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A PROOFS OF SECTION

A.l PROOF OF THEOREM[2]AND CORRESPONDING RESULTS

Recall an ETF defined by
K
K 1 K 1
M=\/——P(Ix - —=1x1% ) =/ —— | P - =) P.1%
K—1 (K KKK) K—l( K;kK>’
where P = [Py, -, Pg| € RP*K is a partial orthogonal matrix with PTP = I. Rewrite

M = [My,---, Mg]. Let the label y = (y1,--- ,yx)T € {0,1}X be represented by the one-hot
encoding, that is, y, = 1 and y; = 0 for j # k if y belongs to the k-th class.

Definition 6 (Classification problem under Neural Collapse). Let there be K classes. The distribu-
tionPlx = My|lyr =1 =1fork =1,.... K.

Proof of Theorem[2] Let W = [Wy,--- ,Wg]T € R¥*P_ Consider the output function fiy (z) =
Wax € RE. Suppost that y;, = 1. Then, the cross-entropy loss is defined by

’
k=1¢ *

BWEZL’
(fw(z),y) = —log (KWTI) .

The corresponding empirical risk is

K Wi My,
Rn(M, W) = Z —Ng log W .

k=1 k=1¢"*
Note that
Vi l(fw (@), y) = (SoftMax(fw (z)) —y)«”,
where SoftMax : RX — R is the SoftMax function defined by

27,

(&

SoftMax(2); = ———
Zj:l e

, for all z € R¥.

‘We obtain

=

Vi R (M, W) =Y " ny (SoftMax(fw (My)) — y*) M.,
k=1

where yk is the label of the k-th class. For zero initialization, we have

1
SOftMaX(fg(Mk)) = ?]-K
and
K 1
B k=1

Now we consider one step NoisyGD from 0 with learning rate n = 1:

K
— 1 _
W = —kg_lnk <K1K —yk> M,?—i-:,

where = € R¥*? with Z;; drawn independently from a normal distribution N (0, 0'2).

Consider x = Mj,. It holds

K
o~ 1 / =
fﬁ,\(f):WMkZ— E Nk (le—yk>M§Mk+sz-
k'=1
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Since
EMy, ~ N (0,07 || My|31k) and | M]3 =1
we have

WM, ~ N (Bn, i, 0% IK)

where p, gk = — 2521 N (%1;( — y’“/> M, M. Note that

MM, = % (5,“,« — ;{) .

We obtain
n/K, J=k,
(a0 = { ~ DS, Ak,

for ny, = n/K (balanced data). By the union bound, the mis-classification error is

_[?2(5(_21)),02)} = (K - 1)d (—I?U (1 + K€(K_21)>)
0

(K — 1P |N(n/K,o%) < N(

Proof sketches of the insights. Note that in Equation equation the gradient is a linear function of
the feature map thanks to the zero-initialization while for least-squares loss, one can derive a similar
gradient as Equation equation Thus, the proof can be extended to the least squares loss directly.
Moreover, by replacing nj, with ngn in equation one can extend the results to any 7.

A.2 PROOF OF THEOREM/[3]

Recall the re-parameterization for K = 2. Precisely, an equivalent neural collapse case gives M =
[—e1,e1] with e; = [1,0,...,0]”. Furthermore, we consider the re-parameterization with y €
{~1,1}, & € RP? and the decision rule being § = sign(#7z). Then, the logistic loss is log(1 +
e‘y'eT””).

Proof of Theorem According to the re-parameterization, for the class imbalanced case, we have

-1 1 n/2
R 0 0 G2 0 G2
n n
6=—n 5~0.5~(— : )+§-0.5~ : +N(0,%Ip) =-7 : +/\/(0,2—pIp)
0 0 0

The rest of the proof is similar to that of Theorem

For the class-imbalanced case, assume that we have an data points have with label 41 while the
rest (1 — a)n points have label —1. Then, the gradient is

-1 1 n/2
R 0 (1—a) |0 G? 0 G?
na n «
H=— (= .. 0. —1. = — 0, —1
n B) ( )+ 9 +N(’2p p) n +N(’2p p)
0 0 0
Thus, the same conclusion holds. ]
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A.3 PROOF OF THEOREM[4]

In this section, we consider a broad pre-training on a gigantic dataset with K classes. The down-
stream task is a K -class classification problem with K < Ky. Let P = [Py, -+ , P, ] € RP*Fo pe
a partial orthogonal matrix with PTP = Iy, . Let

Ko
K, 1 . Ko 1 .
My = P(Ig, — —1g,1%, | = P-—> Pl |-
0 Ko—1 ( Ko ™ g, Ko KO) Ko—1 Ko & kKo
Denote M = [My, -+ , Mg] with each M}, being a column of M. Note that

K 1
MEM,;, = —2 (5,67,{,).

