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Abstract

In this study, we consider the infinite-horizon, discounted cost, optimal control
of stochastic nonlinear systems with separable cost and constraints in the state
and input variables. Using the linear-time Legendre transform, we propose a
novel numerical scheme for implementation of the corresponding value iteration
(VI) algorithm in the conjugate domain. Detailed analyses of the convergence,
time complexity, and error of the proposed algorithm are provided. In particular,
with a discretization of size X and U for the state and input spaces, respectively,
the proposed approach reduces the time complexity of each iteration in the VI
algorithm from O(XU) to O(X + U), by replacing the minimization operation in
the primal domain with a simple addition in the conjugate domain.

1 Introduction

Value iteration (VI) is one of the most basic and wide-spread algorithms employed for tackling
problems in reinforcement learning (RL) and optimal control [10, 30] formulated as Markov decision
processes (MDPs). The VI algorithm simply involves the consecutive applications of the dynamic
programming (DP) operator

T J(xt) = min
ut

{
C(xt, ut) + γEJ(xt+1)

}
,

where C(xt, ut) is the cost of taking the control action ut at the state xt. This fixed point iteration
is known to converge to the optimal value function for discount factors γ ∈ (0, 1). However, this
algorithm suffers from a high computational cost for large-scale finite state spaces. For problems with
a continuous state space, the DP operation becomes an infinite-dimensional optimization problem,
rendering the exact implementation of VI impossible in most cases. A common solution is to
incorporate function approximation techniques and compute the output of the DP operator for a
finite sample (i.e., a discretization) of the underlying continuous state space. This approximation
again suffers from a high computational cost for fine discretizations of the state space, particularly in
high-dimensional problems. We refer the reader to [10, 27] for various approximations of VI.

For some problems, however, it is possible to partially address this issue by using duality theory,
i.e., approaching the minimization problem in the conjugate domain. In particular, as we will see
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in Section 3, the minimization in the primal domain in DP can be transformed to a simple addition
in the dual domain, at the expense of three conjugate transforms. However, proper application of
this transformation relies on efficient numerical algorithms for conjugation. Fortunately, such an
algorithm, known as linear-time Legendre transform (LLT), has been developed in late 90s [24].
Other than the classical application of LLT (and other fast algorithms for conjugate transform) in
solving Hamilton-Jacobi equation [1, 14, 15], these algorithms are used in image processing [25],
thermodynamics [13], and optimal transport [18].

The application of conjugate duality for the DP problem is not new and actually goes back to
Bellman [5]. Further applications of this idea for reducing the computational complexity were
later explored in [16, 19]. However, surprisingly, the application of LLT for solving discrete-time
optimal control problems, has been limited. In particular, in [12], the authors propose the “fast
value iteration” algorithm (without a rigorous analysis of the complexity and error of the proposed
algorithm) for a particular class of infinite-horizon optimal control problems with state-independent
stage cost C(x, u) = C(u) and deterministic linear dynamics xt+1 = Axt + But, where A is a
non-negative, monotone, invertible matrix. More recently, in [21], we also considered the application
of LLT for solving the DP operation in finite-horizon, optimal control of input-affine dynamics
xt+1 = fs(xt) + But with separable cost C(x, u) = Cs(x) + Ci(u). In particular, we introduced
the “discrete conjugate DP” (d-CDP) operator, and provided a detailed analysis of its complexity
and error. As we will discuss shortly, the current study is an extension of the corresponding d-CDP
algorithm that, among other things, considers infinite horizon, discounted cost problems. We note
that the algorithms developed in [17, 25] for distance transform can also potentially tackle the optimal
control problems similar to the ones of interest in the current study. In particular, these algorithms
require the stage cost to be reformulated as a convex function of the “distance” between the current
and next states. While this property might arise naturally, it can generally be restrictive, as it is in the
problem class considered in this study. Another line of work that is closely related to ours invloves
utilizing max-plus algebra in solving deterministic, continuous-state, continuous-time, optimal control
problems; see, e.g., [2, 26]. These works exploit the compatibility of the DP operation with max-
plus operations, and approximate the value function as a max-plus linear combination. Recently,
in [3, 6], the authors used this idea to propose an approximate VI algorithm for continuous-state,
deterministic MDPs. In this regard, we note that the proposed approach in the current study also
involves approximating the value function as a max-plus linear combination, namely, the maximum
of affine functions. The key difference is however that by choosing a grid-like (factorized) set of
slopes for the linear terms (i.e., the basis of the max-plus linear combination), we take advantage of
linear time complexity of LLT in computing the constant terms (i.e., the coefficients of the max-plus
linear combination).

Main contribution. In this study, we focus on an approximate implementation of VI involving
discretization of the state and input spaces for solving the optimal control problem of discrete-time
systems, with continuous state-input space. Building upon our earlier work [21], we employ conjugate
duality to speed-up VI for problems with separable stage cost (in state and input) and input-affine
dynamics. We propose the conjugate VI (ConjVI) algorithm based on a modified version of the
d-CDP operator introduced in [21], and extend the existing results in three directions: We consider
infinite-horizon, discounted cost problems with stochastic dynamics, while incorporating a numerical
scheme for approximation of the conjugate of input cost. The main contributions of this paper are as
follows:

(i) we provide sufficient conditions for the convergence of ConjVI (Theorem 3.11);

(ii) we show that ConjVI can achieve a linear time complexity of O(X + U) in each iteration
(Theorem 3.12), compared to the quadratic time complexity of O(XU) of the standard VI,
where X and U are the cardinalities of the discrete state and input spaces, respectively;

(iii) we analyze the error of ConjVI (Theorem 3.13), and use that result to provide specific
guidelines on the construction of the discrete dual domain (Section 3.4);

(iv) we provide a MATLAB package for the implementation of the proposed ConjVI algo-
rithm [22].

Paper organization. The problem statement and its standard solution via the VI algorithm (in
primal domain) are presented in Section 2. In Section 3, we present our main results: We begin with
presenting the class of problems that are of interest, and then introduce the alternative approach for

2



VI in conjugate domain and its numerical implementation. The theoretical results on the convergence,
complexity, and error of the proposed algorithm along with the guidelines on the construction of dual
grids are also provided in this section. In Section 4, we compare the performance of the ConjVI with
that of VI algorithm through three numerical examples. Section 5 concludes the paper with some
final remarks. All the technical proofs are provided in Appendix A.

Notations. We use R and R = R ∪ {∞} to denote the real line and the extended reals, respectively,
and Ew[·] to denote expectation with respect (w.r.t.) to the random variable w. The standard inner
product in Rn and the corresponding induced 2-norm are denoted by ⟨·, ·⟩ and ∥·∥2, respectively. We
also use ∥·∥2 to denote the operator norm (w.r.t. the 2-norm) of a matrix; i.e., for A ∈ Rm×n, we
denote ∥A∥2 = sup{∥Ax∥2 : ∥x∥2 = 1}. The infinity-norm is denoted by ∥·∥∞.

Arbitrary sets (finite/infinite, countable/uncountable) are denoted as X,Y, . . .. For finite (discrete)
sets, we use the superscript d as in Xd,Yd, . . . to differentiate them from infinite sets. Moreover, we
use the superscript g to differentiate grid-like finite sets. Precisely, a grid Xg ⊂ Rn is the Cartesian
product Xg = Πn

i=1X
g
i = Xg

1× . . .×Xg
n, where Xg

i is a finite subset of R. We also use Xg
sub to denote

the sub-grid of Xg derived by omitting the smallest and the largest elements of Xg in each dimension.
The cardinality of a finite set Xd or Xg is denoted by X . Let X,Y be two arbitrary sets in Rn. The
convex hull of X is denoted by co(X). The diameter of X is defined as ∆X := supx,x̃∈X ∥x− x̃∥2.
We use d(X,Y) := infx∈X,y∈Y ∥x− y∥2 to denote the distance between X and Y. The one-sided
Hausdorff distance from X to Y is defined as dH(X,Y) := supx∈X infy∈Y ∥x− y∥2.

Let h : Rn → R be an extended real-valued function with a non-empty effective domain dom(h) =
X := {x ∈ Rn : h(x) < ∞}, and range rng(h) = maxx∈X h(x) − minx∈X h(x). We use
hd : Xd → R to denote the discretization of h, where Xd is a finite subset of Rn. Whether a
function is discrete is usually also clarified by providing its domain explicitly. We particularly use
this notation in combination with a second operation to emphasize that the second operation is
applied on the discretized version of the operand. E.g., we use h̃d : Rn → R to denote a generic
extension of hd. If the domain Xd = Xg of hd is grid-like, we then use hd (as opposed to h̃d) for
the extension using multi-linear interpolation and extrapolation (LERP). The Lipschtiz constant
of h over a set Y ⊂ dom(h) is denoted by L(h;Y) := supx,y∈Y |h(x)− h(y)|/ ∥x− y∥2. We also
denote L(h) := L

(
h; dom(h)

)
and L(h) := Πn

i=1

[
L−
i (h),L

+
i (h)

]
, where L+

i (h) (resp. L−
i (h)) is

the maximum (resp. minimum) slope of the function h along the i-th dimension, The subdifferential
of h at a point x ∈ X is defined as ∂h(x) :=

{
y ∈ Rn : h(x̃) ≥ h(x) + ⟨y, x̃− x⟩ ,∀x̃ ∈ X

}
.

Note that ∂h(x) ⊆ L(h) for all x ∈ X; in particular, L(h) = ∪x∈X∂h(x) if h is convex. The
Legendre-Fenchel transform (convex conjugate) of h is the function h∗ : Rn → R, defined by
h∗(y) = supx {⟨y, x⟩ − h(x)}. We note that the conjugate function h∗ is convex by construction.
We again use the notation hd∗ to emphasize the fact that the domain of the underlying function is finite,
that is, hd∗(y) = supx∈Xd {⟨y, x⟩ − h(x)}. The biconjugate and discrete biconjugate operators are
defined accordingly and denoted by [·]∗∗ = [[·]∗]∗ and [·]d∗d∗ = [[·]d∗]d∗, respectively.

