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A PROOFS OF SECTION 3.1

A.1 PROOF OF THEOREM 2 AND CORRESPONDING RESULTS

Recall an ETF defined by

M =

r
K
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where P = [P1, · · · , PK ] 2 Rp⇥K is a partial orthogonal matrix with P
T
P = IK . Rewrite

M = [M1, · · · ,MK ] . Let the label y = (y1, · · · , yK)T 2 {0, 1}K be represented by the one-hot
encoding, that is, yk = 1 and yj = 0 for j 6= k if y belongs to the k-th class.
Definition 6 (Classification problem under Neural Collapse). Let there be K classes. The distribu-

tion P[x = Mk|yk = 1] = 1 for k = 1, ...,K.

Proof of Theorem 2. Let W = [W1, · · · ,WK ]T 2 RK⇥p. Consider the output function fW (x) =
Wx 2 RK . Suppost that yk = 1. Then, the cross-entropy loss is defined by
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!
.

The corresponding empirical risk is
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Note that

rW `(fW (x), y) = (SoftMax(fW (x))� y)xT
,

where SoftMax : RK ! RK is the SoftMax function defined by

SoftMax(z)i =
e
zi

PK
j=1 e

zj
, for all z 2 RK

.

We obtain

rWRn(M,W ) =
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�
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k ,

where y
k is the label of the k-th class. For zero initialization, we have

SoftMax(f0(Mk)) =
1

K
1K

and

rW (Rn(M,W ))
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Now we consider one step NoisyGD from 0 with learning rate ⌘ = 1:
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where ⌅ 2 RK⇥p with ⌅ij drawn independently from a normal distribution N (0,�2).

Consider x = Mk. It holds

fcW (x) = cWMk = �
KX
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Since

⌅Mk ⇠ N
�
0,�2kMkk22IK

�
and kMkk22 = 1

we have

cWMk ⇠ N
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�
,

where µn,K = �
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We obtain

(µn,K)j =

⇢
n/K, j = k,

� n(K�2)
K2(K�1) , j 6= k,

for nk0 = n/K (balanced data). By the union bound, the mis-classification error is
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Proof sketches of the insights. Note that in Equation equation 2, the gradient is a linear function of
the feature map thanks to the zero-initialization while for least-squares loss, one can derive a similar
gradient as Equation equation 2. Thus, the proof can be extended to the least squares loss directly.
Moreover, by replacing nk with nk⌘ in equation 2, one can extend the results to any ⌘.

A.2 PROOF OF THEOREM 3

Recall the re-parameterization for K = 2. Precisely, an equivalent neural collapse case gives M =
[�e1, e1] with e1 = [1, 0, . . . , 0]T . Furthermore, we consider the re-parameterization with y 2
{�1, 1}, ✓ 2 Rp and the decision rule being ŷ = sign(✓Tx). Then, the logistic loss is log(1 +

e
�y·✓T x).

Proof of Theorem 3. According to the re-parameterization, for the class imbalanced case, we have
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The rest of the proof is similar to that of Theorem 2.

For the class-imbalanced case, assume that we have ↵n data points have with label +1 while the
rest (1� ↵)n points have label �1. Then, the gradient is
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Thus, the same conclusion holds.
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A.3 PROOF OF THEOREM 4

In this section, we consider a broad pre-training on a gigantic dataset with K0 classes. The down-
stream task is a K-class classification problem with K  K0. Let P = [P1, · · · , PK0 ] 2 Rp⇥K0 be
a partial orthogonal matrix with P

T
P = IK0 . Let
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Denote M = [M1, · · · ,MK ] with each Mk being a column of M0. Note that

M
T
k0Mk =
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K0 � 1

✓
�k,k0 � 1
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◆
.

We have
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For j 6= k, we have

(µn,K)j = � n
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For j = k, it holds

(µn,K)j = � n
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By the union bound, the mis-classification error is

(K � 1)P
⇥
N ((µn,K)k,�

2) < N ((µn,K)1,�
2)
⇤
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i
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B RESULTS FOR PURTURBING THE TESTING DATA

B.1 FIXED PERTURBATION

Recall that the output of DP-GD has the form b✓ = N (�⌘n
2 ,�

2). One has

✓̂
T (e+ v) =

n

2
+N (0,

G
2(p✏2 + 1)

2⇢
).

