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A APPENDIX

A.1 OVERVIEW

In this supplementary material, we provide the pseudo-code for CoINR, along with a detailed expla-
nation of the activation function selection process for both the image and occupancy fields. Addi-
tionally, we present qualitative results for each configuration mentioned in the main paper, allowing
for a clearer understanding of the model’s performance across different scenarios. Lastly, we include
guidelines for selecting the value of the hyperparameter s, which plays a key role in optimizing the
model’s performance. These materials are intended to complement the main text, offering further
insights into the flexibility and effectiveness of CoINR.

A.2 PSEUDOCODE OF COINR

The following algorithm provides the pseudo code for CoINR

Algorithm 1 Pseudo Code of CoINR

1: Input: INR, Sparsity level, Dictionary size, Random seed
2: Output: Compressed model parameters
3: Initialization:
4: A← Sample a sensing matrix from N (0, I) using the Random seed
5: for layer ∈ {2, . . . , l} do
6: for node in layer do
7: w← node weights
8: minimize ∥x∥1 subject to w = Ax
9: indices, values = find(x ̸= 0)

10: end for
11: Store nodes’ non-zero indices and values
12: end for

A.3 SELECTING THE ACTIVATION FUNCTION

The choice of activation function plays a key role in the performance of an INR, as it is a critical
factor in determining its effectiveness. Most of the literature on INR-based compression methods
utilizes sinusoidal activations for signal compression. However, this may not always be the most
effective activation function for all data modalities. Therefore, in this study, we examined which
activation function works best for each data modality.

A.3.1 FOR IMAGES

We randomly selected four images from the Kodak dataset to evaluate the image representation ca-
pacity of each INR. Figure 8 presents the results alongside the ground truth data. For this evaluation,
each INR was configured with 300 hidden neurons. As shown in the results, SIREN consistently
outperforms all other INRs; it has been selected for all image compression tasks.

A.3.2 FOR OCCUPANCY FIELDS

For the occupancy volumes presented in the main paper, specifically the Stanford Lucy and Thai
statue, each occupancy field was trained using different activation functions prior to applying the
compression mechanism described in CoINR. The performance of each activation was recorded
and is summarized in table 1 .These experiments were conducted with a hidden neuron count of
128. As shown by the results, Gaussian activation significantly outperforms sinusoidal activation for
occupancy volumes. Therefore, it was selected as the default activation function for compressing
occupancy volumes.
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Figure 8: Image representation performances of different activation functions

Table 1: Occupancy Field Performance Comparison

Occupancy Field SIREN GAUSS WIRE
Thai Statue 0.962 0.975 0.944
Lucy 0.968 0.979 0.965

A.4 CHOOSING THE VALUE OF s

In this section, we analyze the effect of s on the performance of the INR across various hidden
sizes. We vary the hidden neuron size as 32, 64, 96, 128, 192 and 256. Hidden neuron size of
32 investigates the effect of s for a ’tiny INR’. From figure 9, we observe that for s > 350, the
performance of the compressed INR closely matches that of the uncompressed INR (denoted by the
dotted red line). A similar pattern emerges for other hidden sizes, where performance shows only
marginal improvement beyond a certain threshold of s. This marginal increase typically occurs at an
optimal value of s where CoINR achieves sufficient compression. Additionally, we also present a
plot which describes the variation of the optimal value of s with the number of hidden neurons. This
plot enables the selection of the optimal s value for a given hidden size without needing to fit the
INR across different values of s. Notably, the variation of the optimal s with hidden size is nearly
linear.

A.5 ADDITIONAL QUALITATIVE, AND QUANTITATIVE RESULTS

In this section, we present the decoded results of CoINR and the baseline models for the network
configurations C1, C2, C3, and C4. Additionally, we provide details on the network depth and the
number of hidden neurons for each configuration.
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Figure 9: Variation of PSNR (dB) with the sparsity level for different hidden neurons. The red
dotted line indicates uncompressed INR performance. The regression plot shows that the variation
of the optimal value of s with hidden neuron size is nearly linear.
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Figure 10: Image compression performance for configuration C1 when there are two hidden
layers, and 32 neurons: As can be seen from the results, CoINR obtains significant compression
compared to baselines

Figure 11: Image compression performance for configuration C1 when there are three hidden
layers, and 128 neurons: The results show that CoINR achieves significant compression while
maintaining the same quantitative metrics as the baselines.

Figure 12: Image compression performance for configuration C3 when there are three hidden
layers, and 64 neurons: As can be seen from the results, CoINR obtains significant compression
while preserving the same quantitaive metrics compared to baselines.
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Figure 13: Image compression performance for configuration C3 when there are three hidden
layers, and 128 neurons: The results indicate that CoINR achieves notable compression without
compromising the quantitative metrics when compared to the baselines.

Figure 14: Image compression performance for configuration C4 when there are three hidden
layers, and 96 neurons: The results show that CoINR delivers significant compression without
compromising quantitative measurements when compared to the baselines.

Figure 15: Image compression performance for configuration C4 when there are three hidden
layers, and 128 neurons: The results reveal that CoINR provides significant compression without
compromising quantitative measurements when compared to the baselines.
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