We report the complexities using the standard big-O notations O and Õ, where the latter hides the
logarithmic factors. In this study, we are mainly concerned with the dependence of the computational
complexities on the size of the finite sets involved (discretization of the primal and dual domains). In
particular, we ignore the possible dependence of the computational complexities on the dimension of
the variables, unless they appear in the power of the size of those discrete sets; e.g., the complexity
of a single evaluation of an analytically available function is taken to be of O(1), regardless of the
dimension of its input and output arguments.

2 VI in primal domain

We are concerned with the infinite-horizon, discounted cost, optimal control problems of the form

J⋆(x) =min Ewt

[ ∞∑
t=0

γtC(xt, ut)

∣∣∣∣x0 = x

]
s.t. xt+1 = g(xt, ut, wt), xt ∈ X, ut ∈ U, wt ∼ P(W), ∀t ∈ {0, 1, . . .},

where xt ∈ Rn, ut ∈ Rm, and wt ∈ Rl are the state, input and disturbance variables at time t,
respectively; γ ∈ (0, 1) is the discount factor; C : X × U → R is the stage cost; g : Rn × Rm ×
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Rl → Rn describes the dynamics; X ⊂ Rn and U ⊂ Rm describe the state and input constraints,
respectively; and, P(·) is the distribution of the disturbance over the support W ⊂ Rl. Assuming the
stage cost C is bounded, the optimal value function solves the Bellman equation J⋆ = T J⋆, where T
is the DP operator (C and J are extended to infinity outside their effective domains) [8, Prop. 1.2.2]

T J(x) := min
u

{
C(x, u) + γ · EwJ

(
g(x, u, w)

)}
, ∀x ∈ X. (1)

Indeed, T is γ-contractive in the infinity-norm, i.e., ∥T J1 − T J2∥∞ ≤ γ ∥J1 − J2∥∞ [8,
Prop. 1.2.4]. This property then gives rise to the VI algorithm Jk+1 = T Jk which converges
to J⋆ as k → ∞, for arbitrary initialization J0. Moreover, assuming that the composition J ◦ g (for
each w) and the cost C are jointly convex in the state and input variables, T also preserves convexity
[9, Prop. 3.3.1].

For numerical implementation of VI, we need to address three issues. First, we need to compute
the expectation in (1). In order to simplify the exposition and include the computational cost of this
operation explicitly, we consider disturbances with finite support in this study:

Assumption 2.1 (Disturbance with finite support). The disturbance w has a finite support Wd ⊂ Rl

with a given probability mass function (p.m.f.) p : Wd → [0, 1].

Under the preceding assumption, we have EwJ
(
g(x, u, w)

)
=

∑
w∈Wd p(w) · J

(
g(x, u, w)

)
.1 The

second and more important issue is that the optimization problem (1) is infinite-dimensional for
the continuous state space X. This renders the exact implementation of VI impossible, except for
a few cases with available closed-form solutions. A common solution to this problem is to deploy
a sample-based approach, accompanied by a function approximation scheme. To be precise, for a
finite subset Xd of X, at each iteration k = 0, 1, . . ., we take the discrete function Jd

k : Xd → R as

the input, and compute the discrete function Jd
k+1 =

[
T J̃d

k

]d
: Xd → R, where J̃d

k : X → R is

an extension of Jd
k .2 Finally, for each x ∈ Xd, we have to solve the minimization problem in (1)

over the control input. Since this minimization problem is often a difficult, non-convex problem, a
common approximation again involves enumeration over a discretization Ud of the input space U .

Incorporating these approximations, we end up with the approximate VI algorithm Jd
k+1 = T dJd

k ,
characterized by the discrete DP (d-DP) operator

T dJd(x) := min
u∈Ud

{
C(x, u) + γ ·

∑
w∈Wd

p(w) · J̃d
(
g(x, u, w)

)}
, ∀x ∈ Xd. (2)

The convergence of approximate VI described above depends on the properties of the extension oper-
ation [̃·]. In particular, if [̃·] is non-expansive (in the infinity-norm), then T d is also γ-contractive. For
example, for a grid-like discretization of the state space Xd = Xg, the extension using interpolative
LERP is non-expansive; see Lemma A.2. The error of this approximation (lim

∥∥Jd
k − Jd

⋆

∥∥
∞) also

depends on the extension operation [̃·] and its representative power. We refer the interested reader to
[8, 11, 27] for detailed discussions on the convergence and error of different approximations of VI.

The d-DP operator and the corresponding approximate VI algorithm will be our benchmark for
evaluating the performance of the alternative algorithm developed in this study. To this end, we finish
this section with some remarks on the time complexity of the d-DP operation. Let the time complexity
of a single evaluation of the extension operator [̃·] in (2) be of O(E).3 Then, the time complexity
of the d-DP operation (2) is of O

(
XUWE

)
. In this regard, note that the scheme described above

essentially involves approximating a continuous-state/action MDP with a finite-state/action MDP,
and then applying VI. This, in turn, implies the lower bound Ω(XU) for the time complexity

1Indeed, Wd can be considered as a finite approximation of the true support W of the disturbance. Moreover,
one can consider other approximation schemes, such as Monte Carlo simulation, for this expectation operation.

2The extension can be considered as a generic parametric approximation Ĵθk : X→ R, where the parameters
θk are computed using regression, i.e., by fitting Ĵθk to the data points Jd

k : Xd → R.
3For example, for the linear approximation J̃d(x) =

∑B
i=1 αi · bi(x), we have E = B (the size of the

basis), while for the kernel-based approximation J̃d(x) =
∑

x̄∈Xd αx̄ · r(x, x̄), we generally have E ≤ X . In

particular, if Xd = Xg is grid-like, and J̃d = Jd is approximated using LERP, then E = logX [21, Rem. 2.2].
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(corresponding to enumeration over u ∈ Ud for each x ∈ Xd). This lower bound is also compatible
with the best existing time complexities in the literature for VI for finite MDPs; see, e.g., [3, 28].
However, as we will see in the next section, for a particular class of problems, it is possible to exploit
the structure of the underlying continuous system in order to achieve a better time complexity in the
corresponding discretized problem.

3 Reducing complexity via conjugate duality

In this section, we present the class of problems that allows us to employ conjugate duality and
propose an alternative path for solving the corresponding DP operator. We also present the numerical
scheme for implementing the proposed alternative path, and analyze its convergence, complexity,
and error. We note that the proposed algorithm and its analysis are based on the d-CDP algorithm
presented in [21, Sec. 5] for finite-horizon, optimal control of deterministic systems. Here, we extend
those results for infinite-horizon, discounted cost, optimal control of stochastic systems. Moreover,
unlike [21], our analysis includes the case where the conjugate of input cost is not analytically
available and has to be computed numerically; see [21, Assump. 5.1] for more details.

3.1 VI in conjugate domain

Throughout this section, we assume that the problem data satisfy the following conditions.
Assumption 3.1 (Problem class). The problem data has the following properties:

(i) The dynamics is of the form g(x, u, w) = f(x, u) + w = fs(x) + Bu + w, with additive
disturbance, where fs : Rn → Rn is a Lipschitz continuous, possibly nonlinear map, and
B ∈ Rn×m.

(ii) The stage cost C is separable in state and input; that is, C(x, u) = Cs(x) + Ci(u), where
the state cost Cs : X → R and the input cost Ci : U → R are Lipschitz continuous.

(iii) The constraint sets X ⊂ Rn and U ⊂ Rm are compact. Moreover, for each x ∈ X, the set of
admissible inputs U(x) := {u ∈ U : g(x, u, w) ∈ X, ∀w ∈ Wd} is nonempty.

Some remarks are in order regarding the preceding assumptions. We first note that the setting of
Assumption 3.1 goes beyond the classical LQR. In particular, it includes nonlinear dynamics, state
and input constraints, and non-quadratic stage costs. Second, the properties laid out in Assumption 3.1
imply that the set of admissible inputs U(x) is a compact set for each x ∈ X. This, in turn, implies
that the optimal value in (1) is achieved if J : X → R is also assumed to be lower semi-continuous.
Finally, as we discuss shortly, the two assumptions on the dynamics and the cost play an essential
role in the derivation of the alternative algorithm and its computationally efficient implementation.

For the problem class of Assumption (3.1), we can use duality theory to present an alternative path
for computing the output of the DP operator. This path forms the basis for the algorithm proposed in
this study. Fix x ∈ X and consider the following reformulation of the optimization problem (1)

T J(x) =Cs(x) + min
u,z

{Ci(u) + γ · EwJ(z + w) : z = f(x, u)} ,

where we used additivity of disturbance and separability of stage cost. The corresponding dual
problem then reads as

T̂ J(x) := Cs(x) + max
y

min
u,z

{Ci(u) + γ · EwJ(z + w) + ⟨y, f(x, u)− z⟩} , (3)

where y ∈ Rn is the dual variable corresponding to the equality constraint. For the dynamics of
Assumption 3.1-(i), we can then obtain the following representation for the dual problem.
Proposition 3.2 (CDP operator). The dual problem (3) equivalently reads as

ϵ(x) := γ · EwJ(x+ w), x ∈ X, (4a)

ϕ(y) := C∗
i (−B⊤y) + ϵ∗(y), y ∈ Rn, (4b)

T̂ J(x) = Cs(x) + ϕ∗(fs(x)), x ∈ X, (4c)

where [·]∗ denotes the conjugate operation.
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Following [21], we call the operator T̂ in (4) the conjugate DP (CDP) operator. We next provide an
alternative representation of the CDP operator that captures the essence of this operation.

Proposition 3.3 (CDP reformulation). The CDP operator T̂ equivalently reads as

T̂ J(x) = Cs(x) + min
u

{
C∗∗

i (u) + γ · [EwJ(·+ w)]∗∗
(
f(x, u)

)}
, (5)

where [·]∗∗ denotes the biconjugate operation.

The preceding result implies that the indirect path through the conjugate domain essentially involves
substituting the input cost and (expectation of the) value function by their biconjugates. In particular,
it points to a sufficient condition for zero duality gap.