Kog—1 Ky
‘We have
al 1
Pn K 1= — Z o <K1K — yk > M,z:Mk.
k=1
For j # k, we have
n 1 K-1 K -2 n(Ko — 2)
(m )y =~ | 2 + - - .
J K|K Ky—-1) K(Ky—-1) K2(Ky—1)
For j = k, it holds
n |1 K—-1 n(K — 1)Ky
(<) =~ |3 = 1= =2 .
J K| K K(Ky—1) K2(Ko—1)

By the union bound, the mis-classification error is

(K = DB N ((1n,50)8,0%) < N ((nich, 0%)] = (K ~ 1)@ (ncKK)

g

with CK,KU = % [7;2([}((%:21)} .

B RESULTS FOR PURTURBING THE TESTING DATA

B.1 FIXED PERTURBATION

Recall that the output of DP-GD has the form 6 = A/(— L, 5?). One has
G?(pe? + 1))
2p '

The sample complexity can be derived similarly as previous sections, which is dimension dependent.

07 (e +v) = g + N(0,

B.2 RANDOM PERTURBATION

Let’s say in prediction time, the input data point can be perturbed by a small value in /. If we
allow the perturbation to be adversarial chosen, then there exits v satisfying ||v||oo <  such that

R G P Gj
0T (@ +v) =24+ ——7, — Zi|—5=
( ) R ;\ |\/%

where Z1, ..., Z, ~ N(0,1) i.i.d. Note that the additional term scales as O(p%), which can alter
the prediction if p < n even if p is a constant (weak privacy).

The number of data points needed to achieve 1 — § robust classification under neural collapse is

0 (Gmax{pe,l}\/log(l/é) )
2p '

oL
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C RESULTS FOR PERTURBING THE TRAINING DATA

C.1 FIXED PERTURBATION

Without loss of generality, we assume 0 < « < 1/2 Consider the class imbalanced case with
n_y =anandniy = (1 — a)n. The gradient for 6, = 0 is

1-2
VL(0) =an-0.5-—(—e +v) + (1 —a)n-0.5- (e +v) = gel + %v.

Thus, the output is

0= <Zel + (17%)“1) +/\/(0,02)>

The sensitivity is G = /1 + ||v]|2 and o2 is taken to be G2 /2p to achieve p-zCDP. Moreover, we

have

1-2
,97‘61 = 7% — $U1 +N(0,02).

Thus, the mis-classification error is

) - - n2(1— «B)?
P[fe; > 0] :@(”[1 (12 20)”1]) ¢ ot
ag

As a result, the sample complexity to achieve 1 — v accuracy is

4G? log *
=0 ]
" \/(1—6+2Ba)2-p

The sensitivity G = /1 + €2p here is dimension-dependent.

C.2 RANDOM PERTURBATION
Now we consider the random perturbation. Denote {v;}? ; C RP a sequence of i.i.d. copies of a

random vector v. Consider the binary classification problem with training set {(x;, y;)},. Here
x; = e +wv ify; = 1and x; = —eq + v; if y; = —1. Then, the loss function is £(0) =

% > log (1 + e‘y”’T%‘) . The one-step iterate of DP-GD from 0 outputs

0= Z(—yixi) +N(0,0%1,)

i=1

with 02 = G?/2p and G = sup,, /1 + ||v;[|? Assume that v; is symmetric, that is y;v; has the
same distribution as —y;v;. Then, it holds

n n
Zyixi =ney + Zvi = Un.
i=1 i=1
The mis-classification error is now given by
ol _ T 2
P[0" €1 < 0] = PN (ppe1,07) < 0].
Assume that ||v;]|«c = € < 1. Then, we have ule; > n — en and the sample complexity is

4G2log(1/6 .
O( %)(zf,”).WlthG:m.
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D REMEDY TO NON-ROBUSTNESS

D.1 DETAILS OF THE NORMALIZATION

Consider the case where the feature is shifted by a constant offset v. The feature of the k-th class is
1< —~
%i:xi_ﬁzlxi:Mk:Mk—i_v
=

with M}, being the k-th column of the ETF M.