The sample complexity can be derived similarly as previous sections, which is dimension dependent.

B.2 RANDOM PERTURBATION

Let’s say in prediction time, the input data point can be perturbed by a small value in `1. If we
allow the perturbation to be adversarial chosen, then there exits v satisfying kvk1  � such that

✓̂
T (x+ v) =

n

2
+

Gp
2⇢

Z1 �
pX

i=1

|Zi|
G�p
2⇢

where Z1, ..., Zn ⇠ N (0, 1) i.i.d. Note that the additional term scales as O(pG�p
⇢ ), which can alter

the prediction if p ⇣ n even if ⇢ is a constant (weak privacy).

The number of data points needed to achieve 1 � � robust classification under neural collapse is

O

✓
Gmax{p✏,1}

p
log(1/�)p

2⇢

◆
.
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C RESULTS FOR PERTURBING THE TRAINING DATA

C.1 FIXED PERTURBATION

Without loss of generality, we assume 0 < ↵ < 1/2 Consider the class imbalanced case with
n�1 = ↵n and n+1 = (1� ↵)n. The gradient for ✓0 = 0 is

rL(✓0) = ↵n · 0.5 ·�(�e1 + v) + (1� ↵)n · 0.5 · (e1 + v) =
n

2
e1 +

(1� 2↵)n

2
v.

Thus, the output is

b✓ = �⌘

✓
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2
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2
v +N (0,�2)

◆

The sensitivity is G =
p
1 + kvk2 and �

2 is taken to be G
2
/2⇢ to achieve ⇢-zCDP. Moreover, we

have

b✓T e1 = �n

2
� (1� 2↵)n

2
v1 +N (0,�2).

Thus, the mis-classification error is

P[b✓e1 > 0] = �

✓
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2�
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 e
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As a result, the sample complexity to achieve 1� � accuracy is

n = O

0

@
s

4G2 log 1
�

(1� � + 2�↵)2 · ⇢

1

A

The sensitivity G =
p
1 + ✏2p here is dimension-dependent.

C.2 RANDOM PERTURBATION

Now we consider the random perturbation. Denote {vi}ni=1 ✓ Rp a sequence of i.i.d. copies of a
random vector v. Consider the binary classification problem with training set {(xi, yi)}ni=1. Here
xi = e1 + vi if yi = 1 and xi = �e1 + vi if yi = �1. Then, the loss function is L(✓) =
1
n

Pn
i=1 log

⇣
1 + e

�yi✓
T xi

⌘
. The one-step iterate of DP-GD from 0 outputs

b✓ = �⌘

nX
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(�yixi) +N (0,�2
Ip)

with �
2 = G

2
/2⇢ and G = supvi

p
1 + kvik2 Assume that vi is symmetric, that is yivi has the

same distribution as �yivi. Then, it holds

nX

i=1

yixi = ne1 +
nX

i=1

vi =: µn.

The mis-classification error is now given by

P[b✓T e1 < 0] = P[N (µT
ne1,�

2) < 0].

Assume that kvik1 = ✏ < 1. Then, we have µ
T
ne1 � n � ✏n and the sample complexity is

O

⇣q
4G2 log(1/�)

(1�✏)2⇢

⌘
. with G =

p
1 + ✏2p.
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D REMEDY TO NON-ROBUSTNESS

D.1 DETAILS OF THE NORMALIZATION

Consider the case where the feature is shifted by a constant offset v. The feature of the k-th class is

exi = xi �
1

n

nX

i=1

xi = fMk = Mk + v

with Mk being the k-th column of the ETF M .

