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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We download the pretrained model checkpoints that the original authors provided.

• MAR (Li et al., 2024). https://github.com/LTH14/mar
• FlowAR (Ren et al., 2024). https://github.com/OliverRensu/FlowAR
• xAR (Ren et al., 2025). https://github.com/OliverRensu/xAR
• Harmon (Wu et al., 2025). https://github.com/wusize/Harmon

Predict the Next Tokens. To predict the next tokens, we train a MLP on MAR and Harmon. The
MLP has a similar depth and width as the original model head. For example, on MAR-H, we use a
MLP with 12 blocks and a width of 1536 channels. For MAR, we freeze the pretrained model and
train the MLP on the ImageNet 256→256 dataset.

In training, each batch of images is converted to tokens, and a random ratio of tokens are masked.
The unmasked tokens are fed into the encoder-decoder part of MAR. The decoder outputs a condition
vector for each mask token. The MLP takes the condition vector as input and predict the mask token
with MSE loss.

For Harmon, we use a distillation strategy to train the MLP. Specifically, we use GenEval (Ghosh
et al., 2023) to create 713 prompts, and use the Harmon model to generates images under each prompt.
We train an MLP in the process to predict the generated tokens.

At inference time, when MAR or Harmon generates a few tokens, we hack in the model to get the
condition vectors for the remaining tokens, and use our trained MLP to predict the remaining tokens.
Then, we feed generated tokens and predicted tokens to the tokenizer to get the images.

For FlowAR and xAR, we repurpose the original model head. As described in the main context, we
feed sampled noise with t = 1 into the model, obtain the estimated velocity vω(xi

t | t = 1, zi), and
predict the next token as xi

0 = xi
t=1↑v. Since xi

t=1 is purely noisy, the model has to directly predict
the xi based on zi. This method is training-free. For MAR and Harmon, the model predictions on
t = 999 are unreliable, thus, we train MLPs instead.

At inference time, when FlowAR or xAR generates a few tokens, we change the original model head
to predict the remaining tokens in one step, and get the predicted images.

Variance and Straightness of Diffusion Processes in FlowAR, xAR, and Harmon. we measure
the straightness of a denoising path {xt}1t=0 under condition z.

S({xt}1t=0, z) = Et→[0,1]

[
↓(x1 ↑ x0)↑ vω(xt | t, z)↓2

]
. (5)

MAR and Harmon use diffusion process and are not trained on the rectified flow loss function.
Thus, we calculate the cosine similarity between the score (the gradient of the data distribution
density) (Song & Ermon, 2019; Song et al., 2020b; Dhariwal & Nichol, 2021) and the straight
direction from the noisy token to the clean token.

S({xt}999t=0, z) = Et [cos (x0 ↑ xt,↔xt log pω(xt | t, z))] , (6)

where ↔xt log pω(xt | t, z) = ↑ 1↑
1↓ε̄t

ωω(xt | t, z).

Variance and straightness of FlowAR, xAR and Harmon are shown in Figure 7. Note that FlowAR
and xAR are trained with the Flow Matching loss, which explicitly requires the flow paths to be
straight. Thus, the straightness of FlowAR and xAR is much higher than that of the other two models.
But the two models show a similar trend: not so straight at the beginning but increase significantly at
later stages.

An interesting finding is that FlowAR is not exactly following our hypothesis. The straightness peaks
in the middle, and decreases slightly at the end of generation. This may inspire a different strategy on
FlowAR, that is, use fewer steps in the middle. It is also possible to consider a straightness-aware
adaptive method, which considers the straightness of different models to schedule the number of
diffusion steps. We leave these as future work.
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(a) (b)

(d) (e) (f)

(c)

Figure 7: Variance of diffusion-sampled tokens decreases along the autoregressive steps in (a)
FlowAR, (b) xAR, and (c) Harmon. Besides, straightness of denoising paths increases from early to
late stages in (d) FlowAR, (e) xAR, and (f) Harmon.

