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ABSTRACT

In this paper, we reinterpret the challenge of open-vocabulary semantic segmenta-
tion, where each pixel in an image is labeled with a wide range of text descriptions,
as a correspondence problem focusing on the optimal text matching for each pixel.
Addressing the limitations of conventional region-to-text matching approaches,
we introduce a novel framework, CAT-Seg, grounded on the principles of cost
aggregation methods in visual correspondence tasks. This framework refines the
initial matching scores between dense image and text embeddings, leveraging a
Transformer-based module for cost aggregation, further enhanced with embed-
ding guidance. Notably, by operating on cosine similarity instead of manipulating
embeddings directly, our approach enables the end-to-end fine-tuning of the CLIP
model for pixel-level tasks, while yielding superior zero-shot capabilities. Empir-
ical evaluations show our method’s superior performance, achieving state-of-the-
art results across open-vocabulary benchmarks, practical computational efficiency,
and robustness for various domains, underscoring its potential for a wide range of
open-vocabulary semantic segmentation applications.
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Figure 1: We reformulate open-vocabulary semantic segmentation task to correspondence es-
timation task. CAT-Seg constructs a cost volume from CLIP image and text embeddings and per-
forms cost aggregation for its refinement, clearly setting a new state-of-the-art for all the standard
benchmarks and an additional benchmark consisting of 22 datasets from various domains.

1 INTRODUCTION

Open-vocabulary semantic segmentation aims to label each pixel within an image with class labels,
which assumes a wide-range of text description. This task presents significant challenges due to
the nature of the dataset it requires, which involves pixel-level annotations with labels in a variety
of natural language forms. Pixel-level annotation not only demands extensive annotation effort, but
assigning a natural language description to each pixel is prohibitive. To address this, recent works
have leveraged pre-trained vision-language foundational models, e.g., CLIP (Radford et al., 2021)
or ALIGN (Jia et al., 2021), trained with image-level contrastive learning. However, transferring
the image-level representation to pixel-level task with a relatively small annotated dataset (Caesar
et al., 2018) still remains as a primary concern for the many open-vocabulary semantic segmentation
methods.
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Figure 2: Comparison between feature and cost aggregation. To validate our framework, we
examine outcomes of two approaches: feature aggregation, which directly processes dense image
and text embeddings, and cost aggregation, which indirectly processes them through the use of a
cost map encoding the dense similarity scores between dense image embeddings and text embed-
dings. From (a-b), unlike feature aggregation that suffers from a severe performance drop for unseen
classes, cost aggregation achieves significant performance improvements upon fine-tuning of CLIP.
This is also exemplified in qualitative results in (c). Our approach (IV) successfully segments the
previously unseen class, such as “birdcage,” whereas approach (III) fails.

Most prominent approach to solving this problem would be to transform it into a region-to-text
matching problem. These approaches (Ding et al., 2022a; Ghiasi et al., 2022; Xu et al., 2022; Liang
et al., 2022; Xu et al., 2023a;b; Yu et al., 2023) begin by grouping pixels into semantic regions with
a class-agnostic mask generator, and then use CLIP to find a best corresponding class. However, the
masks are generated independently from the classes provided by the user, limiting their adaptability
to the virtually unlimited number of concepts that users can provide. Furthermore, since the mask
generator is trained on a relatively small dataset compared to the image-caption dataset on which
CLIP was trained, the mask generator tends to exhibit bias toward the training dataset (Liang et al.,
2022). This motivates us to seek an alternative approach to generate masks conditioned on the
provided classes, without relying to external mask generators.

