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Supplementary: On the Sample Complexity of Privately
Learning Half-spaces

1. Proof of Lemma 12

Lemma 1 (Restatement of Lemma 12) Algorithm 1 satisfies (ϵ, 0)-differential privacy.
Furthermore, there is at least one half-space (with the angle) ϕ∗ ∈ SH with quality q(S, ϕ∗) =
maxϕ∈[0,2π)q(S, ϕ).

Proof Given two neighboring samples S, S′ = S ∪ {(x, y)}, we can observe that only the
corresponding multiplicities of the point (x, y) in S and S′ differs by 1. By the definition
of Hγ , there exists ϕ ∈ Hγ such that |ϕ(x) − ϕ| < γ and hϕ(x) = y, which is the closest
angle to ϕ(x) in Hγ (Line 3). The number of the angles, denoted as nϕ and n′

ϕ, respec-
tively, also differs by 1. So, we can consider nϕ as a sensitivity-1 function, and applying
the Laplace Mechanism (Line 4) with noise distribution Lap(1ϵ ) satisfies (ϵ, 0)-differential
privacy (Lemma 5). The max function can be considered as a post-processing step and
introduce no privacy cost (Lemma 2). Therefore, the first statement holds.

We prove the second statement by contradiction. Suppose there is a point (x, y) ∈ S
such that the corresponding half-space with the angle ϕ′ ∈ SH and the highest quality
misclassifies it. This implies that either y = −1 and hϕ′(x) = 1, or vice versa. Note that
given the assumption of the dataset being realizable, hϕ′ can only error on the points in S
that are between the target half-space and hϕ′ . Therefore, x is the only point in S that sits
in the area.

By our construction, a half-space (with the angle) ϕ′′ ∈ Hγ that correctly classifies x
should be added to SH (Line 3). Since there are no other points in S positioned between
hϕ′′ and the target half-space, hϕ′′ also correctly classifies all the points in S. Thus, hϕ′′ has
a higher quality than hϕ′ .

Therefore, by contradiction, the second statement also holds.

2. Proof of Theorem 14

Theorem 2 (Restatement of Theorem 14) For any ϵ, δ, α, β ∈ (0, 1), if there is an
(ϵ, δ)-differentially private (α, β)-empirical learner AThr that learns thresholds on a finite
domain XThr with nThr(XThr, ϵ, δ, α, β) samples, then with sample complexity

n = O(nThr(XThr,
ϵ

2
, δ, α, β)),

Algorithm 3 is an (ϵ, δ)-differentially private (α, β)-empirical learner for 2-dimensional half-
spaces.
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Proof We analyze the privacy and accuracy as follows. First, for the privacy demand,
our construction in the algorithm can be considered as a concatenation of three differen-
tially private mechanisms AThr ◦MakeThrData ◦MakeData, which is (2ϵ, δ)-differentially
private. To see that, we have MakeData satisfying (ϵ, 0)-differentially private by Lemma
12. Concatenating it with MakeThrData does not introduce extra privacy cost by Dwork
et al. (2014). Finally, further concatenating them with AThr gives the result by the privacy
guarantee of AThr and the basic composition theorem in Dwork et al. (2006) and Dwork
and Lei (2009). Therefore, by setting ϵ̃ = ϵ

2 as the privacy parameter for MakeData and
AThr, the privacy statement holds.

On the other hand, by the assumption that S is realizable, our construction ensures
that the half-space with quality maxϕ∈[0,2π)(q(S, ϕ)) is in the dataset SH by setting γ as
guaranteed by Lemma 11, along with MakeData (Lemma 12) and MakeThrData (Lemma
13). Hence, the accuracy is satisfied following the accuracy guarantee of AThr. Therefore,
the statement holds.

3. Proof of Theorem 21

Theorem 3 For any ϵ, δ, α, β ∈ (0, 1) and δ′ > 0, if there is an (ϵ, δ)-differentially private
(α, β)-empirical learner AThr that learns thresholds on a finite domain XThr with sample
complexity nThr(XThr, ϵ, δ, α, β), then with sample complexity

n = O(nThr(XThr, O(
ϵ

log( 1
δ′ )

),
δ − δ′

2(d− 1)
,

α

d− 1
,

β

d− 1
)),

Algorithm 6 is an (ϵ, δ)-differentially private (α, β)-empirical learner for d-dimensional half-
spaces.