Corollary 3.4 (Equivalence of T and T̂ ). T̂ J = T J if Ci : U → R and J : X → R are convex.

Hence, T̂ has the same properties as T if Ci and J are convex. More importantly, if T and T̂ preserve
convexity, then the conjugate VI (ConjVI) algorithm Jk+1 = T̂ Jk, also converges to the optimal
value function J⋆, with arbitrary convex initialization J0. For convexity to be preserved, however,
we need two more additional assumptions. First, the state cost Cs : X → R needs to be also convex.
Then, for T̂ J to be convex, a sufficient condition is the convexity of J ◦ f (jointly in x and u), given
that J is convex. The following assumption summarizes the sufficient conditions for equivalence of
VI and ConjVI algorithms.

Assumption 3.5 (Convexity). Consider the the following properties:

(i) The sets X ⊂ Rn and U ⊂ Rm are convex.

(ii) The costs Cs : X → R and Ci : U → R are convex.

(iii) The deterministic dynamics f : Rn × Rm → Rn is such that given a convex function J :
X → R, the composition J ◦ f is jointly convex in the state and input variables.

We note that the last condition in the preceding assumption usually does not hold for nonlinear
dynamics; however, for fs(x) = Ax with A ∈ Rn×n, this is indeed the case for problems satisfying
Assumptions 3.1 and 3.5 [7]. Note that, if convexity is not preserved, then the alternative path suffers
from duality gap in the sense that in each iteration it uses the convex envelop of (the expectation of)
the output of the previous iteration.

3.2 ConjVI algorithm

The approximate ConjVI algorithm involves consecutive applications of an approximate implementa-
tion of the CDP operator (4) until some termination condition is satisfied. Algorithm 1 provides the
pseudo-code of this procedure. In particular, we consider solving (4) for a finite set Xd ⊂ X, and
terminate the iterations when the difference between two consecutive discrete value functions (in the
infinity-norm) is less than a given constant et > 0; see Algorithm 1:7. Since we are working with a
finite subset of the state space, we can restrict the feasibility condition of Assumption 3.1-(iii) to all
x ∈ Xd (as opposed to all x ∈ X):

Assumption 3.6 (Feasibile discretization). The set U(x) is nonempty for all x ∈ Xd.

In what follows, we describe the main steps within the initialization and iterations of Algorithm 1.
In particular, the conjugate operations in (4) are handled numerically via the linear-time Legendre
transform (LLT) algorithm [24]. LLT is an efficient algorithm for computing the discrete conjugate
function over a finite grid-like dual domain. Precisely, to compute the conjugate of the function h :
X → R, LLT takes its discretization hd : Xd → R as an input, and outputs hd∗d : Yg → R, for the
grid-like dual domain Yg. We refer the reader to [24] for a detailed description of LLT. The main
steps of the proposed approximate implementation of the CDP operator (4) are as follows:

(i) For the expectation operation in (4a), by Assumption 2.1, we again have

EwJ(·+ w) =
∑

w∈Wd

p(w) · J(·+ w).
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Algorithm 1 ConjVI: Approximate VI in conjugate domain

Input: dynamics fs : Rn → Rn, B ∈ Rn×m; finite state space Xd ⊂ X; finite input space Ud ⊂ U; state
cost function Cd

s : Xd → R; input cost function Cd
i : Ud → R; finite disturbance space Wd and its

p.m.f. p : Wd → [0, 1]; discount factor γ; termination bound et.
Output: discrete value function Ĵd : Xd → R.

initialization:
1: construct the grid Vg;
2: use LLT to compute Cd∗d

i : Vg → R from Cd
i : Ud → R;

3: construct the grid Zg;
4: construct the grid Yg;
5: Jd(x)← 0 for x ∈ Xd;
6: Jd

+(x)← Cd
s (x)−minCd

i for x ∈ Xd;
iteration:

7: while
∥∥Jd

+ − Jd
∥∥
∞ ≥ et do

8: Jd ← Jd
+;

d-CDP operation:
9: εd(x)← γ ·

∑
w∈Wd p(w) · J̃d(x+ w) for x ∈ Xd;

10: use LLT to compute εd∗d : Yg → R from εd : Xd → R;
11: for each y ∈ Yg do
12: use LERP to compute Cd∗d

i (−B⊤y) from Cd∗d
i : Vg → R;

13: φd(y)← Cd∗d
i (−B⊤y) + εd∗d(y);

14: end for
15: use LLT to compute φd∗d : Zg → R from φd : Yg → R;
16: for each x ∈ Xd do
17: use LERP to compute φd∗d

(
fs(x)

)
from φd∗d : Zg → R;

18: Jd
+(x)← Cs(x) + φd∗d

(
fs(x)

)
;

19: end for
20: end while
21: output Ĵd ← Jd

+.

Hence, we need to pass the value function Jd : Xd → R through the “scaled expection filter”
to obtain εd : Xd → R in (6a) as an approximation of ϵ in (4a). Notice that here we are
using an extension J̃d : X → R of Jd (recall that we only have access to the discrete value
function Jd).

(ii) In order to compute ϕ in (4b), we need access to two conjugate functions:

(a) For ϵ∗, we use the approximation εd∗d : Yg → R in (6b), by applying LLT to the data
points εd : Xd → R for a properly chosen state dual grid Yg ⊂ Rn.

(b) If the conjugate C∗
i of the input cost is not analytically available, we approximate it as

follows: For a properly chosen input dual grid Vg ⊂ Rm, we employ LLT to compute
Cd∗d

i : Vg → R in (6c), using the data points Cd
i : Ud → R, where Ud is a finite

subset of U.

With these conjugate functions at hand, we can now compute φd : Yg → R in (6d), as an
approximation of ϕ in (4b). In particular, notice that we use the LERP extension Cd∗d

i of
Cd∗d

i to approximate Cd∗
i at the required point −B⊤y for each y ∈ Yg.

(iii) To be able to compute the output according to (4c), we need to perform another conjugate
transform. In particular, we need the value of ϕ∗ at fs(x) for x ∈ Xd. Here, we use the
approximation φd∗d : Zg → R in (6e), by applying LLT to the data points φd : Yg → R
for a properly chosen grid Zg ⊂ Rn. Finally, we use the LERP extension φd∗d of φd∗d to
approximate φd∗ at the required point fs(x) for each x ∈ Xd, and compute T̂ dJd in (6f) as
an approximation of T̂ J in (4c).
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With these approximations, we can introduce the discrete CDP (d-CDP) operator as follows

εd(x) := γ ·
∑

w∈Wd

p(w) · J̃d(x+ w), x ∈ Xd, (6a)

εd∗d(y) = max
x∈Xd

{
⟨x, y⟩ − εd(x)

}
, y ∈ Yg, (6b)

Cd∗d
i (v) = max

u∈Ud

{
⟨u, v⟩ − Cd

i (u)
}
, v ∈ Vg, (6c)

φd(y) := Cd∗d
i (−B⊤y) + εd∗d(y), y ∈ Yg, (6d)

φd∗d(z) = max
y∈Yg

{
⟨y, z⟩ − φd(y)

}
, z ∈ Zg, (6e)

T̂ dJd(x) := Cs(x) + φd∗d
(
fs(x)

)
, x ∈ Xd. (6f)

The proper construction of the grids Yg, Vg, and Zg will be discussed in Section 3.4. We finish this
subsection with the two following two remarks.
Remark 3.7 (Deterministic systems). For deterministic systems, i.e., g(x, u, w) = f(x, u), we do not
need to compute any expectation. Then, the operation in (6a) becomes the simple scaling εd = γ · Jd.
Remark 3.8 (Analytically available C∗

i ). If the conjugate C∗
i of the input cost is analytically available,

we can use it directly in (6d) instead of Cd∗d
i and avoid the corresponding approximation; i.e., there

is no need for construction of Vg and the computation of Cd∗d
i in (6c).

3.3 Analysis of ConjVI algorithm

We now provide our main theoretical results concerning the convergence, complexity, and error of
the proposed algorithm. Let us begin with presenting the assumptions to be called in this subsection.
Assumption 3.9 (Grids). Consider the following properties for the grids in Algorithm 1 (consult the
Notations in Section 1):

(i) The grid Vg is constructed such that co(Vg
sub) ⊇ L(Cd

i ).

(ii) The grid Zg is constructed such that co(Zg) ⊇ fs
(
Xd

)
.

(iii) The construction of Yg, Vg, and Zg requires at most O(X +U) operations. The cardinality
of the grids Yg and Zg (resp. Vg) in each dimension is the same as that of Xd (resp. Ud) in
that dimension so that Y,Z = X and V = U .

Assumption 3.10 (Extension operator). Consider the following properties for the extension opera-
tor [̃·] in (6a):

(i) The extension operator is non-expansive w.r.t. the infinity norm; that is, for two discrete
functions Jd

i : Xd → R (i = 1, 2) and their extensions J̃d
i : X → R, we have ∥J̃d

1 −
J̃d
2 ∥∞ ≤ ∥Jd

1 − Jd
2 ∥∞.

(ii) Given a function J : X → R and its discretization Jd : Xd → R, the error of the extension
operator is uniformly bounded, that is, ∥J − J̃d∥∞ ≤ ee for some constant ee ≥ 0.

Our first result concerns the contractiveness of the d-CDP operator.
Theorem 3.11 (Convergence). Let Assumptions 3.9-(ii) and 3.10-(i) hold. Then, the d-CDP opera-
tor (6) is γ-contractive w.r.t. the infinity-norm.

The preceding theorem implies that the approximate ConjVI Algorithm 1 is indeed convergent given
that the required conditions are satisfied. In particular, for deterministic dynamics, co(Zg) ⊇ fs

(
Xd

)
is sufficient for Algorithm 1 to be convergent. We next consider the complexity of our algorithm.
Theorem 3.12 (Complexity). Let Assumption 3.9-(iii) hold. Also assume that each evaluation of the
extension operator [̃·] in (6a) requires O(E) operations. Then, the time complexities of initialization
and each iteration in Algorithm 1 are of O(X + U) and Õ(XWE), respectively.