In this work, we interpret the open-vocabulary semantic segmentation task as a correspondence prob-
lem that finds an optimal text matching for each pixel. In light of this perspective, we introduce a cost
aggregation method (Kendall et al., 2017; Min & Cho, 2021), a well-established technique drawing
from the visual correspondence task, which is known to be beneficial for generalization (Cai et al.,
2020; Song et al., 2021; Liu et al., 2022). In visual correspondence, the cost aggregation methods
first construct the initial matching score by computing pixel-to-pixel cosine similarity across the two
images and sequentially refine the noisy initial score. Following our image-text correspondence for-
mulation, we alter the method from addressing a pixel-to-pixel problem to addressing a pixel-to-text
matching problem and designed a novel cost aggregator framework tailored to refine the image-text
matching score.

The framework, dubbed CAT-Seg, is illustrated in Fig. 1. We initially compute a matching cost map
between dense image and text embeddings using cosine similarity, which can also be interpreted
as a rough segmentation map for a class. We then sequentially refine it within a cost aggregation
stage, as the initial cost map contains noise and lacks fine details. Specifically, we employ a Trans-
former (Vaswani et al., 2017) based module that decomposes the aggregation process into spatial
and class aggregation, aided by an additional technique called embedding guidance, to effectively
aggregate the cost volume. Lastly, we use an upsampling decoder to upsample the aggregated cost
volume while capturing fine details.

An important characteristic of our framework is its ability to handle CLIP’s embedding space for
leveraging its knowledge. Instead of directly manipulating the embeddings themselves, e.g. an ad-
ditional mapping function (Zhou et al., 2022a), the framework conducts operations upon cosine
similarity. Surprisingly, we empirically found that this design choice facilitates fine-tuning CLIP
for pixel-level tasks, contrary to the previous observations that fine-tuning hindered its zero-shot
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capability. A number of studies (Zhou et al., 2022a; Yu et al., 2023; Xu et al., 2023b) have reported
that the fine-tuning approach fails because the encoders are prone to misalignment of the pre-trained
image-text embedding space especially for unseen classes. As can be seen in Fig. 2, when the
CLIP encoders are directly optimized on the feature representation, it fails to generalize to unseen
classes. In contrast, when the encoders are fine-tuned within this framework, the CLIP model can
be successfully adapted to the pixel-level while preserving its zero-shot capabilities.

By designing an aggregator tailored for processing the cost map and unveiling CLIP’s dense zero-
shot classification ability with its fine-tuning, the framework not only enables exceptional general-
ization ability but also demonstrates practical computational efficiency for both testing and training.
We achieve state-of-the-art results on every standard open-vocabulary benchmark.

Furthermore, even in the extreme scenario (Blumenstiel et al., 2023) where the domain of the image
and text description differs significantly from the training dataset, our model outperforms existing
state-of-the-art methods with large margin, paving the way for domain-specific applications, such
as paintings, body parts, engineering, or agriculture. This highlights versatility and potential of cost
aggregation framework for practical open-vocabulary semantic segmentation.

2 RELATED WORK

Open-vocabulary semantic segmentation. Classical approaches to the task (Zhao et al., 2017;
Bucher et al., 2019; Xian et al., 2019) attempt to learn visual embeddings that align with pre-
defined text embeddings (Miller, 1998; Mikolov et al., 2013). However, the limited vocabulary of
the words have been the major bottlenecks. To address this, LSeg (Li et al., 2022a) leveraged CLIP
for learning pixel-level visual embeddings aligned with the text embeddings of CLIP. Alternatively,
OpenSeg (Ghiasi et al., 2022) proposed to identify local regions within the image and correlate with
the text embeddings with class-agnostic region proposals. Similarly, ZegFormer (Ding et al., 2022a)
and ZSseg (Xu et al., 2022) proposed two-stage frameworks for dealing the task. Typically, they
first learn to predict class-agnostic region proposals similar to (Ghiasi et al., 2022), and feed them
to CLIP for final predictions. To better recognize these regions, OVSeg (Liang et al., 2022) collects
region-text pairs to fine-tune the CLIP encoder, while MaskCLIP (Ding et al., 2022b) leverages
the self-attention map from CLIP to refine the region proposals. Alternatively, ODISE (Xu et al.,
2023a) leverages pre-trained Stable Diffusion (Rombach et al., 2022) model for generating high-
quality class-agnostic masks. However, these region-to-text matching methods (Ding et al., 2022a;
Ghiasi et al., 2022; Xu et al., 2022; Liang et al., 2022; Xu et al., 2023a;b; Yu et al., 2023) require a
region generator, which is trained on a limited scale of annotated datasets.