The offset v can be canceled out by considering the differences between the features. That is, we
train with the feature fMk � 1

K

PK
j=1

fMj for the k-th class. In fact, let Pk be the k-th column of P
and we have
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D.2 PROOF OF THEOREM 5

Proof of Theorem 5. Consider the case with K = 2 and a projection vector bP = (e1+�) with some
perturbation � = (�1, · · · ,�p) such that k�k1  �0 for some 0 < �0 ⌧ p. bP can be generated
by the pre-training dataset or the testing dataset. Consider training with features exi = bPxi. Then,
the sensitivity of the NoisyGD is G = supv | bPT (e1 + v)| = 1 + � + �|�1| + �(

Pp
j=1 |�j |) 

1 + �(1 + �0 + p�0). The output of Noisy-GD is then given by

b✓ = � bP ·
 

nX

i=1

yiexi

!
+N (0,�2).

Moreover, for any testing data point e1 + v, define

bµn = �
 

nX

i=1

yiexi

!
bPT (e1 + v) = (e1 + V )T bP bPT (e1 + v)

with V = 1
n

Pn
i=1 vi =: (V1, · · · , Vp).

We now divide bµn into four terms and bound each term separately.

For the first term e
T
1
bP bPT

e1, it holds

e
T
1
bP bPT

e1 = (1 + e
T
1 �1)

2  (1� �0)
2
.

For the second term V
T bP bPT

e1, we have

V
T bP bPT

e1 = V1 + V
T�

Note that V1 is the average of n i.i.d. random variables bounded by �. By Hoeffding’s inequality,
we obtain

|V1| 
� log 2

�p
n

, with probability at least 1� �.

15



Under review as a conference paper at ICLR 2024

Similarly, with confidence 1� �, it holds

|V T�| 
p��0 log

2
�p

n
.

The third term e
T
1
bP bPT

v can be bounded as

|eT1 bP bPT
v| = (1 +�1)
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✓
� + �0

r
p log
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◆
,

where the last inequality is a result of the Hoeffding’s inequality by assuming that each coordinate
of v are independent of each others. Moreover, without further assumptions on the independence of
each coordinate of v, we have

|eT1 bP bPT
v| = (1 +�1)

0

@
pX

j=1

vi (1 +�i)

1

A  (1 + �0) (� + �0p) .

Using the Hoeffding’s inequality again, for the last term V
T bP bPT (e1 + v), it holds

|V T bP bPT (e1 + v)| 
(� + �0

p
p)(1 + � + �0 + ��0

p
p) log 4

�p
n

with confidence 1� � if we assume that all coordinates of v are independent of each other. Without
further assumptions on the independence of each coordinate of v, we have

|V T bP bPT (e1 + v)| 
(� + �0p)(1 + � + �0 + ��0p) log

2
�p

n
.

E SOME CALCULATIONS ON RANDOM INITIALIZATION

E.1 GAUSSIAN INITIALIZATION WITHOUT OFFSET

For Gaussian initialization ⇠ = (⇠1, · · · , ⇠p) ⇠ N (0, Ip), we have
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The sensitivity is e�⇠1

1+e�⇠1
< 1. Consider x = (�1, 0, · · · , 0)T . We have

b✓Tx = �⇠1 + ⌘

✓
� ne

�⇠1
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◆
+N (0,

G
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The mis-classification error is

P[b✓Tx > 0] = E⇠1⇠N (0,1)P

N
✓
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◆
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E.2 GAUSSIAN INITIALIZATION WITH OFF-SET

Denote x1 = �e1 + v and x2 = e1 + v with kvk1  �. For the logistic loss `(y, ✓Tx) =

log(1 + e
�y✓T x), we have

g(✓, y · x) := r✓`(y, ✓
T
x) =

e
�y✓T x

1 + e�y✓T x
(�yx).

Denote

g1(✓) = g(✓,�1 · x1) =
e
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1 + e✓
T x1

x1

and

g2(✓) = g(✓, 1 · x2) =
e
�✓T x2

1 + e�✓T x2
(�x2).

If we shift the feature by some vector v, then the loss function is
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2
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n

2
log(1 + e

�✓T x2).

And the gradient is

r✓Rn(✓) =
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2
(g1(✓) + g2(✓)) .

Thus, the output of one-step NoiseGD is given by
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⇥
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⇤
.

Let µ⇠ = ⇠ � ⌘n
2 [g1(⇠) + g2(⇠)] . Then, we have

µ
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And the mis-classification error is
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