8



The requirements of Assumption 3.9-(iii) will be discussed in Section 3.4. Recall that each iteration
of VI (in primal domain) has a complexity of O(XUWE), where E denotes the complexity of the
extension operation used in (2). This observation points to a basic characteristic of the proposed
approach: ConjVI reduces the quadratic complexity of VI to a linear one by replacing the minimization
operation in the primal domain with a simple addition in the conjugate domain. Hence, for problem
class of Assumption 3.1, ConjVI is expected to lead to a reduction in the computational cost. We note
that ConjVI, like VI and other approximation schemes that utilize discretization/abstraction of the
continuous state and input spaces, still suffers from the so-called “curse of dimensionality.” This is
because the sizes X and U of the discretizations increase exponentially with the dimensions n and m
of the corresponding spaces. However, for ConjVI, this exponential increase is of rate max{m,n},
compared to the rate m+ n for VI.

Let us also note that the most crucial step that allows the speedup discussed above is the interpolative
discrete conjugation in (6f) that approximates φd∗d at the point fs(x). In this regard, notice that we
can alternatively compute φd∗d(fs(x)) = maxy∈Yg

{
⟨y, fs(x)⟩ − φd(y)

}
exactly via enumeration

over y ∈ Yg for each x ∈ Xd (then, the computation of φd∗d : Zg → R in (6e) is not needed anymore).
However, this approach requires O(XY ) = O(X2) operations in the last step, hence rendering
the proposed approach computationally impractical. Of course, the application of interpolative
discrete conjugation has its cost: The LERP extension in (6f) can lead to non-convex outputs (even
if Assumption 3.5 holds true). This, in turn, can introduce a dualization error. We finish with the
following result on the error of the proposed ConjVI algorithm.
Theorem 3.13 (Error). Let Assumptions 3.5, 3.9-(i)&(ii), and 3.10-(i) hold. Consider the true optimal
value function J⋆ = T J⋆ : X → R and its discretization Jd

⋆ : Xd → R, and let Assumption 3.10-(ii)
hold for J⋆. Also, let Ĵd : Xd → R be the output of Algorithm 1. Then,

∥Ĵd − Jd
⋆ ∥∞ ≤ γ(ee + et) + ed

1− γ
, (7)

where ed = eu + ev + ex + ey + ez, and

eu = cu · dH(U,Ud), (8a)

ev = cv · dH
(
co(Vg),Vg

)
, (8b)

ex = cx · dH
(
X,Xd

)
, (8c)

ey = cy · max
x∈Xd

d
(
∂(J⋆ − Cs)(x),Yg

)
, (8d)

ez = cz · dH
(
fs(Xd),Zg

)
, (8e)

with constants cu, cv, cx, cy, cz > 0 depending on the problem data.

Let us first note that Assumption 3.5 implies that the DP and CDP operators preserve convexity,
and they both have the true optimal value function J⋆ as their fixed point (i.e., the duality gap is
zero). Otherwise, the proposed scheme can suffer from large errors due to dualization. Moreover,
Assumptions 3.9-(i)&(ii) on the grids Vg and Zg are required for bounding the error of approximate
discrete conjugations using LERP in (6d) and (6f); see the proof of Lemmas A.5 and A.7. The
remaining sources of error in the proposed approximate implementation of ConjVI are captured by
the three error terms in (7):

(i) ee is due to the approximation of the value function using the extension operator [̃·];
(ii) et corresponds to the termination of the algorithm after a finite number of iterations;

(iii) ed captures the error due to the discretization of the primal and dual state and input domains.

We again finish with the following remarks on the modification of the proposed algorithm for
deterministic systems and analytically available C∗

i .
Remark 3.14 (Deterministic systems). If the dynamics is deterministic, then the complexity of each
iteration of Algorithm 1 reduces to Õ(X). Moreover, in this case, the error term ee disappears.
Remark 3.15 (Analytically available C∗

i ). If the conjugate C∗
i of the input cost is analytically

available and used in (6d) instead of the LERP extension Cd∗d
i , the error term due to discretization

modifies to ed = ex + ey + ez. That is, the error terms eu and ev corresponding to the discretization
of the primal and dual input spaces disappear.

9



3.4 Construction of the grids

In this subsection, we provide specific guidelines for the construction of the grids Yg, Vg and Zg. We
note that these discrete sets must be grid-like since they form the dual grid for the three conjugate
transforms that are handled using LLT. The presented guidelines aim to minimize the error terms in
(8) while taking into account the properties laid out in Assumption 3.9. In particular, the schemes
described below satisfy the requirements of Assumption 3.9-(iii).

Construction of Vg. Assumption 3.9-(i) and the error term ev in (8b) suggest that we find
the smallest input dual grid Vg such that co(Vg

sub) ⊇ L(Cd
i ). This latter condition essen-

tially means that Vg must “more than cover the range of slope” of the function Cd
i ; recall that

L(Cd
i ) = Πm

j=1

[
L−
j (C

d
i ),L

−
j (C

d
i )
]
, where L−

j (C
d
i ) (resp. L+

j (C
d
i )) is the minimum (resp. maxi-

mum) slope of Cd
i along the j-th dimension. Hence, we need to compute/approximate L±

j (C
d
i ) for

j = 1, . . . ,m. A conservative approximation is L−
j (Ci) = min ∂Ci/∂uj and L+

j (Ci) = max ∂Ci/∂uj ,
assuming Ci is differentiable. Alternatively, we can directly use the discrete input cost Cd

i for com-
puting L±

j (C
d
i ). In particular, if the domain Ud = Ug = Πm

j=1U
g
j of Cd

i is grid-like and Ci is convex,
we can take L−

j (C
d
i ) (resp. L+

j (C
d
i )) to be the minimum first forward difference (resp. maximum last

backward difference) of Cd
i along the j-th dimension (this scheme requires O(U) operations). Having

L±
j (C

d
i ) at our disposal, we can then construct Vg

sub = Πm
j=1V

g
subj

such that, in each dimension j,
Vg

subj
is uniform and has the same cardinality as Ug

j , and co(Vg
subj

) =
[
L−
j (C

d
i ),L

+
j (C

d
i )
]
. Finally,

we construct Vg by extending Vg
sub uniformly in each dimension (by adding a smaller and a larger

element to Vg
sub in each dimension while preserving the resolution in that dimension).

Construction of Zg. According to Assumption 3.9-(ii), the grid Zg must be constructed such that
co(Zg) ⊇ fs

(
Xd

)
. This can be simply done by finding the vertices of the smallest box that contains

the set fs
(
Xd

)
. Those vertices give the diameter of Zg in each dimension. We can then, for example,

take Zg to be the uniform grid with the same cardinality as Yg in each dimension (so that Z = Y ).
This way,

dH
(
fs(Xd),Zg

)
≤ dH

(
co(Zg),Zg

)
,

and hence ez in (8e) reduces by using finer grids Zg. This construction has a complexity of O(X).

Construction of Yg. Construction of the state dual grid Yg is more involved. According to
Theorem 3.13, we need to choose a grid that minimizes ey in (8d). This can be done by choosing Yg

such that Yg ∩ ∂(J⋆ − Cs) ̸= ∅ for all x ∈ Xd so that ey = 0. Even if we had access to the optimal
value function J⋆, satisfying such a condition could lead to a dual grid Yg ⊂ Rn of size O(Xn).
Such a large size violates Assumption 3.9-(iii) on the size of Yg, and essentially renders the proposed
algorithm impractical for dimensions n ≥ 2. A more practical condition is co(Yg)∩ ∂(J⋆ −Cs) ̸= ∅
for all x ∈ Xd so that

max
x∈Xd

d
(
∂(J⋆ − Cs)(x),Yg

)
≤ dH

(
co(Yg),Yg

)
,

and hence ey reduces by using a finer grid Yg. The latter condition is satisfied if co(Yg) ⊇ L(J⋆−Cs),
i.e., if Yg “covers the range of slope” of (J⋆ − Cs). Hence, we need to approximate the range of
slope of (J⋆ − Cs). To this end, we first use the fact that J⋆ is the fixed point of DP operator (1) to
approximate rng(J⋆ − Cs) by

R =
rng(Cd

i ) + γ · rng(Cd
s )

1− γ
.

We then construct the gird Yg = Πn
i=1Y

g
i such that, for each dimension i, we have

± αR

∆i
Xd

∈ co(Yg
i ) (9)

where ∆i
Xd denotes the diameter of the projection of Xd on the i-th dimension. Here, the coefficient

α > 0 is a scaling factor mainly depending on the dimension of the state space. In particular, by
setting α = 1, the value R/∆i

Xd is the slope of a linear function with range R over the domain ∆i
Xd .

This construction has a one-time cost of O(X + U) for computing rng(Cd
i ) and rng(Cd

s ).
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Dynamic construction of Yg. Alternatively, we can construct Yg dynamically at each iteration in
order to minimize the corresponding error in each application of the d-CDP operator given by (see
Lemma A.6 and Proposition A.8)

ey = cy · max
x∈Xd

d
(
∂(T J − Cs)(x),Yg

)
.

This means that line 4 in Algorithm 1 is moved inside the iterations, after line 8. Similar to the static
scheme described above, the aim here is to construct Yg such that co(Yg) ⊇ L(T J − Cs). Since we
do not have access to T J (it is the output of the current iteration), we can again use the definition of
the DP operator (1) to approximate rng(T J − Cs) by

R = rng(Cd
i ) + γ · rng(Jd),

where Jd is the output of the previous iteration. We then construct the gird Yg = Πn
i=1Y

g
i such

that, for each dimension i, the condition (9) holds. This construction has a one-time computational
cost of O(U) for computing rng(Cd

i ) and a per iteration computational cost of O(X) for computing
rng(Jd). Notice, however, that under this dynamic construction, the error bound of Theorem 3.13
does not hold true. More importantly, with a dynamic grid Yg that varies in each iteration, there is no
guarantee for ConjVI to converge.