Table 4: Speed-Quality Trade-off in MAR-B. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64 128
Diff steps 50 50 25 50 100 50 50

FID↗ 12.41 3.92 3.65 2.47 2.49 2.39 2.37
IS↘ 184.6 250.3 240.7 272.4 273.8 280.4 279.0
Time(s)↗ 10.5 14.0 17.1 21.1 28.6 35.3 64.8

Implementation of DiSA. DiSA can be implemented within a few lines of code. We show a pseudo-
code for showing how DiSA works on top of existing models. Before running a diffusion / flow
matching process to sample the next tokens, we calculate Tk first and get the time schedule with Tk

steps.
Algorithm 1 Conditional Token Generation via Diffusion with Adaptive Steps

1: function GENERATETOKEN(z: condition; k: current AR step; K: the total number of AR steps)
2: Get Tk via Eq. (3)
3: {ti}Tk

i=1 ≃ GETTIMESCHEDULE(Tk)
4: x ≃ SAMPLEGAUSSIANNOISE
5: for t in {ti} do
6: x ≃ DENOISESTEP(x, t, z)
7: end for
8: return x
9: end function

A.2 DETAILED RESULTS AND MORE EXAMPLES ON SPEED-QUALITY TRADE-OFF

A.2.1 SPEED-QUALITY TRADE-OFF

We report detailed results for Figure 5 in Tables 4-13.

A.2.2 CHOICE ACCORDING TO AUTOREGRESSIVE STEPS.

As seen in Table 14, using fewer autoregressive steps in MAR significantly degrades generation
quality. In contrast, DiSA can often maintain or even improve the quality. Besides, DiSA is not
fragile but works well across a wide range of Tlate values.
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Table 5: Speed-Quality Trade-off in MAR-B + DiSA. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64
Diff steps 50⇐5 50⇐5 10⇐5 20⇐5 50⇐5 50⇐5

FID↗ 10.97 3.66 3.44 2.41 2.32 2.31
IS↘ 196.3 255.1 279.1 283.4 279.3 282.3
Time(s)↗ 6.55 9.92 13.72 14.51 16.41 29.3

Table 6: Speed-Quality Trade-off in MAR-L. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64 128
Diff steps 50 50 25 50 100 50 50

FID↗ 14.70 4.03 2.25 2.01 2.06 1.87 1.81
IS↘ 173.8 253.3 278.3 285.4 283.1 294.9 298.7
Time(s)↗ 17.4 24.0 31.4 37.5 49.8 63.9 118.5

Table 7: Speed-Quality Trade-off in MAR-L + DiSA. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64
Diff steps 50⇐5 50⇐5 10⇐5 20⇐5 50⇐5 50⇐5

FID↗ 13.65 3.86 2.75 1.93 1.92 1.77
IS↘ 181.0 251.9 294.8 295.8 285.4 298.3
Time(s)↗ 11.0 17.5 26.4 27.3 30.1 55.2

Table 8: Speed-Quality Trade-off in FlowAR-L. Results are partly visualized in Figure 5.
AR steps 5 5 5 5 5
Diff steps 8 10 15 20 25

FID↗ 3.37 2.74 2.20 1.95 1.90
IS↘ 294.9 293.9 287.2 275.9 281.4
Time(s)↗ 12.4 14.8 19.8 26.9 31.8

Table 9: Speed-Quality Trade-off in FlowAR-L + DiSA. Results are partly visualized in Figure 5.
AR steps 5 5 5 5
Diff steps 15⇐8 20⇐8 25⇐10 25⇐15

FID↗ 2.60 2.24 2.03 1.90
IS↘ 280.6 274.2 274.3 274.8
Time(s)↗ 12.8 13.8 16.3 21.1

Table 10: Speed-Quality Trade-off in xAR-B. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 15 20 25 40 50

FID↗ 3.16 2.11 1.81 1.73 1.67
IS↘ 247.6 258.5 264.7 266.3 265.2
Time(s)↗ 11.2 14.3 17.4 26.8 33.2
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Table 11: Speed-Quality Trade-off in xAR-B + DiSA. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 25⇐10 25⇐15 30⇐15 40⇐15 50⇐15

