
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We download the pretrained model checkpoints that the original authors provided.

• MAR (Li et al., 2024). https://github.com/LTH14/mar
• FlowAR (Ren et al., 2024). https://github.com/OliverRensu/FlowAR
• xAR (Ren et al., 2025). https://github.com/OliverRensu/xAR
• Harmon (Wu et al., 2025). https://github.com/wusize/Harmon

Predict the Next Tokens. To predict the next tokens, we train a MLP on MAR and Harmon. The
MLP has a similar depth and width as the original model head. For example, on MAR-H, we use a
MLP with 12 blocks and a width of 1536 channels. For MAR, we freeze the pretrained model and
train the MLP on the ImageNet 256→256 dataset.

In training, each batch of images is converted to tokens, and a random ratio of tokens are masked.
The unmasked tokens are fed into the encoder-decoder part of MAR. The decoder outputs a condition
vector for each mask token. The MLP takes the condition vector as input and predict the mask token
with MSE loss.

For Harmon, we use a distillation strategy to train the MLP. Specifically, we use GenEval (Ghosh
et al., 2023) to create 713 prompts, and use the Harmon model to generates images under each prompt.
We train an MLP in the process to predict the generated tokens.

At inference time, when MAR or Harmon generates a few tokens, we hack in the model to get the
condition vectors for the remaining tokens, and use our trained MLP to predict the remaining tokens.
Then, we feed generated tokens and predicted tokens to the tokenizer to get the images.

For FlowAR and xAR, we repurpose the original model head. As described in the main context, we
feed sampled noise with t = 1 into the model, obtain the estimated velocity vω(xi

t | t = 1, zi), and
predict the next token as xi

0 = xi
t=1↑v. Since xi

t=1 is purely noisy, the model has to directly predict
the xi based on zi. This method is training-free. For MAR and Harmon, the model predictions on
t = 999 are unreliable, thus, we train MLPs instead.

At inference time, when FlowAR or xAR generates a few tokens, we change the original model head
to predict the remaining tokens in one step, and get the predicted images.

Variance and Straightness of Diffusion Processes in FlowAR, xAR, and Harmon. we measure
the straightness of a denoising path {xt}1t=0 under condition z.

S({xt}1t=0, z) = Et→[0,1]

[
↓(x1 ↑ x0)↑ vω(xt | t, z)↓2

]
. (5)

MAR and Harmon use diffusion process and are not trained on the rectified flow loss function.
Thus, we calculate the cosine similarity between the score (the gradient of the data distribution
density) (Song & Ermon, 2019; Song et al., 2020b; Dhariwal & Nichol, 2021) and the straight
direction from the noisy token to the clean token.

S({xt}999t=0, z) = Et [cos (x0 ↑ xt,↔xt log pω(xt | t, z))] , (6)

where ↔xt log pω(xt | t, z) = ↑ 1↑
1↓ε̄t

ωω(xt | t, z).

Variance and straightness of FlowAR, xAR and Harmon are shown in Figure 7. Note that FlowAR
and xAR are trained with the Flow Matching loss, which explicitly requires the flow paths to be
straight. Thus, the straightness of FlowAR and xAR is much higher than that of the other two models.
But the two models show a similar trend: not so straight at the beginning but increase significantly at
later stages.

An interesting finding is that FlowAR is not exactly following our hypothesis. The straightness peaks
in the middle, and decreases slightly at the end of generation. This may inspire a different strategy on
FlowAR, that is, use fewer steps in the middle. It is also possible to consider a straightness-aware
adaptive method, which considers the straightness of different models to schedule the number of
diffusion steps. We leave these as future work.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) (b)

(d) (e) (f)

(c)

Figure 7: Variance of diffusion-sampled tokens decreases along the autoregressive steps in (a)
FlowAR, (b) xAR, and (c) Harmon. Besides, straightness of denoising paths increases from early to
late stages in (d) FlowAR, (e) xAR, and (f) Harmon.