4 Numerical simulations

In this section, we compare the performance of the proposed ConjVI algorithm with the benchmark
VI algorithm (in primal domain) through three numerical examples. For the first example, we focus
on a synthetic system satisfying the conditions of assumptions considered in this study in order to
examine our theoretical results. We then showcase the application of ConjVI in solving the optimal
control problem of an inverted pendulum and a batch reactor. The simulations were implemented
via MATLAB version R2017b, on a PC with Intel Xeon 3.60 GHz processor and 16 GB RAM. We
also provide the ConjVI MATLAB package [22] for the implementation of the proposed algorithm.
The package also includes the numerical simulations of this section. W note that multiple routines in
the developed package are borrowed from the d-CDP MATLAB package [23]. Also, for the discrete
conjugation (LLT), we used the MATLAB package (in particular, the LLTd routine) provided in [24].

4.1 Example 1 – Synthetic

We consider the linear system x+ = Ax + Bu + w with A = [2 1; 1 3], B = [1 1; 1 2].
The problem of interest is the infinite-horizon, optimal control of this system with cost functions
Cs(x) = 10 ∥x∥22 and Ci(u) = e|u1| + e|u2| − 2, and discount factor γ = 0.95. We consider state
and input constraint sets X = [−1, 1]2 and U = [−2, 2]2, respectively. The disturbance is assumed
to have a uniform distribution over the finite support Wd = {0,±0.05} × {0} of size W = 3.
Notice how the stage cost is a combination of a quadratic term (in state) and an exponential term
(in input). Particularly, the control problem at hand does not have a closed-form solution. We use
uniform, grid-like discretizations Xg and Ug for the state and input spaces such that co(Xg) = X
and co(Ug) = U. This choice allows us to deploy multilinear interpolation, which is non-expansive,
as the extension operator [̃·] in the d-DP operation (2) in VI, and in the d-CDP operation (6a) in
ConjVI. The grids Vg,Zg ⊂ R2 are also constructed uniformly, following the guidelines provided
in Section 3.2. For the construction of Yg ⊂ R2, we also follow the guidelines of Section 3.2 with
α = 1. In particular, we also consider the dynamic scheme for the construction of Yg in ConjVI
(hereafter, referred to as ConjVI-d). Moreover, in each implementation of VI and ConjVI(-d), all of
the involved grids (Xg,Ug,Yg,Vg,Zg) are chosen to be of the same size N2 (with N points in each
dimension). We are particularly interested in the performance of these algorithms, as N increases.
We note that the described setup satisfies all of the assumptions in this study.

The results of our numerical simulations are shown in Figure 1. As shown in Figures 1a, both VI
and ConjVI are indeed convergent with a rate less than or equal to the discount factor γ = 0.95;
see Theorem 3.11. In particular, ConjVI terminates in kt = 55 iterations, compared to kt = 102
iterations required for VI to reach the termination bound et = 0.001. Not surprisingly, this faster
convergence, combined with the lower time complexity of ConjVI in each iteration, leads to a
significant reduction in the running time of this algorithm compared to VI. This effect can be clearly
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Figure 1: VI vs. ConjVI (CVI) – synthetic example with stochastic dynamics x+ = Ax + Bu + w:
(a) Convergence rate for N = 41; (b) Running time; (c) Average cost of one hundred instances of the
control problem with random initial conditions over T = 100 time steps. The black dashed-dotted line
in (a) corresponds to exponential convergence with coefficient γ = 0.95. CVI-d corresponds to dynamic
construction of the dual grid Yg in the ConjVI algorithm.

seen in Figure 1b, where the run-time of ConjVI for N = 41 is an order of magnitude less than
that of VI for N = 11. In this regard, we note that the setting of this numerical example leads to
O(ktN

4W ) and O(ktN
2W ) time complexities for VI and ConjVI, respectively; see Theorem 3.12

and the discussion after that. Indeed, the running times in Figure 1b match these complexities.

Since we do not have access to the true optimal value function, in order to evaluate the performance
of the outputs of the VI and ConjVI, we consider the performance of the greedy policy

µ(x) ∈ argmin
u∈U(x)∩Ug

{
C(x, u) + γ · EwJd

(
g(x, u, w)

)}
,

w.r.t. the discrete value function Jd computed using these algorithms (we note that, for finding the
greedy action, we used the same discretization Ug of the input space and the same extension Jd of
the value function as the one used in VI and ConjVI, however, this need not to be the case in general).
Figure 1c reports the average cost of one hundred instances of the optimal control problem with
greedy control actions. As shown, the reduction in the run-time in ConjVI comes with an increase in
the cost of the controlled trajectories.

Let us now consider the effect of dynamic construction of the state dual grid Yg. As can be seen
in Figure 1a, using a dynamic Yg leads to a slower convergence (ConjVI-d terminates in kt = 100
iterations). We note that the relative behaviour of the convergence rates in Figures 1a was also seen
for other grid sizes in the discretization scheme. However, we see a small increase in the running
time of ConjVI-d compared to ConjVI since the per iteration complexity for ConjVI-d is again of
O(ktN

2W ); see Figure 1b. More importantly, as depicted in Figure 1c, ConjVI-d shows almost
the same performance as VI when it comes to the quality of the greedy actions. This is because the
dynamic construction of Yg in ConjVI-d uses the available computational power (related to size of
the discretization) smartly by finding the smallest grid Yg in each iteration, in order to minimize the
error of that same iteration.

We note that our simulations show that for the deterministic system, ConjVI-d has a similar converge
rate as ConjVI. This effect can be seen in Figure 2, where ConjVI-d terminates in 10 iterations.
Interestingly, in this particular example, ConjVI actually converges to the fixed point after 7 iterations
(Jd

8 = T̂ dJd
7 ) for the deterministic system. Let us finally note that the conjugate C∗

i of the input cost
in the provided example is indeed analytically available. One can use this analytic representation
in order to exactly compute C∗

i in (6f) and avoid the corresponding numerical approximation. With
such a modification, the computational cost reduces, however, our numerical experiments show that
for the provided example, the ConjVI outputs effectively the same value function within the same
number of iterations (results are not shown here).

4.2 Example 2 – Inverted pendulum

We use the setup (model and stage cost) of [21, App. C.2.2] with discount factor γ = 0.95. In
particular, the state and input costs are both quadratic (∥·∥22), and the discrete-time, nonlinear
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Figure 2: Convergence of VI and ConjVI with deterministic dynamics x+ = Ax+Bu; cf. Figure 1a.
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Figure 3: VI vs. ConjVI (CVI) – optimal control of noisy inverted pendulum: (a) Convergence rate for
N = 41; (b) Running time; (c) Average cost of one hundred instances of the control problem with random
initial conditions over T = 100 time steps. The black dashed-dotted line in (a) corresponds to exponential
convergence with coefficient γ = 0.95. CVI-d corresponds to dynamic construction of the dual grid Yg in
the ConjVI algorithm.

dynamics is of the form x+ = fs(x) +Bu+ w, where

fs(x1, x2) =

[
x1 + α12x2

α21 sinx1 + α22x2

]
, B =

[
0
β

]
, (α12, α21, α22, β ∈ R).

State and input constraints are described by X = [−π
3 ,

π
3 ] × [−π, π] ⊂ R2 and U = [−3, 3] ⊂ R.

The disturbance has a uniform distribution over the finite support Wg = {0,±0.025π
3 ,±0.05π

3 } ×
{0,±0.025π,±0.05π} ⊂ R2 of size W = 52. We use uniform, grid-like discretizations Xg and
Ug for the state and input spaces such that co(Xg) = [−π

4 ,
π
4 ] × [−π, π] ⊂ X and co(Ug) = U.

This choice of discrete state space Xg particularly satisfies the feasibility condition of Assump-
tion 3.6. (Note however that the continuous state space X does not satisfy the feasibility condition
of Assumption 3.1-(iii)). Also, we use nearest neighbor extension (which is non-expansive) for the
extension operators in (2) for VI and in (6a) for ConjVI. The grids Vg ⊂ R and Zg,Yg ⊂ R2 are
also constructed uniformly, following the guidelines of Section 3.4 (with α = 1). We again also
consider the dynamic scheme for the construction of Yg. Moreover, in each implementation of VI
and ConjVI(-d) the termination bound is et = 0.001, and all of the involved grids are chosen to be of
the same size N in each dimension, i.e., X = Y = Z = N2 and U = V = N .

The results of simulations are shown in Figures 3 and 4. As reported, we essentially observe the same
behaviors as before. In particular, application of ConjVI(-d), especially for deterministic dynamics,
leads to a faster convergence and a significant reduction in the running time; see Figures 3a, 3b and
4. Note that Figure 4 also shows the non-monotone behavior of ConjVI-d for scaling factor α = 3.
In this regard, recall that when the grid Yg is constructed dynamically and varies at each iteration,
the d-CDP operator is not necessarily contractive. Moreover, as shown in Figures 3b and 3c, this
dynamic scheme leads to a huge improvement in the performance of the corresponding greedy policy
at the expense of a small increase in the computational cost.