The offset v can be canceled out by considering the differences between the features. That is, we
train with the feature M), — 7 Z;il M; for the k-th class. In fact, let P, be the k-th column of P
and we have

— 1 & 1 &
Mr?;Mj:MFE;Mj

i=1

D.2 PROOF OF THEOREM/[3]

Proof of Theorem[3] Consider the case with K = 2 and a projection vector P= (e1+A) with some

o~

perturbation A = (Aq,---,A,) such that ||A]| < B for some 0 < Sy < p. P can be generated
by the pre-training dataset or the testing dataset. Consider training with features ; = Px;. Then,
the sensitivity of the NoisyGD is G = sup, |P"(e1 +v)| = 1+ 8+ B]A1| + B(F_, [A]) <
1+ B(1+ Bo + pPo). The output of Noisy-GD is then given by

é\: 7ﬁ . (Zy@l> +N(0,02).
i=1

Moreover, for any testing data point e; + v, define
n “, AN
fin = — (Z Z/z%) PT(el +v) = (e1+ V)T PPT(€1 +v)
i=1

with V = % S vi= (Vi -, Vp).
We now divide ji,, into four terms and bound each term separately.

For the first term 61T1313T61, it holds

elTﬁﬁTel = (1 + 6{A1)2 < (1 — ﬁo)Q.

For the second term VTI?’ﬁTel, we have
VIPPTe, =V, +VTA

Note that V; is the average of n i.i.d. random variables bounded by 8. By Hoeffding’s inequality,
we obtain

2

Blog s o
V1| < , with probability at least 1 — ~.

Jn
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Similarly, with confidence 1 — ~, it holds
pBflog 2

VTA| <
VA s —-=

The third term elTJSﬁTv can be bounded as

2
1T PP | = (14 Ay) sz (14+4:) | <1+ po) (5+50\/p10g7>a

where the last inequality is a result of the Hoeffding’s inequality by assuming that each coordinate
of v are independent of each others. Moreover, without further assumptions on the independence of
each coordinate of v, we have

T PP | = (14 Ay) ZmHA < (1+ Bo) (B + Bop) -

Using the Hoeffding’s inequality again, for the last term VTﬁﬁT(el + v), it holds

(B + Boy/D)(1 + B+ Bo + BBoy/P) log 5
N

with confidence 1 — y if we assume that all coordinates of v are independent of each other. Without
further assumptions on the independence of each coordinate of v, we have

(B + Bop)(1 + B + Bo + BBop) log 2
7 .

\VIPPT (e; 4+ v)| <

[VTPPT (ey +v)| <

E SOME CALCULATIONS ON RANDOM INITIALIZATION

E.1 GAUSSIAN INITIALIZATION WITHOUT OFFSET

For Gaussian initialization £ = (&1, ,&,) ~ N (0, I,), we have
-1 1
n _6751 0 n _6761 0 G2

PP e n, et
S R el I D R wrpee

e—&1 0 G?

B

0

The sensitivity is < 1. Consider z = (—1,0,---,0)T. We have

1+ 7&1

§TCU=—§1+77<

The mis-classification error is

G2
P[@Tx > 0] = E¢,wno,n)P {N <M51’"’ Qp) >0
2 n
= E¢, N (0,1) [‘I’ (\/7)@%”
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E.2 GAUSSIAN INITIALIZATION WITH OFE-SET

Denote 771 = —e; + v and 2o = e; + v with ||v]lc < B. For the logistic loss £(y,07x) =
log(1 + e %" %), we have

—y0Tx
90, ) = Volly, 070) = = ().

Denote

R

91(0) =g(0,—1-21) = T3 oma
and
—0T 2y
92(0) = g(0,1 - x2) = 14_67_9%(—932)-

If we shift the feature by some vector v, then the loss function is

R, = glog(l + 69%1) + glog(l + efan”?).

And the gradient is

VoRa(6) = 3 (6:(6) + 92(0)) .

Thus, the output of one-step NoiseGD is given by

0 =06y — % [91(60) + g2(60) + N'(0,57)] .

Let pe = & — 5 [91(€) + 92(§)] - Then, we have

77ne§T“Cl nnefT””2

2 + 28771

And the mis-classification error is
V2ppi er
Ee [ @ ——a .

T, _ ¢ _ et
pe €1 =& ( 1+U1)+2+265Tx2(1+01)-
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