More recently, ZegCLIP (Zhou et al., 2022e) and SAN (Xu et al., 2023b) proposed one-stage frame-
works, where they attempts to leverage the embeddings from CLIP to predict masks instead of
having class-agnostic mask generators parallel to CLIP. Although these methods can better leverage
the pre-trained knowledge from CLIP, they introduce learnable tokens or adapter layers to the CLIP
image encoder, which can be only trained on the seen classes. FC-CLIP (Yu et al., 2023) implements
CLIP as the visual backbone for segmentation model, but opts for a frozen image encoder as they
find fine-tuning the image encoder hinders performance for unseen classes. In contrast, we refrain
from adding external layers within CLIP and achieve fine-tuning of the original encoders of CLIP
by aggregating the cost volume, which is obtained solely from the embeddings of CLIP.
Fine-tuning vision-language models. Along with the advance of large-scale vision-language
models, e.g. CLIP, numerous attempts have been made to adapt CLIP to various downstream
tasks (Wortsman et al., 2022). CoOp (Zhou et al., 2022c) and CoCoOp (Zhou et al., 2022b) learns
prompt tokens instead of optimizing the full model. Another stream of work is CLIP-Adapter Gao
et al. (2023) and TIP-Adapter (Zhang et al., 2021), where they aggregate the image and text em-
beddings from CLIP through adapter layers instead of tuning the encoder itself. However, such
methods mainly focus in few-shot settings rather than zero-shot evaluation. We explore end-to-
end fine-tuning of CLIP for zero-shot pixel-level prediction, which has been failed in numerous
attempts (Zhou et al., 2022a; Xu et al., 2023b; Yu et al., 2023).
Cost aggregation. Cost aggregation is a popular technique adopted for the process of establishing
correspondence between visually or semantically similar images (Kendall et al., 2017; Guo et al.,
2019; Yang et al., 2019; Cho et al., 2021; Hong et al., 2022a) by reducing the impact of errors and
inconsistencies in the matching process. A matching cost, an input to cost aggregation, is typically
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constructed between dense features extracted from a pair of images (Rocco et al., 2017), and often
cosine-similarity (Liu et al., 2022; Rocco et al., 2017) is used. In matching literature, numerous
works (Kendall et al., 2017; Chang & Chen, 2018; Guo et al., 2019; Yang et al., 2019; Song et al.,
2021; Hong et al., 2022b; Huang et al., 2022; Cho et al., 2022) have proposed cost aggregation
modules and demonstrated its importance, owing to its favorable generalization ability (Song et al.,
2021; Liu et al., 2022). In this work, we leverage the cost volume constructed between image and
text embeddings from CLIP encoders to promote accurate segmentation through cost aggregation.

3 METHODOLOGY

Given an image I and a set of candidate class categories C = {T (n)} for n = 1, . . . , NC , where
T (n) denotes textual description of n-th category and NC is the number of classes, open-vocabulary
semantic segmentation assigns a class label for each pixel in image I , where we interpret it as a
correspondence problem between pixels in I and a set of class labels C. Different from classical
semantic segmentation tasks (Long et al., 2015; He et al., 2017; Zhou et al., 2022d; He et al., 2019;
Jin et al., 2021; Yu et al., 2020a; Yuan et al., 2020), open-vocabulary segmentation is additionally
challenged by varying C at inference, which includes classes that were not observed during training.