4.3 Example 3 – Batch Reactor

Our last numerical example concerns the optimal control of a system with four states and two input
channels, namely, an unstable batch reactor. The setup (dynamics, cost, and constraints) are borrowed
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Figure 4: Convergence of VI and ConjVI with deterministic dynamics x+ = fs(x) +Bu; cf. Figure 3a.
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Figure 5: VI vs. ConjVI (CVI) – optimal control of batch reactor: (a) Convergence rate for N = 25;
(b) Running time; (c) Average cost of one hundred instances of the control problem with random initial
conditions over T = 100 time steps. The black dashed-dotted line in (a) corresponds to exponential
convergence with coefficient γ = 0.95. CVI-d corresponds to dynamic construction of the dual grid Yg in
the ConjVI algorithm.

from [20, Sec. 6]. In particular, we consider a deterministic linear dynamics x+ = Ax+Bu, with
costs Cs(x) = 2 ∥x∥22 and Ci(u) = ∥u∥22, discount factor γ = 0.95, and constraints x ∈ X =
[−2, 2]4 ⊂ R4 and u ∈ U = [−2, 2]2 ⊂ R2. Once again, we use uniform, grid-like discretizations
Xg and Ug for the state and input spaces such that co(Xg) = [−1, 1]4 ⊂ X and co(Ug) = U.
The grids Vg ⊂ R2 and Zg,Yg ⊂ R4 are also constructed uniformly, following the guidelines of
Section 3.4 (with α = 1). Moreover, in each implementation of VI and ConjVI, the termination bound
is et = 0.001 and all of the involved grids are chosen to be of the same size N in each dimension, i.e.,
X = Y = Z = N4 and U = V = N2. Finally, we note that we use multi-linear interpolation and
extrapolation for the extension operator in (2) for VI. Due to the extrapolation, the extension operator
is no longer non-expansive and hence the convergence of VI is not guaranteed. On the other hand,
since the dynamics is deterministic, there is no need for extension in ConjVI (recall that the scaled
expectation in (6a) in ConjVI reduces to the simple scaling εd = γ · Jd for deterministic dynamics),
and hence the convergence of ConjVI only requires co(Zg) ⊇ fs

(
Xg

)
.

The results of our numerical simulations are shown in Figure 5. Once again, we see the trade-off
between the time complexity and the greedy control performance in VI and ConjVI. On the other
hand, ConjVI-d has the same control performance as VI with an insignificant increase in running
time compared to ConjVI. In Figure 5a, we again observe the non-monotone behavior of ConjVI-d
(the d-CDP operator is expansive in the first six iterations). The VI algorithm is also showing a
non-monotone behavior, where for the first nine iterations the d-DP operation is actually expansive.
As we noted earlier, this is because the extension via multi-linear extrapolation is expansive.

5 Final remarks

In this paper, we proposed the ConjVI algorithm which reduces the time complexity of the VI
algorithm from O(XU) to O(X +U). This better time complexity however comes at the expense of
restricting the class of problem. In particular, there are two main conditions that must be satisfied in
order to be able to apply the ConjVI algorithm:
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Table 1: VI vs. ConjVI - optimal control the batch reactor with stage cost (10) and η = 0.01.

Algrithm Run-time (sec) Average cost (100 runs)

VI 7669 33.9
ConjVI 55 73.5
ConjVI-d 90 74.0

(i) the dynamics must be of the form x+ = fs(x) +Bu+ w; and,

(ii) the stage cost C(x, u) = Cs(x) + Ci(u) must be separable.

Moreover, since ConjVI essentially solves the dual problem, for non-convex problems, it suffers
from a non-zero duality gap. Based on our simulation results, we also notice a trade-off between
computational complexity and control action quality: While ConjVI has a lower computational cost,
VI generates better control actions. However, the dynamic scheme for the construction of state dual
grid Yg allows us to achieve almost the same performance as VI when it comes to the quality of
control actions, with a small extra computational burden. In what follows, we provide our final
remarks on the limitations of the proposed ConjVI algorithm and its relation to existing approximate
VI algorithms.

Relation to existing approximate VI algorithms. The basic idea for complexity reduction introduced
in this study can be potentially combined with and further improve the existing sample-based VI
algorithms. These sample-based algorithms solely focus on transforming the infinite-dimensional
optimization in DP problems into computationally tractable ones, and in general, they have a time
complexity of O(XU), depending on the product of the cardinalities of the discrete state and action
spaces. The proposed ConjVI algorithm, on the other hand, focuses on reducing this time complexity
to O(X + U), by avoiding the minimization over input in each iteration. Take, for example, the
aggregation technique in [27, Sec. 8.1] that leads to a piece-wise constant approximation of the value
function. It is straightforward to combine ConjVI with this type of state space aggregation. Indeed,
the numerical example of of Section 4.2 essentially uses such an aggregation by approximating the
value function via nearest neighbor extension.

Cost functions with a large Lipschitz constant. Recall that for the proposed ConjVI algorithm
to be computationally efficient, the size Y of the state dual grid Yg must be controlled by the size
X of the discrete state space Xd (Assumption 3.9-(iii)). Then, as the range of slope of the value
function J⋆ increases, the corresponding error ey in (8d) due to discretization of the dual state space
increases. The proposed dynamic approach for construction of Yg partially addresses this issue by
focusing on the range of slope of Jd

k in each iteration in order to minimize the discretization error of
the same iteration k. However, when the cost function has a large Lipschitz constant, even this latter
approach can fail to provide a good approximation of the value function. Table 1 reports the result of
the numerical simulation of the unstable batch reactor with the stage cost

C(x, u) = − 4

1 + η
+

4∑
i=1

1

1 + η − |xi|
− 2

2 + η
+

2∑
j=1

1

2 + η − |uj |
, ∥x∥∞ ≤ 1, ∥u∥∞ ≤ 2.

(10)
Clearly, as η → 0, we increase the range of slope of the cost function. As can be seen, the quality of
the greedy action generated by ConjVI-d also deteriorates in this case.

Gradient-based algorithms for solving the minimization over input. Let us first note that the
minimization over u in sample-based VI algorithms usually involves solving a difficult non-convex
problem. This is particularly due to that fact that the extension operation employed in these algorithms
for approximating the value function using the sample points does not lead to a convex function
in u (e.g., take kernel-based approximations or neural networks). This is why in MDP and RL
literature, it is actually quite common to consider a finite action space in the first place [11, 27].
Moreover, the minimization over u again must be solved for each sample point in each iteration, while
application of ConjVI avoids solving this minimization in each iteration. In this regard, let us note
that ConjVI actually uses a convex approximation of the value function, which allows for application
of a gradient-based algorithm for minimization over u within the ConjVI algorithm. Indeed, in each
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iteration k = 0, 1, . . ., ConjVI solves (for deterministic dynamics)

Jd
k+1(x) = Cs(x) + min

u

{
Ci(u) + γ ·max

y∈Yg

[
⟨y, fs(x) +Bu⟩ − Jd∗d

k (y)
]}

, x ∈ Xd,

where

Jd∗d
k (y) = max

x∈Xd

{
⟨x, y⟩ − Jd

k (x)
}
, y ∈ Yg,

is the discrete conjugate of the output of the previous iteration (computed using the LLT algorithm).
Then, it is not hard to see that a subgradient of the objective of the minimization can be computed
using O(Y ) operations: for a given u, assuming we have access to the subdifferential ∂Ci(u), the
subdifferential of the objective function is ∂Ci(u) + γ ·B⊤yu, where

yu ∈ argmax
y∈Yg

{
⟨y, fs(x) +Bu⟩ − Jd∗d

k (y)
}
.

This, leads to a per iteration complexity of O(XY ) = O(X2), which is again practically inefficient.

A Technical proofs

A.1 Proof of Proposition 3.2

This result is an extension of [21, Lem. 4.2] that accounts for the separable cost, the discount factor,
and additive disturbance. Inserting the dynamics of Assumption 3.1-(i) into (3), we can use the
definition of conjugate transform to obtain (all the functions are extended to infinity outside their
effective domains)

T̂ J(x)− Cs(x)

= max
y

min
u,z

{Ci(u) + γ · EwJ(z + w) + ⟨y, fs(x) +Bu− z⟩}

= max
y

{
⟨y, fs(x)⟩ −max

u

[〈
−B⊤y, u

〉
− Ci(u)

]
−max

z
[⟨y, z⟩ − γ · EwJ(z + w)]

}
= max

y

{
⟨y, fs(x)⟩ − C∗

i (−B⊤y)− [γ · EwJ(·+ w)]∗(y)
}

= max
y

{
⟨y, fs(x)⟩ − C∗

i (−B⊤y)− ϵ∗(y)
}

= max
y

{⟨y, fs(x)⟩ − ϕ(y)}

= ϕ∗(fs(x)),
where we used the definition of epsilon and ϕ in (4a) and (4b), respectively.

A.2 Proof of Proposition 3.3

We can use the representation (4) and the definition of conjugate operation to obtain

T̂ J(x)− Cs(x) = max
y

{⟨fs(x), y⟩ − ϕ(y)}

= max
y

{
⟨fs(x), y⟩ − C∗

i (−B⊤y)− ϵ∗(y)
}

= max
y

{
⟨fs(x), y⟩ − [C∗

i ]
∗∗(−B⊤y)− ϵ∗(y)

}
= max

y

{
⟨fs(x), y⟩ − max

u∈co(U)

[〈
−B⊤y, u

〉
− C∗∗

i (u)
]
− ϵ∗(y)

}
= max

y
min

u∈co(U)
{C∗∗

i (u) + ⟨y, fs(x) +Bu⟩ − ϵ∗(y)} ,

where we used the fact that C∗
i : Rm → R is proper, closed, and convex, and hence [C∗

i ]
∗∗ = C∗

i .
This follows from the fact that dom(Ci) = U is assumed to be compact (Assumption 3.1-(iii)).
Hence, the objective function of this maximin problem is convex in u, with co(U) being compact,
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which follows from convexity of C∗∗
i : co(U) → R. Also, the objective function is concave in y,

which follows from the convexity of ϵ∗. Then, by Sion’s Minimax Theorem (see, e.g., [29, Thm. 3]),
we have minimax-maximin equality, i.e.,

T̂ J(x)− Cs(x) = min
u

max
y

{C∗∗
i (u) + ⟨y, f(x, u)⟩ − ϵ∗(y)}

= min
u

{
C∗∗

i (u) + max
y

[
⟨y, f(x, u)⟩ − ϵ∗(y)

]}
= min

u

{
C∗∗

i (u) + ϵ∗∗
(
f(x, u)

)}
= min

u

{
C∗∗

i (u) + γ · [EwJ(·+ w)]∗∗
(
f(x, u)

)}
,

where the last equality, we used the fact that [γh]∗∗ = γ · h∗∗; see [4, Prop. 13.23–(i)&(iv)].