Proof We analyze the privacy and accuracy as follows. First, for the privacy demand,
we adapt the proof of Theorem 14 such that our construction ensures that for every two
neighboring input samples, the concatenation of functions during each iteration

AThr ◦MakeHighDimThrData ◦MakeHighDimData

preserves (2ϵ, δ)-differential privacy by Corollary 18, the privacy guarantee of AThr along
with the basic composition theorem in Dwork et al. (2006) and Dwork and Lei (2009).

Consequently, we can bound the total privacy cost by verifying that AHighH satisfies the
Reorder-Slice-Compute paradigm: we first set τ = d− 1,m = nThr and the sorters according
to the lexicographical order of (Qϕ∗

1,...,ϕ
∗
i−1

(S, ϕi), ϕi) in the ith iteration; we actually perform
the steps 3, 4 of Algorith 7 in Line 2 of MakeHighDimThrData for the noisy selection of
elements, and we perform the steps 5, 6 of Algorithm 7 in Line 14, 15 of AHighH to ensure
that the points are used only once, along with the corresponding half-spaces. Consequently,
the total privacy cost preserves (ϵ, δ)-differential privacy following Lemma 20, by setting
privacy parameters of ϵ̃ = O( ϵ

log( 1
δ′ )

), δ̃ = δ−δ′

2(d−1) for some δ′ > 0.

Next, for the accuracy, the proof follows similarly to Beimel et al. (2019) and Kaplan
et al. (2020) by leveraging the accuracy guarantee of AThr. We aim to prove by induc-
tion that by setting accuracy parameters α̃ = α

d−1 , β̃ = β
d−1 after the ith iteration, with
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probability at least 1− i · β
d−1 , the output values ϕ∗

1, ...ϕ
∗
i satisfy

Qϕ∗
1,...,ϕ

∗
i−1

(S, ϕ∗
i ) ≥ (1− α

d− 1
)i ·OPT,

where OPT = maxϕ1,...,ϕd−1∈[0,2π)q(S, (ϕ1, ..., ϕd−1)).
For the base case i = 1, by the guarantee of Discretize (Lemma 11), along with

MakeHighDimData (Corollary 18) and MakeHighDimThrData (Corollary 19), there
exists at least one half-space in SThr that maximizes Q(S, ·). Therefore, with the accuracy
guarantee of AThr, with probability at least 1− β

d−1 , the output value ϕ∗
1 satisfies

Q(S, ϕ∗
1) ≥ (1− α

d− 1
) ·OPT.

Next, assume the statement holds for i = k− 1, such that with probability at least 1− (k−
1) · β

d−1 , the output values ϕ∗
1, ...ϕ

∗
k−1 satisfy

Qϕ∗
1,...,ϕ

∗
k−2

(S, ϕ∗
k−1) ≥ (1− α

d− 1
)k−1 ·OPT.

Therefore, by the guarantee of Lemma 11, Corollary 18, and Corollary 19, there exists ϕ′
k ∈

SThr such that Qϕ∗
1,...,ϕ

∗
k−1

(S, ϕ′
k) = maxϕk∈H(Qϕ∗

1,...,ϕ
∗
k−1

(S, ϕk)), along with the accuracy

guarantee of AThr, with probability at least (1− β
d−1)(1− (k − 1) · β

d−1) ≥ 1− k · β
d−1 , the

output values ϕ∗
1, ..., ϕ

∗
k satisfy

Qϕ∗
1,...,ϕ

∗
k−1

(S, ϕ∗
k) ≥ (1− α

d− 1
)(1− α

d− 1
)k−1 ·OPT

= (1− α

d− 1
)k ·OPT.

This concludes the accuracy statement such that after the d−1 iterations, with probability
at least 1− β, AHighH outputs a half-space h(ϕ∗

1,...,ϕ
∗
d−1)

such that

Qϕ∗
1,...,ϕ

∗
d−2

(S, ϕ∗
d−1) ≥ (1− α

d− 1
)d−1 ·OPT

≥ (1− (d− 1) · α

d− 1
) ·OPT = (1− α) ·OPT.
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