Upon our formulation of solving open-vocabulary semantic segmentation as an pixel-to-text corre-
spondence problem, we propose an framework for effectively finding such correspondence through
cost aggregation (Kendall et al., 2017; Guo et al., 2019). We specifically design our approach for
this task, which we call Cost AggregaTion approach for open-vocabulary semantic Segmentation
(CAT-Seg). This approach takes into consideration the handling of different modalities, i.e. image
and text embeddings from CLIP, as we will describe in this section.

In Sec. 3.1, we provide an explanation of the cost computation and its embedding stage. In Sec. 3.2,
we introduce a decomposed aggregation design tailored to address the pixel-to-text correspondence
problem. This design is complemented by an embedding guidance that enhances the aggregation
process. In Sec. 3.3, we demonstrate a decoder that upsamples the cost map while effectively han-
dling fine details. In Sec. 3.4, we present an efficient fine-tuning technique for CLIP.

3.1 COST COMPUTATION AND EMBEDDING

Initially, we construct a cost map, which represents a matching score between dense image embed-
dings and text embeddings. To obtain dense CLIP embeddings, we follow the method described
in (Zhou et al., 2022a), wherein we modify the last attention layer of the image encoder to elimi-
nate the pooling effect. Given the modified CLIP image encoder ΦV (·) and the text encoder ΦL(·),
we extract the dense image embeddings DV = ΦV (I) ∈ R(H×W )×d and the text embeddings
DL = ΦL(T ) ∈ RNC×d, respectively. We use the image and text embeddings DV (i) and DL(n),
where i denotes 2D spatial positions of the image embedding and n denotes an index for a class, to
compute a cost volume C ∈ R(H×W )×NC by cosine similarity (Rocco et al., 2017). Formally, this
is defined as:

C(i, n) =
DV (i) ·DL(n)

∥DV (i)∥∥DL(n)∥
. (1)

To enhance the processing of cost in high dimensional feature space, we feed the cost volume to a
single convolution layer that processes each cost slice C(:, n) ∈ R(H×W )×1 independently to obtain
initial cost volume embedding F ∈ R(H×W )×NC×dF , where dF is the cost embedding dimension,
as shown in Fig. 3.

3.2 COST AGGREGATION

To filter out noisy correlation within the cost volume, we feed the cost volume embedding to ag-
gregation modules. A cost aggregation (Kendall et al., 2017), which was initially developed for the
image correspondence problem and specifically designed to process an image-to-image correlation
volume, does not need to account for modality differences. In contrast, as we address the challenge
of image-to-text correspondence, we need to consider the multi-modality of the cost volume and
the characteristics of each modality. This includes addressing aspects such as spatial smoothness or
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Figure 3: Overview of the cost aggregation process. Our cost aggregation consists of spatial
aggregation and inter-class aggregation, followed by an upsampling decoder. Please refer to the
supplementary material for a detailed illustration.

spatial relations in images, accounting for permutation invariance of classes, and accommodating
the variable number of classes that may arise during inference.

In this regard, as shown in Fig. 3, we break down the aggregation stage into two separate module,
i.e. spatial and class aggregation. Specifically, we perform spatial aggregation followed by class ag-
gregation, and alternate both aggregations NB times. In addition, we facilitate the cost aggregation
process with embedding guidance that provides contextual information from each modality. In the
following, we explain each in detail.
Spatial aggregation. Here, we reason about the spatial relations based on pixel-wise similarities
computed between image and text embeddings. For this, we adopt Transformer (Vaswani et al.,
2017; Liu et al., 2021) over CNNs for its adaptability to input tokens (Dai et al., 2021), while also
having global (Vaswani et al., 2017) or semi-global (Liu et al., 2021; Hong et al., 2022a) receptive
fields, which is more favorable to our goal to learn relations among all tokens. In practice, we
employ Swin Transformer (Liu et al., 2021) for computational efficiency. We define this process as:

F ′(:, n) = T sa(F (:, n)), (2)

where F (:, n) ∈ R(H×W )×dF , and T sa(·) denotes a pair of two consecutive Swin transformer
block for spatial aggregation, where the first block features self-attention within a local window,
followed by the second block with self-attention within shifted window. Note that we treat dF as
channel dimensions for each token, and attention is computed within individual classes separately.
Intuitively, we perform spatial aggregation for each class to locate the features that will guide to
accurate segmentation outputs.
Class aggregation. Subsequent to spatial aggregation, class aggregation is designed to explicitly
capture relationships between different class categories. However, this task presents two challenges
that need to be addressed: the variable number of categories C and their unordered input arrange-
ment. To address these challenges, we employ a Transformer (Vaswani et al., 2017) model without
position embedding for aggregation. This approach enables the handling of sequences of arbitrary
length and provides the model with permutation invariance to inputs. This process is defined as:

F ′′(i, :) = T ca(F ′(i, :)), (3)

where F ′(i, :) ∈ RNC×dF , and T ca(·) denotes a transformer block for class aggregation. Although
we can employ the same Swin Transformer (Liu et al., 2021) as for the spatial aggregation, we
instead employ a linear transformer (Katharopoulos et al., 2020) as we do not need to consider spatial
structure of the input tokens in this aggregation. Also, it offers a linear computational complexity
with respect to the number of the tokens, allowing efficient computation.
Embedding guidance. As a means to enhance cost aggregation process, we additionally leverage
the embeddings DL and DV to provide spatial structure or contextual information of the inputs.
Intuitively, we aim to guide the process with embeddings, based on the assumption that visually or
semantically similar input tokens, e.g., color or category, have similar matching costs, inspired by
cost volume filtering (Hosni et al., 2012; Sun et al., 2018) in stereo matching literature (Scharstein
& Szeliski, 2002). Accordingly, we redefine Eq. 2 and Eq. 3 as:

F ′(:, n) = T sa([F (:, n);PV (DV )]),

F ′′(i, :) = T ca([F ′(i, :);PL(DL)]),
(4)

where [·] denotes concatenation, PV and PL denote linear projection layer, DV ∈ R(H×W )×d, and
DL ∈ RNC×d, where d denotes the feature dimension. Notably, we only provide the embeddings to
query and key as we find this is sufficient for embedding guidance.
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Table 1: Quantitative evaluation on in-domain datasets. The best-performing results are pre-
sented in bold, while the second-best results are underlined. Improvements over the second-best
methods are highlighted in green. †: Re-implemented version trained for full COCO-Stuff.

Model VLM Additional Training Additional A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

Backbone Dataset Dataset

SPNet (Xian et al., 2019) - ResNet-101 PASCAL VOC ✗ - - - 24.3 18.3 -
ZS3Net (Bucher et al., 2019) - ResNet-101 PASCAL VOC ✗ - - - 19.4 38.3 -
LSeg (Li et al., 2022a) ViT-B/32 ResNet-101 PASCAL VOC-15 ✗ - - - - 47.4 -
LSeg+ (Ghiasi et al., 2022) ALIGN ResNet-101 COCO-Stuff ✗ 2.5 5.2 13.0 36.0 - 59.0
ZegFormer (Ding et al., 2022a) ViT-B/16 ResNet-101 COCO-Stuff-156 ✗ 4.9 9.1 16.9 42.8 86.2 62.7
ZegFormer† (Ding et al., 2022a) ViT-B/16 ResNet-101 COCO-Stuff ✗ 5.6 10.4 18.0 45.5 89.5 65.5
ZSseg (Xu et al., 2022) ViT-B/16 ResNet-101 COCO-Stuff ✗ 7.0 - 20.5 47.7 88.4 -
OpenSeg (Ghiasi et al., 2022) ALIGN ResNet-101 COCO Panoptic ✓ 4.4 7.9 17.5 40.1 - 63.8
OVSeg (Liang et al., 2022) ViT-B/16 ResNet-101c COCO-Stuff ✓ 7.1 11.0 24.8 53.3 92.6 -
ZegCLIP (Zhou et al., 2022e) ViT-B/16 - COCO-Stuff-156 ✗ - - - 41.2 93.6 -
SAN (Xu et al., 2023b) ViT-B/16 - COCO-Stuff ✗ 10.1 12.6 27.5 53.8 94.0 -