FID↗ 2.29 1.99 1.82 1.73 1.68
IS↘ 253.6 259.3 263.1 262.4 265.5
Time(s)↗ 12.5 14.0 15.5 18.5 21.4

Table 12: Speed-Quality Trade-off in xAR-L. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 15 20 25 40 50

FID↗ 2.79 1.69 1.39 1.28 1.28
IS↘ 260.3 278.7 286.0 292.2 292.2
Time(s)↗ 33.0 42.8 52.6 81.8 100.9

Table 13: Speed-Quality Trade-off in xAR-L + DiSA. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 25⇐10 25⇐15 30⇐15 40⇐15 50⇐15

FID↗ 1.79 1.57 1.40 1.28 1.23
IS↘ 275.8 280.0 284.2 292.4 287.3
Time(s)↗ 37.4 42.1 47.2 56.0 65.4

Table 14: Performance of MAR-B and MAR-L with DiSA under different AR steps and diffusion
step schedules.

Model AR steps Diff steps FID↔ IS↗ Time (s)↔ Speed-Up↗

MAR-B 256 100 2.31 281.7 0.650 1.0↘
64 50 2.39 (+0.08) 281.0 (-0.7) 0.134 4.8↘

+DiSA 64 50≃25 2.31 (+0.00) 278.9 (-2.8) 0.126 5.2↘
64 50≃15 2.26 (-0.05) 281.0 (-0.7) 0.120 5.4↘
64 50≃10 2.29 (-0.02) 279.3 (-2.4) 0.119 5.5↘
64 50≃5 2.31 (+0.00) 282.3 (+0.6) 0.114 5.7↘
32 50≃25 2.56 (+0.25) 272.0 (-9.7) 0.071 9.2↘
32 50≃15 2.47 (+0.16) 272.0 (-9.7) 0.067 9.7↘
32 50≃10 2.42 (+0.11) 273.9 (-7.8) 0.065 10.0↘
32 50≃5 2.32 (+0.01) 279.3 (-2.4) 0.063 10.4↘
16 50≃25 4.33 (+2.02) 246.4 (-35.3) 0.045 14.4↘
16 50≃15 4.15 (+1.84) 247.8 (-33.9) 0.042 15.6↘
16 50≃10 4.01 (+1.70) 249.5 (-32.2) 0.040 16.3↘
16 50≃5 3.65 (+1.34) 255.2 (-26.5) 0.038 16.9↘
8 50≃25 13.59 (+11.28) 179.6 (-102.1) 0.031 20.7↘
8 50≃15 13.15 (+10.84) 182.9 (-98.8) 0.029 22.5↘
8 50≃10 12.62 (+10.31) 185.8 (-95.9) 0.027 23.8↘
8 50≃5 10.97 (+8.66) 196.2 (-85.5) 0.026 25.5↘