Table 4: Speed-Quality Trade-off in MAR-B. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64 128
Diff steps 50 50 25 50 100 50 50

FID↗ 12.41 3.92 3.65 2.47 2.49 2.39 2.37
IS↘ 184.6 250.3 240.7 272.4 273.8 280.4 279.0
Time(s)↗ 10.5 14.0 17.1 21.1 28.6 35.3 64.8

Implementation of DiSA. DiSA can be implemented within a few lines of code. We show a pseudo-
code for showing how DiSA works on top of existing models. Before running a diffusion / flow
matching process to sample the next tokens, we calculate Tk first and get the time schedule with Tk

steps.
Algorithm 1 Conditional Token Generation via Diffusion with Adaptive Steps

1: function GENERATETOKEN(z: condition; k: current AR step; K: the total number of AR steps)
2: Get Tk via Eq. (3)
3: {ti}Tk

i=1 ≃ GETTIMESCHEDULE(Tk)
4: x ≃ SAMPLEGAUSSIANNOISE
5: for t in {ti} do
6: x ≃ DENOISESTEP(x, t, z)
7: end for
8: return x
9: end function

A.2 DETAILED RESULTS AND MORE EXAMPLES ON SPEED-QUALITY TRADE-OFF

A.2.1 SPEED-QUALITY TRADE-OFF

We report detailed results for Figure 5 in Tables 4-13.

A.2.2 CHOICE ACCORDING TO AUTOREGRESSIVE STEPS.

As seen in Table 14, using fewer autoregressive steps in MAR significantly degrades generation
quality. In contrast, DiSA can often maintain or even improve the quality. Besides, DiSA is not
fragile but works well across a wide range of Tlate values.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Speed-Quality Trade-off in MAR-B + DiSA. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64
Diff steps 50⇐5 50⇐5 10⇐5 20⇐5 50⇐5 50⇐5

FID↗ 10.97 3.66 3.44 2.41 2.32 2.31
IS↘ 196.3 255.1 279.1 283.4 279.3 282.3
Time(s)↗ 6.55 9.92 13.72 14.51 16.41 29.3

Table 6: Speed-Quality Trade-off in MAR-L. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64 128
Diff steps 50 50 25 50 100 50 50

FID↗ 14.70 4.03 2.25 2.01 2.06 1.87 1.81
IS↘ 173.8 253.3 278.3 285.4 283.1 294.9 298.7
Time(s)↗ 17.4 24.0 31.4 37.5 49.8 63.9 118.5

Table 7: Speed-Quality Trade-off in MAR-L + DiSA. Results are partly visualized in Figure 5.
AR steps 8 16 32 32 32 64
Diff steps 50⇐5 50⇐5 10⇐5 20⇐5 50⇐5 50⇐5

FID↗ 13.65 3.86 2.75 1.93 1.92 1.77
IS↘ 181.0 251.9 294.8 295.8 285.4 298.3
Time(s)↗ 11.0 17.5 26.4 27.3 30.1 55.2

Table 8: Speed-Quality Trade-off in FlowAR-L. Results are partly visualized in Figure 5.
AR steps 5 5 5 5 5
Diff steps 8 10 15 20 25

FID↗ 3.37 2.74 2.20 1.95 1.90
IS↘ 294.9 293.9 287.2 275.9 281.4
Time(s)↗ 12.4 14.8 19.8 26.9 31.8

Table 9: Speed-Quality Trade-off in FlowAR-L + DiSA. Results are partly visualized in Figure 5.
AR steps 5 5 5 5
Diff steps 15⇐8 20⇐8 25⇐10 25⇐15

FID↗ 2.60 2.24 2.03 1.90
IS↘ 280.6 274.2 274.3 274.8
Time(s)↗ 12.8 13.8 16.3 21.1

Table 10: Speed-Quality Trade-off in xAR-B. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 15 20 25 40 50

FID↗ 3.16 2.11 1.81 1.73 1.67
IS↘ 247.6 258.5 264.7 266.3 265.2
Time(s)↗ 11.2 14.3 17.4 26.8 33.2

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 11: Speed-Quality Trade-off in xAR-B + DiSA. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 25⇐10 25⇐15 30⇐15 40⇐15 50⇐15