12.0 19.0 31.8 57.5 94.6 77.3CAT-Seg (ours) ViT-B/16 - COCO-Stuff ✗ (+1.9) (+6.4) (+4.3) (+3.7) (+0.6) (+11.8)

LSeg (Li et al., 2022a) ViT-B/32 ViT-L/16 PASCAL VOC-15 ✗ - - - - 52.3 -
OpenSeg (Ghiasi et al., 2022) ALIGN Eff-B7 COCO Panoptic ✓ 8.1 11.5 26.4 44.8 - 70.2
OVSeg (Liang et al., 2022) ViT-L/14 Swin-B COCO-Stuff ✓ 9.0 12.4 29.6 55.7 94.5 -
SAN (Xu et al., 2023b) ViT-L/14 - COCO-Stuff ✗ 12.4 15.7 32.1 57.7 94.6 -
ODISE (Xu et al., 2023a) ViT-L/14 Stable Diffusion COCO-Stuff ✗ 11.1 14.5 29.9 57.3 - -

16.0 23.8 37.9 63.3 97.0 82.5CAT-Seg (ours) ViT-L/14 - COCO-Stuff ✗ (+3.6) (+8.1) (+5.8) (+5.6) (+2.4) (+12.3)

3.3 UPSAMPLING DECODER

Given the aggregated cost volume, we aim to generate the final segmentation mask that captures fine-
details via upsampling. The simplest approach would be using handcrafted upsamplers, i.e. bilinear
upsampling, but we propose to conduct further aggregation within the decoder with light-weight
convolution layers. Additionally, we provide a low-level feature map which acts as an effective
guide to filter out the noises in the cost volume and exploit the higher-resolution spatial structure for
preserving fine-details.

Specifically, we employ bilinear upsampling on the cost volume and concatenate it with the corre-
sponding level of feature map, followed by a convolutional layer. We iterate this process NU times,
generating a high-resolution output which is fed into the prediction head for final inference.

To extract the high-resolution feature map, we avoid using an additional feature backbone that would
introduce heavy computation. Instead, similarly to Li et al. (2022b), we extract these maps from the
CLIP image encoder. Specifically, we extract the feature map from the output of intermediate layers
of CLIP ViT (Dosovitskiy et al., 2020) and then upsample them using a single layer transposed
convolution. This approach allows us to efficiently leverage the well-learned representations of
CLIP for upsampling. Please refer to the supplementary material for additional details.

3.4 EFFICIENT FINE-TUNING OF CLIP

Based on the observation in Fig. 2, we train our model in an end-to-end manner, including the
image and text encoders of CLIP. However, fine-tuning the encoder, which can scale up to hundreds
of millions of parameters, can be computationally expensive and memory-intensive. Additionally,
freezing some of its layers may help CLIP preserve its original embedding space and boost its
performance on pixel-level tasks (Zhou et al., 2022a). To this end, we extensively investigate which
layers should be frozen within CLIP (Dosovitskiy et al., 2020) in Sec. 4.4.

Surprisingly, it turns out that fine-tuning only the query and value projections of CLIP ViT (Dosovit-
skiy et al., 2020) is sufficient to enable its transfer to dense tasks. Also, even though cost aggregation
already effectively preserves the zero-shot capability of CLIP, this efficient fine-tuning further en-
hances our framework’s efficiency and performance compared to full fine-tuning of CLIP.