MAR-L 256 100 1.78 296.0 1.102 1.0↘
64 50 1.86 (+0.08) 294.0 (-2.0) 0.250 4.4↘

+DiSA 64 50≃25 1.83 (+0.05) 290.1 (-5.9) 0.232 4.8↘
64 50≃15 1.78 (+0.00) 293.3 (-2.7) 0.224 4.9↘
64 50≃10 1.80 (+0.02) 292.3 (-3.7) 0.225 4.9↘
64 50≃5 1.77 (-0.01) 298.3 (+2.3) 0.216 5.1↘
32 50≃25 2.21 (+0.43) 278.6 (-17.4) 0.129 8.5↘
32 50≃15 2.14 (+0.36) 281.6 (-14.4) 0.123 9.0↘
32 50≃10 2.06 (+0.28) 281.2 (-14.8) 0.120 9.2↘
32 50≃5 1.92 (+0.14) 285.5 (-10.5) 0.117 9.4↘
16 50≃25 4.72 (+2.94) 243.7 (-52.3) 0.079 13.9↘
16 50≃15 4.52 (+2.74) 245.4 (-50.6) 0.074 14.9↘
16 50≃10 4.31 (+2.53) 247.7 (-48.3) 0.071 15.5↘
16 50≃5 3.86 (+2.08) 251.8 (-44.2) 0.069 16.0↘
8 50≃25 16.81 (+15.03) 164.0 (-132.0) 0.054 20.6↘
8 50≃15 16.34 (+14.56) 164.5 (-131.5) 0.050 22.3↘
8 50≃10 15.51 (+13.73) 169.1 (-126.9) 0.046 23.7↘
8 50≃5 13.64 (+11.86) 181.0 (-115.0) 0.044 25.0↘
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Table 15: Performance of MAR with DiSA under raster and reverse raster orders.
Model AR steps Diff steps FID↔ IS↗

Raster order

MAR-B 64 50 7.18 246.8
+DiSA 64 50≃25 7.72 (+0.54) 241.1 (-5.7)

64 50≃15 7.57 (+0.39) 241.0 (-5.8)
MAR-L 64 50 8.13 236.4
+DiSA 64 50≃25 9.81 (+1.68) 221.3 (-15.1)

64 50≃15 9.47 (+1.34) 222.7 (-13.7)

Reverse raster order

MAR-B 64 50 7.02 248.8
+DiSA 64 50≃25 7.80 (+0.78) 238.6 (-10.2)

64 50≃15 7.53 (+0.51) 241.6 (-7.2)
MAR-L 64 50 10.82 202.4
+DiSA 64 50≃25 12.87 (+2.05) 188.1 (-14.3)

64 50≃15 12.34 (+1.52) 192.6 (-9.8)

Table 16: Performance of MAR with DiSA under bfloat16.
Model AR steps Diff steps FID↔ IS↗

MAR-B 64 50 2.39 281.0
MAR-B (BF16) 64 50 2.49 (+0.10) 282.7 (+1.7)
+DiSA (BF16) 64 50≃25 2.31 (-0.08) 278.3 (-2.7)

64 50≃15 2.30 (-0.09) 278.0 (-3.0)
64 50≃10 2.30 (-0.09) 279.6 (-1.4)
64 50≃5 2.34 (-0.05) 279.7 (-1.3)

MAR-L 64 50 1.86 294.0
MAR-L (BF16) 64 50 1.87 (+0.01) 292.7 (-1.3)
+DiSA (BF16) 64 50≃25 1.81 (-0.05) 293.2 (-0.8)

64 50≃15 1.81 (-0.05) 289.5 (-4.5)
64 50≃10 1.76 (-0.10) 293.9 (-0.1)
64 50≃5 1.77 (-0.09) 295.1 (+1.1)

A.2.3 CHOICE ACCORDING TO AR GENERATION ORDER

In our experiments, MAR generates tokens in random orders. We mannually set MAR to generate
tokens in raster order (from left to right and from up to bottom) or reverse raster order. As shown in
Table 15, DiSA leads a slight performance drop with MAR. This may result from training-testing
mismatch, since the pretrained MAR model is not optimized for raster order. On models pretrained
with raster order like xAR, DiSA performs well.

A.2.4 PERFORMANCE UNDER BFLOAT16

Many large models are trained and evaluated using bfloat16 (BF16) precision. We tested DiSA in
this setting and found that MAR’s performance drops under bfloat16, while DiSA still improves the
generation quality. The results are shown in Table 16.

A.2.5 HEURISTICS FOR ADJUSTING DIFFUSION STEP SHEDULE

Automatically adjusting the denoising schedule may be challenging and is an interesting research
direction. Based on the three empirical experiments in the main content, we explore three heuristics
to guide the scheduler.