FID↗ 2.29 1.99 1.82 1.73 1.68
IS↘ 253.6 259.3 263.1 262.4 265.5
Time(s)↗ 12.5 14.0 15.5 18.5 21.4

Table 12: Speed-Quality Trade-off in xAR-L. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 15 20 25 40 50

FID↗ 2.79 1.69 1.39 1.28 1.28
IS↘ 260.3 278.7 286.0 292.2 292.2
Time(s)↗ 33.0 42.8 52.6 81.8 100.9

Table 13: Speed-Quality Trade-off in xAR-L + DiSA. Results are partly visualized in Figure 5.
AR steps 4 4 4 4 4
Diff steps 25⇐10 25⇐15 30⇐15 40⇐15 50⇐15

FID↗ 1.79 1.57 1.40 1.28 1.23
IS↘ 275.8 280.0 284.2 292.4 287.3
Time(s)↗ 37.4 42.1 47.2 56.0 65.4

Table 14: Performance of MAR-B and MAR-L with DiSA under different AR steps and diffusion
step schedules.

Model AR steps Diff steps FID↔ IS↗ Time (s)↔ Speed-Up↗

MAR-B 256 100 2.31 281.7 0.650 1.0↘
64 50 2.39 (+0.08) 281.0 (-0.7) 0.134 4.8↘

+DiSA 64 50≃25 2.31 (+0.00) 278.9 (-2.8) 0.126 5.2↘
64 50≃15 2.26 (-0.05) 281.0 (-0.7) 0.120 5.4↘
64 50≃10 2.29 (-0.02) 279.3 (-2.4) 0.119 5.5↘
64 50≃5 2.31 (+0.00) 282.3 (+0.6) 0.114 5.7↘
32 50≃25 2.56 (+0.25) 272.0 (-9.7) 0.071 9.2↘
32 50≃15 2.47 (+0.16) 272.0 (-9.7) 0.067 9.7↘
32 50≃10 2.42 (+0.11) 273.9 (-7.8) 0.065 10.0↘
32 50≃5 2.32 (+0.01) 279.3 (-2.4) 0.063 10.4↘
16 50≃25 4.33 (+2.02) 246.4 (-35.3) 0.045 14.4↘
16 50≃15 4.15 (+1.84) 247.8 (-33.9) 0.042 15.6↘
16 50≃10 4.01 (+1.70) 249.5 (-32.2) 0.040 16.3↘
16 50≃5 3.65 (+1.34) 255.2 (-26.5) 0.038 16.9↘
8 50≃25 13.59 (+11.28) 179.6 (-102.1) 0.031 20.7↘
8 50≃15 13.15 (+10.84) 182.9 (-98.8) 0.029 22.5↘
8 50≃10 12.62 (+10.31) 185.8 (-95.9) 0.027 23.8↘
8 50≃5 10.97 (+8.66) 196.2 (-85.5) 0.026 25.5↘

MAR-L 256 100 1.78 296.0 1.102 1.0↘
64 50 1.86 (+0.08) 294.0 (-2.0) 0.250 4.4↘

+DiSA 64 50≃25 1.83 (+0.05) 290.1 (-5.9) 0.232 4.8↘
64 50≃15 1.78 (+0.00) 293.3 (-2.7) 0.224 4.9↘
64 50≃10 1.80 (+0.02) 292.3 (-3.7) 0.225 4.9↘
64 50≃5 1.77 (-0.01) 298.3 (+2.3) 0.216 5.1↘
32 50≃25 2.21 (+0.43) 278.6 (-17.4) 0.129 8.5↘
32 50≃15 2.14 (+0.36) 281.6 (-14.4) 0.123 9.0↘
32 50≃10 2.06 (+0.28) 281.2 (-14.8) 0.120 9.2↘
32 50≃5 1.92 (+0.14) 285.5 (-10.5) 0.117 9.4↘
16 50≃25 4.72 (+2.94) 243.7 (-52.3) 0.079 13.9↘
16 50≃15 4.52 (+2.74) 245.4 (-50.6) 0.074 14.9↘
16 50≃10 4.31 (+2.53) 247.7 (-48.3) 0.071 15.5↘
16 50≃5 3.86 (+2.08) 251.8 (-44.2) 0.069 16.0↘
8 50≃25 16.81 (+15.03) 164.0 (-132.0) 0.054 20.6↘
8 50≃15 16.34 (+14.56) 164.5 (-131.5) 0.050 22.3↘
8 50≃10 15.51 (+13.73) 169.1 (-126.9) 0.046 23.7↘
8 50≃5 13.64 (+11.86) 181.0 (-115.0) 0.044 25.0↘