4 EXPERIMENTS

4.1 DATASETS AND EVALUTATION

We train our model on the COCO-Stuff (Caesar et al., 2018), which has 118k densely annotated
training images with 171 categories, following (Liang et al., 2022). We employ the mean Intersection
over Union (mIoU) as the evaluation metric for all experiments. For the evaluation, we conducted
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Table 2: Quantitative evaluation on MESS (Blumenstiel et al., 2023). MESS includes a wide
range of domain-specific datasets, which pose significant challenges due to their substantial domain
differences from the training dataset. We report the average score for each domain. Please refer
to the supplementary material for the results of all 22 datasets. Random is the result of uniform
distributed prediction which represents the lower-bound, while Best supervised represents the upper-
bound performance for the datasets.

Model VLM Additional General Earth Medical Engineer. Agri. and MeanBackbone Monit. Sciences Biology

Random (LB) - - 1.17 7.11 29.51 11.71 6.14 10.27
Best supervised (UB) - - 48.62 79.12 89.49 67.66 81.94 70.99

ZSSeg (Xu et al., 2022) ViT-B/16 ResNet-101 19.98 17.98 41.82 14.0 22.32 22.73
ZegFormer (Ding et al., 2022a) ViT-B/16 ResNet-101 13.57 17.25 17.47 17.92 25.78 17.57
X-Decoder (Zou et al., 2023) UniCL-T Focal-T 22.01 18.92 23.28 15.31 18.17 19.8
OpenSeeD (Zhang et al., 2023) UniCL-B Swin-T 22.49 25.11 44.44 16.5 10.35 24.33
SAN (Xu et al., 2023b) ViT-B/16 - 29.35 30.64 29.85 23.58 15.07 26.74

38.69 35.91 28.09 20.34 32.57 31.96CAT-Seg (ours) ViT-B/16 - (+9.34) (+5.27) (-16.35) (-3.24) (+6.79) (+5.22)

OVSeg (Liang et al., 2022) ViT-L/14 Swin-B 29.54 29.04 31.9 14.16 28.64 26.94
SAN (Xu et al., 2023b) ViT-L/14 - 36.18 38.83 30.27 16.95 20.41 30.06

44.69 39.99 24.70 20.20 38.61 34.70CAT-Seg (ours) ViT-L/14 - (+8.51) (+1.16) (-7.2) (+3.25) (+9.97) (+4.64)

experiments on two different sets of datasets (Zhou et al., 2019; Everingham et al., 2009; Mottaghi
et al., 2014): a commonly used set of datasets following (Ghiasi et al., 2022), and a multi-domain
evaluation set (Blumenstiel et al., 2023) containing domain-specific images and class labels.
Datasets for in-domain evaluation. For in-domain evalutaion, we evaluate our model on
ADE20K (Zhou et al., 2019), PASCAL VOC (Everingham et al., 2009), and PASCAL-
Context (Mottaghi et al., 2014) datasets. ADE20K has 20k training and 2k validation images, with
two sets of categories: A-150 with 150 frequent classes and A-847 with 847 classes (Ding et al.,
2022a). PASCAL-Context contains 5k training and validation images, with 459 classes in the full
version (PC-459) and the most frequent 59 classes in the PC-59 version. PASCAL VOC has 20
object classes and a background class, with 1.5k training and validation images. We report PAS-20
using 20 object classes. We also report the score for PAS-20b, which defines the “background” as
classes present in PC-59 but not in PAS-20, as in Ghiasi et al. (2022).
Datasets for multi-domain evaluation. We conducted a multi-domain evaluation on the MESS
benchmark (Blumenstiel et al., 2023), specifically designed to stress-test the real-world applicability
of open-vocabulary models with 22 datasets. The benchmark includes a wide range of domain-
specific datasets from fields such as earth monitoring, medical sciences, engineering, agriculture,
and biology. Additionally, the benchmark contains a diverse set of general domains, encompassing
driving scenes, maritime scenes, paintings, and body parts. We report the average scores for each
domain in the main text for brevity. For the complete results and details of the 22 datasets, please
refer to the supplementary material.