1. Straightness of denoising paths.

2. Variance of diffusion-sampled tokens.

3. Uncertainty in predicting mask tokens.

There are two ways to use these heuristics:

1. Offline: We let the model generate 50K images, measure the heuristic values, and then design a
fixed schedule based on that.
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Table 17: Heuristics for adjusting the denoising step schedule.
Model AR steps Diff steps FID↔ IS↗ Time (s)↔ Speed-Up↗

MAR-B 256 100 2.31 281.7 0.650 1.0↘
64 50 2.39 (+0.08) 281.0 (-0.7) 0.134 4.8↘

+DiSA 64 50≃5 2.31 (+0.00) 282.3 (+0.6) 0.114 5.7↘
+DiSA (Offline) 64 Straightness heuristics 2.30 (-0.01) 282.2 (+0.5) 0.120 5.4↘

64 Variance heuristics 2.31 (+0.00) 283.0 (+1.3) 0.108 6.0↘
64 Uncertainty heuristics 2.30 (-0.01) 283.9 (+2.2) 0.109 6.0↘

+DiSA (Online) 64 Straightness heuristics 2.29 (-0.02) 279.0 (-2.7) 0.129 5.0↘
64 Variance heuristics 2.40 (+0.09) 281.2 (-0.5) 0.138 4.7↘
64 Uncertainty heuristics 2.30 (-0.01) 282.2 (+0.5) 0.109 6.0↘

MAR-L 256 100 1.78 296.0 1.102 1.0↘
64 50 1.86 (+0.08) 294.0 (-2.0) 0.250 4.4↘

+DiSA 64 50≃5 1.77 (-0.01) 298.3 (+2.3) 0.216 5.1↘
+DiSA (Offline) 64 Straightness heuristics 1.80 (+0.02) 292.2 (-3.8) 0.231 4.8↘

64 Variance heuristics 1.81 (+0.03) 292.8 (-3.2) 0.222 5.0↘
64 Uncertainty heuristics 1.78 (+0.00) 295.3 (-0.7) 0.198 5.6↘

+DiSA (Online) 64 Straightness heuristics 1.82 (+0.04) 291.4 (-4.6) 0.245 4.5↘
64 Variance heuristics 1.81 (+0.03) 291.6 (-4.4) 0.261 4.2↘
64 Uncertainty heuristics 1.78 (+0.00) 295.2 (-0.8) 0.198 5.6↘

FlowAR-H 5 50 1.67 276.3 0.423 1.0↘
+DiSA 5 50≃15 1.69 (+0.02) 273.8 (-2.5) 0.167 2.5↘
+DiSA (Offline) 5 Straightness heuristics 1.70 (+0.03) 275.3 (-1.0) 0.189 2.2↘

5 Variance heuristics 1.71 (+0.04) 277.1 (+0.8) 0.196 2.2↘
5 Uncertainty heuristics 1.87 (+0.20) 281.8 (+5.5) 0.159 2.7↘

+DiSA (Online) 5 Straightness heuristics 1.71 (+0.04) 276.0 (-0.3) 0.197 2.1↘
5 Variance heuristics 1.72 (+0.05) 274.5 (-1.8) 0.404 1.0↘
5 Uncertainty heuristics 1.82 (+0.15) 283.0 (+6.7) 0.181 2.3↘

xAR-H 4 50 1.24 301.6 0.896 1.0↘
+DiSA 4 50≃15 1.23 (-0.01) 300.5 (-1.1) 0.577 1.6↘
+DiSA (Offline) 4 Straightness heuristics 1.26 (+0.02) 298.5 (-3.1) 0.478 1.9↘

4 Variance heuristics 1.27 (+0.03) 299.2 (-2.4) 0.495 1.8↘
4 Uncertainty heuristics 1.24 (+0.00) 298.8 (-2.8) 0.521 1.7↘

+DiSA (Online) 4 Straightness heuristics 1.25 (+0.01) 299.9 (-1.7) 0.611 1.5↘
4 Variance heuristics - - - Too slow
4 Uncertainty heuristics 1.27 (+0.03) 299.9 (-1.7) 0.543 1.7↘

2. Online: During generation, the heuristics evaluate the generation process of the current tokens. For
instance, if the variance of current tokens keeps decreasing, the scheduler will gradually reduce the
number of diffusion steps for the subsequent tokens.