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 15: Performance of MAR with DiSA under raster and reverse raster orders.
Model AR steps Diff steps FID↔ IS↗

Raster order

MAR-B 64 50 7.18 246.8
+DiSA 64 50≃25 7.72 (+0.54) 241.1 (-5.7)

64 50≃15 7.57 (+0.39) 241.0 (-5.8)
MAR-L 64 50 8.13 236.4
+DiSA 64 50≃25 9.81 (+1.68) 221.3 (-15.1)

64 50≃15 9.47 (+1.34) 222.7 (-13.7)

Reverse raster order

MAR-B 64 50 7.02 248.8
+DiSA 64 50≃25 7.80 (+0.78) 238.6 (-10.2)

64 50≃15 7.53 (+0.51) 241.6 (-7.2)
MAR-L 64 50 10.82 202.4
+DiSA 64 50≃25 12.87 (+2.05) 188.1 (-14.3)

64 50≃15 12.34 (+1.52) 192.6 (-9.8)

Table 16: Performance of MAR with DiSA under bfloat16.
Model AR steps Diff steps FID↔ IS↗

MAR-B 64 50 2.39 281.0
MAR-B (BF16) 64 50 2.49 (+0.10) 282.7 (+1.7)
+DiSA (BF16) 64 50≃25 2.31 (-0.08) 278.3 (-2.7)

64 50≃15 2.30 (-0.09) 278.0 (-3.0)
64 50≃10 2.30 (-0.09) 279.6 (-1.4)
64 50≃5 2.34 (-0.05) 279.7 (-1.3)

MAR-L 64 50 1.86 294.0
MAR-L (BF16) 64 50 1.87 (+0.01) 292.7 (-1.3)
+DiSA (BF16) 64 50≃25 1.81 (-0.05) 293.2 (-0.8)

64 50≃15 1.81 (-0.05) 289.5 (-4.5)
64 50≃10 1.76 (-0.10) 293.9 (-0.1)
64 50≃5 1.77 (-0.09) 295.1 (+1.1)

A.2.3 CHOICE ACCORDING TO AR GENERATION ORDER

In our experiments, MAR generates tokens in random orders. We mannually set MAR to generate
tokens in raster order (from left to right and from up to bottom) or reverse raster order. As shown in
Table 15, DiSA leads a slight performance drop with MAR. This may result from training-testing
mismatch, since the pretrained MAR model is not optimized for raster order. On models pretrained
with raster order like xAR, DiSA performs well.

A.2.4 PERFORMANCE UNDER BFLOAT16

Many large models are trained and evaluated using bfloat16 (BF16) precision. We tested DiSA in
this setting and found that MAR’s performance drops under bfloat16, while DiSA still improves the
generation quality. The results are shown in Table 16.

A.2.5 HEURISTICS FOR ADJUSTING DIFFUSION STEP SHEDULE

Automatically adjusting the denoising schedule may be challenging and is an interesting research
direction. Based on the three empirical experiments in the main content, we explore three heuristics
to guide the scheduler.

1. Straightness of denoising paths.

2. Variance of diffusion-sampled tokens.

3. Uncertainty in predicting mask tokens.

There are two ways to use these heuristics:

1. Offline: We let the model generate 50K images, measure the heuristic values, and then design a
fixed schedule based on that.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 17: Heuristics for adjusting the denoising step schedule.
Model AR steps Diff steps FID↔ IS↗ Time (s)↔ Speed-Up↗

MAR-B 256 100 2.31 281.7 0.650 1.0↘
64 50 2.39 (+0.08) 281.0 (-0.7) 0.134 4.8↘

+DiSA 64 50≃5 2.31 (+0.00) 282.3 (+0.6) 0.114 5.7↘
+DiSA (Offline) 64 Straightness heuristics 2.30 (-0.01) 282.2 (+0.5) 0.120 5.4↘