A.3 Proof of Corollary 3.4

By Proposition 3.3, we need to show C∗∗
i = Ci and [EwJ(·+ w)]∗∗ = EwJ(·+ w) so that

C∗∗
i (u) + γ · [EwJ(·+ w)]∗∗

(
f(x, u)

)
= Ci(u) + γ · [EwJ(·+ w)]

(
f(x, u)

)
= Ci(u) + γ · EwJ

(
f(x, u) + w

)
= Ci(u) + γ · EwJ

(
g(x, u, w)

)
.

This holds if Ci and EwJ(·+ w) are proper, closed and convex. This is indeed the case since X and
U are compact, and Ci : U → R and J : X → R are assumed to be convex.

A.4 Proof of Theorem 3.11

We begin with two preliminary lemmas on the non-expansiveness of conjugate and multilinear
interpolation operations within the d-CDP operation (6).

Lemma A.1 (Non-expansiveness of conjugate operator). Consider two functions hi (i = 1, 2), with
the same nonempty effective domain X. For any y ∈ dom(h∗

1) ∩ dom(h∗
2), we have

|h∗
1(y)− h∗

2(y)| ≤ ∥h1 − h2∥∞ .

Proof. For any y ∈ dom(h∗
1) ∩ dom(h∗

2), we have

h∗
1(y) = max

x∈X
⟨x, y⟩ − h1(x) = max

x∈X
⟨x, y⟩ − h2(x) + h2(x)− h1(x).

Hence,

h∗
2(y)− ∥h1 − h2∥∞ ≤ h∗

1(y) ≤ h∗
2(y) + ∥h1 − h2∥∞ ,

that is,

|h∗
1(y)− h∗

2(y)| ≤ ∥h1 − h2∥∞ .

Lemma A.2 (Non-expansiveness of interpolative LERP operator). Consider two discrete functions
hd
i (i = 1, 2) with the same grid-like domain Xg ⊂ Rn, and their interpolative LERP extensions

hd
i : co(Xg) → R. We have ∥∥∥hd

1 − hd
2

∥∥∥
∞

≤
∥∥hd

1 − hd
2

∥∥
∞ .

Proof. For any x ∈ co(Xg), we have (i = 1, 2)

hd
i (x) =

2n∑
j=1

αj hd
i (x

j),
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where xj , j = 1, . . . , 2n, are the vertices of the hyper-rectangular cell that contains x, and αj , j =
1, . . . , 2n, are convex coefficients (i.e., αj ∈ [0, 1] and

∑
j α

j = 1). Then

|hd
1(x)− hd

2(x)| ≤
2n∑
j=1

αj |hd
1(x

j)− hd
2(x

j)| ≤
∥∥hd

1 − hd
2

∥∥
∞ .

With these preliminary results at hand, we can now show that T̂ d is γ-contractive. Consider two
discrete functions Jd

i : Xd → R (i = 1, 2). For any x ∈ Xd ⊂ Rn, we have∣∣∣T̂ dJd
1 (x)− T̂ dJd

2 (x)
∣∣∣ (6f)
=

∣∣∣φd∗d
1

(
fs(x)

)
− φd∗d

2

(
fs(x)

)∣∣∣ Lem. A.2
≤

∥∥φd∗d
1 − φd∗d

2

∥∥
∞

Def.
≤

∥∥φd∗
1 − φd∗

2

∥∥
∞

Lem. A.1
≤

∥∥φd
1 − φd

2

∥∥
∞

(6d)
≤

∥∥εd∗d1 − εd∗d2

∥∥
∞

Def.
≤

∥∥εd∗1 − εd∗2
∥∥
∞

Lem. A.1
≤

∥∥εd1 − εd2
∥∥
∞

(6a)
= γ ·

∥∥∥∥∥∥
∑

w∈Wd

p(w) ·
(
J̃d
1 (x+ w)− J̃d

2 (x+ w)
)∥∥∥∥∥∥

∞

≤ γ ·
∥∥∥J̃d

1 − J̃d
2

∥∥∥
∞

≤ γ ·
∥∥Jd

1 − Jd
2

∥∥
∞ .

We note that we are using: (i) Assumption 3.9-(ii) in the application of Lemma A.2, (ii) the fact
that dom(φd∗

i ) = dom(εd∗i ) = Rn for i = 1, 2 in the two applications of Lemma A.1, and
(iii) Assumption 3.10-(i) in the last inequality.

A.5 Proof of Theorem 3.12

In what follows, we provide the time complexity of each line of Algorithm 1. In particular, we use
the fact that Y,Z = X and V = U by Assumption 3.9-(iii). The complexity of construction of Vg

in line 1 is of O(X + U) by Assumption 3.9-(iii). The LLT of line 2 requires O(U + V ) = O(U)
operations [24, Cor. 5]. The complexity of lines 3 and 4 is of O(X + U) by Assumption 3.9-(iii) on
the complexity of construction of Zg and Yg. The operation of line 5 also has a complexity of O(X),
and line 6 requires O(X + U) operations. This leads to the reported O(X + U) time complexity for
initialization.

In each iteration, lines 8 requires O(X) operations. The complexity of line 9 is of O(XWE) by the
assumption on the complexity of the extension operator [̃·]. The LLT of line 10 requires O(X+Y ) =
O(X) operations [24, Cor. 5]. The application of LERP in line 12 has a complexity of O(log V ) [21,
Rem. 2.2]. Hence, the for loop over y ∈ Yg requires O(Y log V ) = O(X logU) = Õ(X)
operations. The LLT of line 15 requires O(Z + Y ) = O(X) operations [24, Cor. 5]. The application
of LERP in line 17 has a complexity of O(logZ) [21, Rem. 2.2]. Hence, the for loop over x ∈ Xd

requires O(X logZ) = O(X logX) = Õ(X) operations. The time complexity of each iteration is
then of Õ(XWE).

A.6 Proof of Theorem 3.13

Note that the ConjVI Algorithm 1 involves consecutive applications of the d-CDP operator T̂ d (6),
and terminates after a finite number of iterations corresponding to the bound et. We begin with
bounding the difference between the DP and d-CDP operators.

Error of d-CDP operation. In what follows we assume that J : X → R is a Lipschitz continuous,
convex function that satisfies the condition of Assumption 3.10-(ii). By Corollary 3.4, this assumption
implies that the DP and CDP operators are equivalent, i.e., T J = T̂ J . Hence, it suffices to bound the
error of the d-CDP operator T̂ d w.r.t. the CDP operator T̂ . We begin with the following preliminary
lemma.
Lemma A.3. The scaled expectation ϵ in (4a) is Lipschitz continuous and convex with a nonempty,
compact effective domain. Moreover, L(ϵ) ≤ γ · L(J).
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Proof. The convexity follows from the fact that expectation preserves convexity and γ > 0. The
effective domain of ϵ is nonempty by the feasibility condition of Assumption 3.1-(iii), and is compact
since X is assumed to be compact. Finally, the bound on the Lipschitz constant of ϵ immediately
follows from (4a).

We now provide our step-by-step proof. Consider the function ϵ in (4a) and its discretization
ϵd : Xd → R. Also, consider the discrete function εd : Xd → R in (6a).
Lemma A.4. We have dom(ϵd) = dom(εd) ̸= ∅. Moreover,

∥∥ϵd − εd
∥∥
∞ ≤ γ · ee.

Proof. The first statement follows from the feasibility condition of Assumption 3.6. For the second
statement, note that for every x ∈ dom(ϵd) = dom(εd), we can use (4a) and (6a) to write

∣∣ϵd(x)− εd(x)
∣∣ = γ ·

∣∣∣∣∣∣
∑

w∈Wd

p(w) ·
(
J(x+ w)− J̃d(x+ w)

)∣∣∣∣∣∣
≤ γ ·

∑
w∈Wd

p(w) ·
∣∣∣J(x+ w)− J̃d(x+ w)

∣∣∣
≤ γ ·

∥∥∥J − J̃d
∥∥∥
∞

.

The result then follows from Assumption 3.10-(ii) on J .

Now, consider the function ϕ : Rn → R in (4b) and its discretization ϕd : Yg → R. Also, consider
the discrete function φd : Yg → R in (6d).
Lemma A.5. We have

∥∥ϕd − φd
∥∥
∞ ≤ γ · ee + eu + ev + ex, where

eu = [∥B∥2 ·∆Yg + L(Ci)] · dH(U,Ud),

ev = ∆Ud · dH
(
co(Vg),Vg

)
,

ex = [∆Yg + γ · L(J)] · dH(X,Xd).

Proof. Let y ∈ Yg. According to (4b) and (6d), we have (note that εd∗d(y) = εd∗(y))

ϕd(y)− φd(y) = ϕ(y)− φ(y) = C∗
i (−B⊤y)− Cd∗d

i (−B⊤y) + ϵ∗(y)− εd∗(y). (11)

First, let us use [21, Lem. 2.5] to write

0 ≤ C∗
i (−B⊤y)− Cd∗

i (−B⊤y) ≤
[
∥ −B⊤y∥2 + L(Ci)

]
· dH(U,Ud)

≤ [∥B∥2 ·∆Yg + L(Ci)] · dH(U,Ud) = eu. (12)

Also, Assumption 3.9-(i) allows to use [21, Cor. 2.7] and write

0 ≤ Cd∗d
i (−B⊤y)− Cd∗

i (−B⊤y) ≤ ∆Ud · dH
(
co(Vg),Vg

)
= ev. (13)

Now, by Lemma A.1 (non-expansiveness of conjugation) and Lemma A.4, we have∣∣ϵd∗(y)− εd∗(y)
∣∣ ≤ ∥∥ϵd − εd

∥∥
∞ ≤ γ · ee. (14)

Moreover, we can use [21, Lem. 2.5] and Lemma A.3 to obtain

0 ≤ ϵ∗(y)− ϵd∗(y) ≤
[
∥y∥2 + L(ϵ)

]
· dH(X,Xd)

≤ [∆Yg + γ · L(J)] · dH(X,Xd) = ex. (15)

Combining (11)-(15), we then have∣∣ϕd(y)− φd(y)
∣∣ = ∣∣∣C∗

i (−B⊤y)− Cd∗d
i (−B⊤y) + ϵ∗(y)− εd∗(y)

∣∣∣
≤

∣∣C∗
i (−B⊤y)− Cd∗

i (−B⊤y)
∣∣+ ∣∣∣Cd∗

i (−B⊤y)− Cd∗d
i (−B⊤y)

∣∣∣
+
∣∣ϵ∗(y)− ϵd∗(y)

∣∣+ ∣∣ϵd∗(y)− εd∗(y)
∣∣

≤ eu + ev + γ · ee + ex.
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Next, consider the discrete composite functions [ϕ∗ ◦ fs]d : Xd → R and [φd∗ ◦ fs]d : Xd → R. In
particular, notice that ϕ∗ ◦ fs appears in (4c).
Lemma A.6. We have

∥∥[ϕ∗ ◦ fs]d − [φd∗ ◦ fs]d
∥∥
∞ ≤ γ · ee + eu + ev + ex + ey, where

ey =
[
∆fs(Xd) +∆X + ∥B∥2 ·∆U

]
· max
x∈Xd

d
(
∂(T J − Cs)(x),Yg

)
.

