.57 1.70 2.04 2.27 0.91 2.49 2.83 3.51
multi-step 2.04 2.72 2.38 2.49 5.44 7.48 5.78 6.24

Mixtral-8x7B step-by-step 2.72 5.44 3.51 3.51 6.12 9.86 7.03 7.37
multi-step 9.75 10.09 9.52 10.77 28.00 29.14 28.68 29.48

Gemini-pro step-by-step 7.03 5.78 7.48 6.58 15.42 9.52 17.12 15.19
multi-step 8.39 11.34 9.07 11.45 24.15 27.89 24.83 27.66

GPT-3.5-turbo-0125 step-by-step 6.46 5.33 2.38 2.72 12.93 10.20 7.14 8.05
multi-step 13.61 14.29 13.61 14.06 34.81 36.85 34.92 35.83

GPT-4-0125-preview step-by-step 11.68 11.00 6.35 6.24 34.35 32.65 19.73 20.29
multi-step 14.85 14.97 15.19 15.53 41.04 40.70 43.20 42.97

Table 10. Code-specific metrics. We present the AST accuracy and CodeBLEU score of models under multi-step planning with code
generation with or without feedback.

AST accuracy CodeBLEU
model P PV PE PVE P PV PE PVE
Llama-2-7b 0.00 0.00 0.00 0.00 22.64 21.28 17.58 21.19
Llama-2-13b 0.11 0.23 0.00 0.00 29.96 27.09 20.29 27.62
Mixtral-8x7B 2.04 3.06 4.22 2.30 54.17 48.48 53.01 47.21
Gemini-pro 3.85 5.33 3.74 4.54 62.37 61.13 59.00 59.18
GPT-3.5-turbo-0125 3.29 4.76 3.29 4.42 60.79 60.32 58.96 59.99
GPT-4-0125-preview 4.31 5.10 4.42 5.33 68.52 68.37 68.68 68.51

H. Human evaluation of plan execution results293

Since m&m’s consists of open-ended queries, which do not294
always have one single final answer, it is challenging to295
evaluate the execution results of the plans automatically.296
Thus, we resort to human evaluation of a small subset of297
85 examples with reasonable execution results. Our manual298
evaluation reveals that GPT-4 achieves the best execution299
accuracy with multi-step planning and JSON-format gener-300
ation compared to step-by-step planning or code generation301
(Table 13). Further, we learn that our main metrics, espe-302
cially pass rate, correlate well with the execution accuracy303
(Figure 11).304
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Table 13. Execution results accuracy. We present the execution results accuracy of GPT-4 and Mixtral-8x7B on a selected subset of 85
examples across different setups, including step-by-step and multi-step planning, with JSON-format and code generation, and different
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Figure 6. Multi-step planning prompt. We present the full prompt used for multi-step planning.
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Figure 7. Step-by-step planning prompt. We present the full prompt used for step-by-step planning.
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Figure 8. Code generation prompt. We present the full prompt used for code generation.
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Figure 9. Types of feedback. We present examples of parsing, verification, and execution feedback in both success and failure cases.

17



CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

30 40 50 60 70 80 90 100
pass rate

30

40

50

60

70

80

90

to
ol

-F
1

model
Llama-2-7b
Llama-2-13b
Mixtral-8x7B
Gemini-pro
GPT-3.5
GPT-4
feedback
P
PVE

Figure 10. Comparing without vs. with feedback. P = parsing
feedback, PVE = parsing, verification, and execution feedback.
We find that feedback greatly improves planning agents’ pass rates
across different model sizes, especially for Llama-7b, Llama-13b,
and Gemini-pro. However, feedback can also harm models’ tool
prediction performance and decrease their tool-F1 by up to 5%.
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Figure 11. Execution results accuracy vs. other metrics. We find a strong positive correlation between the execution results accuracy and
our main metrics, including tool-F1, argname-F1, and pass rate, with Pearson correlation coefficients r = 0.77, 0.73, 0.95 respectively.
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Figure 12. We present examples of three common errors (A-C) in step-by-step planning and multi-step planning with JSON-format
generation as well as in code generation with various feedback types.
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