The results are shown in Table 17. The heuristics lead to comparable performance. For instance,
MAR-B with the uncertainty heuristic achieves a 6.0→ speed-up while maintaining similar generation
quality.

The offline methods perform well overall. In comparison, online methods have the advantage of
adjusting the schedule for each sample, which could potentially lead to better results. However, it
is challenging to estimate the heuristics accurately and efficiently during generation. One possible
direction to explore is introducing momentum to help stabilize the online-calculated heuristics.

A.2.6 MORE EXAMPLES

We also provide more generated examples. For MAR and Harmon, we find that under the same
random seed, the model still generates different styles of images, so we directly show generated
examples for MAR and Harmon with DiSA in Figure 8. For FlowAR and xAR, under the same
random seed, the model generates similar quality images with and without DiSA, as shown in
Figures 9-14.

A.3 MAR VS. MAE

We show that an MLP can well predict the remaining tokens. This bridges the underlying mechanism
between MAR and masked auto-encoder (MAE) (He et al., 2022). Here, we do a preliminary
exploration on the connection with MAR and MAE.
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MAR-H

Harmon-1.5B
A realistic landscape shot of the Northern Lights dancing over a snowy mountain range in Iceland.

Cute small dog siting in a movie theater eating popcorn watching a movie.

Dark high contrast render of a psychedelic tree of life illuminating dust in a mystical cave.

A cloud dragon flying over mountains, its body swirling with the wind.

A space explorer discovering an alien jungle planet under a purple sky.

A close-up photo of a baby sloth holding a treasure chest.

Figure 8: Generated Samples from Mar-H and Harmon-1.5B with DiSA.
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Figure 9: Generated Samples from FlowAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 2.5→. Class condition:
American eagle (22), macaw (88), Siberian husky (250).
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Figure 10: Generated Samples from FlowAR-H. Each image pair is generated with the same
random seed, where the first is generated without DiSA while the other is with DiSA. We find that
DiSA helps generate similar quality images while speeding up image generation by 2.5→. Class
condition: otter (360), red panda (387), mushroom (947).
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Figure 11: Generated Samples from FlowAR-H. Each image pair is generated with the same
random seed, where the first is generated without DiSA while the other is with DiSA. We find that
DiSA helps generate similar quality images while speeding up image generation by 2.5→. Class
condition: geyser (974), valley (979), daisy (985).
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Figure 12: Generated Samples from xAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 1.6→. Class condition:
American eagle (22), macaw (88), Brittany spaniel (215).
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Figure 13: Generated Samples from xAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 1.6→. Class condition:
otter (360), red panda (387), coral reef (973).
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Figure 14: Generated Samples from xAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 1.6→. Class condition:
geyser (974), valley (979), volcano (980).
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Diffusion loss can be written in the equivalent format as follows:

L(z, x) = Eϑ,t

[
↓x↑ x̂ω(xt|t, z)↓2

]
= Eϑ,t

[∥∥x↑ x̂ω(xt|t, f(x1, . . . , xk↓1)
∥∥2

]
. (7)

We can also write out the reconstruction loss in Masked Autoencoder (MAE):

L(z, x) = Eϑ,t

[∥∥x↑ x̂ω(f(x
1, . . . , xk↓1)

∥∥2
]
. (8)

Comparing Eq. (7) and Eq. (8), we can see that both loss functions require the model to predict mask
tokens. In MAR training, t will sampled from {0, 1 . . . , 999}. When t is large, for instance, t = 950,
xt is more similar to the Gaussian noise, so it provides little more information than seen tokens.
In this case, Eq. (7) actually recovers Eq. (8). Note that, in training iteration, for each token, four
different time steps are sampled, the corresponding noisy xt are generated, and losses on four xt will
be averaged as the loss for one token. And considering the long training process of MAR, t normally
will cover the large values.
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