64 Variance heuristics 2.31 (+0.00) 283.0 (+1.3) 0.108 6.0↘
64 Uncertainty heuristics 2.30 (-0.01) 283.9 (+2.2) 0.109 6.0↘

+DiSA (Online) 64 Straightness heuristics 2.29 (-0.02) 279.0 (-2.7) 0.129 5.0↘
64 Variance heuristics 2.40 (+0.09) 281.2 (-0.5) 0.138 4.7↘
64 Uncertainty heuristics 2.30 (-0.01) 282.2 (+0.5) 0.109 6.0↘

MAR-L 256 100 1.78 296.0 1.102 1.0↘
64 50 1.86 (+0.08) 294.0 (-2.0) 0.250 4.4↘

+DiSA 64 50≃5 1.77 (-0.01) 298.3 (+2.3) 0.216 5.1↘
+DiSA (Offline) 64 Straightness heuristics 1.80 (+0.02) 292.2 (-3.8) 0.231 4.8↘

64 Variance heuristics 1.81 (+0.03) 292.8 (-3.2) 0.222 5.0↘
64 Uncertainty heuristics 1.78 (+0.00) 295.3 (-0.7) 0.198 5.6↘

+DiSA (Online) 64 Straightness heuristics 1.82 (+0.04) 291.4 (-4.6) 0.245 4.5↘
64 Variance heuristics 1.81 (+0.03) 291.6 (-4.4) 0.261 4.2↘
64 Uncertainty heuristics 1.78 (+0.00) 295.2 (-0.8) 0.198 5.6↘

FlowAR-H 5 50 1.67 276.3 0.423 1.0↘
+DiSA 5 50≃15 1.69 (+0.02) 273.8 (-2.5) 0.167 2.5↘
+DiSA (Offline) 5 Straightness heuristics 1.70 (+0.03) 275.3 (-1.0) 0.189 2.2↘

5 Variance heuristics 1.71 (+0.04) 277.1 (+0.8) 0.196 2.2↘
5 Uncertainty heuristics 1.87 (+0.20) 281.8 (+5.5) 0.159 2.7↘

+DiSA (Online) 5 Straightness heuristics 1.71 (+0.04) 276.0 (-0.3) 0.197 2.1↘
5 Variance heuristics 1.72 (+0.05) 274.5 (-1.8) 0.404 1.0↘
5 Uncertainty heuristics 1.82 (+0.15) 283.0 (+6.7) 0.181 2.3↘

xAR-H 4 50 1.24 301.6 0.896 1.0↘
+DiSA 4 50≃15 1.23 (-0.01) 300.5 (-1.1) 0.577 1.6↘
+DiSA (Offline) 4 Straightness heuristics 1.26 (+0.02) 298.5 (-3.1) 0.478 1.9↘

4 Variance heuristics 1.27 (+0.03) 299.2 (-2.4) 0.495 1.8↘
4 Uncertainty heuristics 1.24 (+0.00) 298.8 (-2.8) 0.521 1.7↘

+DiSA (Online) 4 Straightness heuristics 1.25 (+0.01) 299.9 (-1.7) 0.611 1.5↘
4 Variance heuristics - - - Too slow
4 Uncertainty heuristics 1.27 (+0.03) 299.9 (-1.7) 0.543 1.7↘

2. Online: During generation, the heuristics evaluate the generation process of the current tokens. For
instance, if the variance of current tokens keeps decreasing, the scheduler will gradually reduce the
number of diffusion steps for the subsequent tokens.

The results are shown in Table 17. The heuristics lead to comparable performance. For instance,
MAR-B with the uncertainty heuristic achieves a 6.0→ speed-up while maintaining similar generation
quality.

The offline methods perform well overall. In comparison, online methods have the advantage of
adjusting the schedule for each sample, which could potentially lead to better results. However, it
is challenging to estimate the heuristics accurately and efficiently during generation. One possible
direction to explore is introducing momentum to help stabilize the online-calculated heuristics.