Proof. Let x ∈ Xd. Also let ϕd : Yg → R be the discretization of ϕ : Rn → R. Since ϕ is convex by
construction, we can use [21, Lem. 2.5] to obtain (recall that L(h;X) denotes the Lipschtiz constant
of h restricted to the set X ⊂ dom(h))

0 ≤ ϕ∗(fs(x))− ϕd∗(fs(x)) ≤ min
y∈∂ϕ∗(fs(x))

{[
∥fs(x)∥2 + L

(
ϕ; {y} ∪ Yg

)]
· d(y,Yg)

}
(16)

By using (4c) and the equivalence of DP and CDP operators we have ϕ∗ ◦ fs = T̂ J −Cs = T J −Cs.
Also, the definition (4b) implies that

L(ϕ) ≤ L
(
C∗

i ◦ −B⊤)+ L(ϵ∗) ≤ ∥B∥2 · L(C
∗
i ) + L(ϵ∗)

≤ ∥B∥2 ·∆dom(Ci) +∆dom(ϵ) ≤ ∥B∥2 ·∆U +∆X,

where for the last inequality we used the fact that dom(ϵ) ⊆ dom(J) = X. Using this results in (16),
we have

0 ≤ ϕ∗(fs(x))− ϕd∗(fs(x)) ≤ min
y∈∂(T J−Cs)(x)

{[
∥fs(x)∥2 +∆X + ∥B∥2 ∆U

]
· d(y,Yg)

}
≤

[
∆fs(Xd) +∆X + ∥B∥2 ·∆U

]
· max
x′∈Xd

d
(
∂(T J − Cs)(x

′),Yg
)

= ey. (17)

Second, by Lemmas A.1 and A.5, we have∣∣ϕd∗(z)− φd∗(z)
∣∣ ≤ ∥∥ϕd − φd

∥∥
∞ ≤ γ · ee + eu + ev + ex, (18)

for all z ∈ Rn, including z = fs(x). Here, we are using the fact that dom(ϕd) = dom(φd) = Yg

and dom(ϕd∗) = dom(φd∗) = Rn. Combining inequalities (17) and (18), we obtain∣∣ϕ∗(fs(x))− φd∗(fs(x))∣∣ ≤ ∣∣ϕ∗(fs(x))− ϕd∗(fs(x))∣∣+ ∣∣ϕd∗(fs(x))− φd∗(fs(x))∣∣
≤ ey + γ · ee + eu + ev + ex.

This completes the proof.

We are now left with the final step. Consider the output of the d-CDP operator T̂ dJd : Xd → R.
Also, consider the output of the CDP operator T̂ J : X → R and its discretization [T̂ J ]d : Xd → R.
Lemma A.7. We have∥∥∥T̂ dJd − [T̂ J ]d

∥∥∥
∞

≤ γ · ee + eu + ev + ex + ey + ez,

where
ez = ∆Yg · dH

(
fs(Xd),Zg

)
.

Proof. Let x ∈ Xd. According to (4c) and (6f), we have

T̂ dJd(x)− [T̂ J ]d(x) = T̂ dJd(x)− T̂ J(x) = φd∗d
(
fs(x)

)
− ϕ∗(fs(x)) (19)

Now, by Lemma A.6, we have∣∣ϕ∗(fs(x))− φd∗(fs(x))∣∣ ≤ γ · ee + eu + ev + ex + ey. (20)

Moreover, Assumption 3.9-(ii) allows us to use [21, Cor. 2.7] and obtain

0 ≤ φd∗d
(
fs(x)

)
− φd∗(fs(x)) ≤ ∆Yg · dH

(
fs(Xd),Zg

)
= ez. (21)
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Combining (19), (20), and (21), we then have∣∣∣T̂ dJd(x)− [T̂ J ]d(x)
∣∣∣ = ∣∣∣φd∗d

(
fs(x)

)
− ϕ∗(fs(x))∣∣∣

≤
∣∣∣φd∗d

(
fs(x)

)
− φd∗(fs(x))∣∣∣+ ∣∣φd∗(fs(x))− ϕ∗(fs(x))∣∣

≤ γ · ee + eu + ev + ex + ey + ez.

The following proposition summarizes the result of the preceding arguments. We note that this result
extends [21, Thm. 5.3] by considering the error of extension operation for computing the expectation
w.r.t. to the additive disturbance in (6a) and the approximate discrete conjugation of the input cost
in (6d).
Proposition A.8 (Error of d-CDP operation). Let J : X → R be a Lipschitz continuous, convex
function that satisfies the condition of Assumption 3.10-(ii). Also, let Assumptions 3.9-(i)&(ii) hold.
Consider the output of the d-CDP operator T̂ dJd : Xd → R and the discretization of the output of
the DP operator [T J ]d : Xd → R. We have∥∥∥T̂ dJd − [T J ]d

∥∥∥
∞

≤ γ · ee + eu + ev + ex + ey + ez = γ · ee + ed,

With the preceding result at hand, we can now provide a bound for the difference between the fixed
points of the d-CDP and DP operators. To this end, let Ĵd

⋆ = T̂ dĴd
⋆ : Xd → R be the fixed point of

the d-CDP operator. Recall that J⋆ = T J⋆ : X → R and Jd
⋆ : Xd → R are the true optimal value

function and its discretization.
Lemma A.9 (Error of fixed point of d-CDP operator). We have∥∥∥Ĵd

⋆ − Jd
⋆

∥∥∥
∞

≤ γ · ee + ed
1− γ

.

Proof. By Assumptions 3.9-(ii) and 3.10-(i), the operator T̂ d is γ-contractive (Theorem 3.11) and
hence ∥∥∥T̂ dĴd

⋆ − T̂ dJd
⋆

∥∥∥
∞

≤ γ ·
∥∥∥Ĵd

⋆ − Jd
⋆

∥∥∥
∞

.

Also, notice that the composition J ◦ f is assumed to be jointly convex in the state and input variables
for a convex function J : X → R. Then, Assumption 3.1 implies that J⋆ is indeed Lipschitz
continuous and convex. Moreover, Assumption 3.9-(ii) holds, and J⋆ is assumed to satisfy the
condition of Assumption 3.10-(ii). Hence, by Proposition A.8, we have∥∥∥T̂ dJd

⋆ − [T J⋆]
d
∥∥∥
∞

≤ γ · ee + ed.

Using these two inequalities, we can then write∥∥∥Ĵd
⋆ − Jd

⋆

∥∥∥
∞

=
∥∥∥Ĵd

⋆ − T̂ dJd
⋆ + T̂ dJd

⋆ − Jd
⋆

∥∥∥
∞

≤
∥∥∥Ĵd

⋆ − T̂ dJd
⋆

∥∥∥
∞

+
∥∥∥T̂ dJd

⋆ − Jd
⋆

∥∥∥
∞

=
∥∥∥T̂ dĴd

⋆ − T̂ dJd
⋆

∥∥∥
∞

+
∥∥∥T̂ dJd

⋆ − [T J⋆]
d
∥∥∥
∞

.

≤ γ ·
∥∥∥Ĵd

⋆ − Jd
⋆

∥∥∥
∞

+ γ · ee + ed.

This completes the proof.

Finally, we can use the fact that T̂ d is γ-cantractive in order to provide the following bound on the
error due to finite termination of the algorithm. Recall that Ĵd : Xd → R is the output of Algorithm 1.
Lemma A.10 (Error of finite termination). We have∥∥∥Ĵd − Ĵd

⋆

∥∥∥
∞

≤ γ · et
1− γ

.
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Proof. By Assumptions 3.9-(ii) and 3.10-(i), the operator T̂ d is γ-contractive (Theorem 3.11). Let us
assume that Algorithm 1 terminates after k ≥ 0 iterations so that Ĵd = Jd

k+1 and
∥∥Jd

k+1 − Jd
k

∥∥
∞ ≤

et. Then, ∥∥∥Ĵd − Ĵd
⋆

∥∥∥
∞

=
∥∥∥Jd

k+1 − T̂ dJd
k+1 + T̂ dJd

k+1 − Ĵd
⋆

∥∥∥
∞

≤
∥∥∥Jd

k+1 − T̂ dJd
k+1

∥∥∥
∞

+
∥∥∥T̂ dJd

k+1 − Ĵd
⋆

∥∥∥
∞

=
∥∥∥T̂ dJd

k − T̂ dJd
k+1

∥∥∥
∞

+
∥∥∥T̂ dJd

k+1 − T̂ dĴd
⋆

∥∥∥
∞

≤ γ ·
∥∥Jd

k − Jd
k+1

∥∥
∞ + γ ·

∥∥∥Jd
k+1 − Ĵd

⋆

∥∥∥
∞

≤ γ · et + γ
∥∥∥Ĵd − Ĵd

⋆

∥∥∥
∞

,

where for the second inequality we used the fact that T̂ d is a contraction.

The inequality (7) is then derived by combining the results of Lemmas A.9 and A.10.
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