A.2.6 MORE EXAMPLES

We also provide more generated examples. For MAR and Harmon, we find that under the same
random seed, the model still generates different styles of images, so we directly show generated
examples for MAR and Harmon with DiSA in Figure 8. For FlowAR and xAR, under the same
random seed, the model generates similar quality images with and without DiSA, as shown in
Figures 9-14.

A.3 MAR VS. MAE

We show that an MLP can well predict the remaining tokens. This bridges the underlying mechanism
between MAR and masked auto-encoder (MAE) (He et al., 2022). Here, we do a preliminary
exploration on the connection with MAR and MAE.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

MAR-H

Harmon-1.5B
A realistic landscape shot of the Northern Lights dancing over a snowy mountain range in Iceland.

Cute small dog siting in a movie theater eating popcorn watching a movie.

Dark high contrast render of a psychedelic tree of life illuminating dust in a mystical cave.

A cloud dragon flying over mountains, its body swirling with the wind.

A space explorer discovering an alien jungle planet under a purple sky.

A close-up photo of a baby sloth holding a treasure chest.

Figure 8: Generated Samples from Mar-H and Harmon-1.5B with DiSA.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 9: Generated Samples from FlowAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 2.5→. Class condition:
American eagle (22), macaw (88), Siberian husky (250).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: Generated Samples from FlowAR-H. Each image pair is generated with the same
random seed, where the first is generated without DiSA while the other is with DiSA. We find that
DiSA helps generate similar quality images while speeding up image generation by 2.5→. Class
condition: otter (360), red panda (387), mushroom (947).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Generated Samples from FlowAR-H. Each image pair is generated with the same
random seed, where the first is generated without DiSA while the other is with DiSA. We find that
DiSA helps generate similar quality images while speeding up image generation by 2.5→. Class
condition: geyser (974), valley (979), daisy (985).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 12: Generated Samples from xAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 1.6→. Class condition:
American eagle (22), macaw (88), Brittany spaniel (215).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13: Generated Samples from xAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 1.6→. Class condition:
otter (360), red panda (387), coral reef (973).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 14: Generated Samples from xAR-H. Each image pair is generated with the same random
seed, where the first is generated without DiSA while the other is with DiSA. We find that DiSA
helps generate similar quality images while speeding up image generation by 1.6→. Class condition:
geyser (974), valley (979), volcano (980).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Diffusion loss can be written in the equivalent format as follows:

L(z, x) = Eϑ,t

[
↓x↑ x̂ω(xt|t, z)↓2

]
= Eϑ,t

[∥∥x↑ x̂ω(xt|t, f(x1, . . . , xk↓1)
∥∥2

]
. (7)

We can also write out the reconstruction loss in Masked Autoencoder (MAE):

L(z, x) = Eϑ,t

[∥∥x↑ x̂ω(f(x
1, . . . , xk↓1)

∥∥2
]
. (8)

Comparing Eq. (7) and Eq. (8), we can see that both loss functions require the model to predict mask
tokens. In MAR training, t will sampled from {0, 1 . . . , 999}. When t is large, for instance, t = 950,
xt is more similar to the Gaussian noise, so it provides little more information than seen tokens.
In this case, Eq. (7) actually recovers Eq. (8). Note that, in training iteration, for each token, four
different time steps are sampled, the corresponding noisy xt are generated, and losses on four xt will
be averaged as the loss for one token. And considering the long training process of MAR, t normally
will cover the large values.

26


	Introduction
	Related-Work
	Observation on AR + Diffusion Models
	Revisiting Existing Models
	More Tokens Generated, Stronger Constraints on Later Tokens
	Diffusion Step Annealing

	Experiments
	Implementation Details, Datasets, and Metrics
	Evaluation
	Discussion

	Conclusion
	Appendix
	Implementation Details
	Detailed Results and More Examples on Speed-Quality Trade-off
	Speed-Quality Trade-off
	Choice According to Autoregressive Steps.
	Choice according to AR generation order
	Performance under bfloat16
	Heuristics for Adjusting Diffusion Step Shedule
	More Examples

	MAR vs. MAE