4.2 IMPLEMENTATION DETAILS

We train the CLIP image encoder and the cost aggregation module with per-pixel binary cross-
entropy loss. We set dF = 128, NB = 2, NU = 2 for all of our models. We implement our
work using PyTorch (Paszke et al., 2019) and Detectron2 (Wu et al., 2019). AdamW (Loshchilov &
Hutter, 2017) optimizer is used with a learning rate of 2 · 10−4 for our model and 2 · 10−6 for the
CLIP, with weight decay set to 10−4. The batch size is set to 4. We use 4 NVIDIA RTX 3090 GPUs
for training. All of the models are trained for 80k iterations, which takes 8 hours. Further details
can be found in supplementary material. Our code will be made publicly available.

4.3 MAIN RESULTS

Results of in-domain evaluation. The evaluation of in-domain datasets are shown in Table 1.
Overall, our method significantly outperforms all competing methods, including those (Ghiasi et al.,
2022; Liang et al., 2022) that leverage additional datasets (Chen et al., 2015; Pont-Tuset et al., 2020)
for further performance improvements. To ensure a fair comparison, we categorize the models based
on the scale of the vision-language models (VLMs) they employ. First, we present results for models
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(a) SAN (b) Ours (c) GT (d) SAN (e) Ours (f) GT

Figure 4: Qualitative comparison to recent state-of-the-art (Xu et al., 2023b). We visualize
the results of PC-459 dataset in (a-c). For (d-f), we visualize the results from the MESS bench-
mark (Blumenstiel et al., 2023) across three domains: underwater (top), human parts (middle), and
agriculture (bottom).

that use VLMs of comparable scale to ViT-B/16 (Dosovitskiy et al., 2020), and our model surpasses
all previous methods, even achieving performance that matches or surpasses those using the ViT-
L/14 model as their VLM (Xu et al., 2023b). For models employing the ViT-L/14 model as their
VLM, our model demonstrates remarkable results, achieving a 16.0 mIoU in the challenging A-847
dataset and a 23.8 mIoU in PC-459. These results represent a 29% and 52% increase, respectively,
compared to the previous state-of-the-art. We also present qualitative results of PASCAL-Context
with 459 categories in Fig. 4, demonstrating the efficacy of our proposed approach in comparison to
the current state-of-the-art methods (Ding et al., 2022a; Xu et al., 2022; Liang et al., 2022).

Results of multi-domain evaluation. In Table 2, we present the qualitative results obtained from
the MESS benchmark (Blumenstiel et al., 2023). This benchmark assesses the real-world perfor-
mance of a model across a wide range of domains. Notably, our model demonstrates a significant
performance boost over other models, achieving the highest mean score. It particularly excels in
the general domain as well as in agriculture and biology, showing its strong generalization ability.
However, in the domains of medical sciences and engineering, the results exhibit inconsistencies
with respect to the size of the VLM. Additionally, the scores for medical sciences are comparable
to random predictions. We speculate that CLIP may have limited knowledge in these particular
domains (Radford et al., 2021).

4.4 ANALYSIS AND ABLATION STUDY

Table 3: Ablation study for CAT-Seg. We conduct
ablation study by gradually adding components to the
cost aggregation baseline.

Components A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

(I) Feature Agg. 3.8 10.9 19.1 53.5 96.2 74.2

(II) Cost Agg. 14.7 23.2 35.3 60.3 96.7 78.9
(III) (II) + Spatial agg. 14.9 23.1 35.9 60.3 96.7 79.5
(IV) (II) + Class agg. 14.7 21.5 36.6 60.6 95.5 80.5
(V) (II) + Spatial and Class agg. 15.5 23.2 37.0 62.3 96.7 81.3
(VI) (V) + Embedding guidance 16.0 23.8 37.9 63.3 97.0 82.5

Component analysis. Table 3 shows
the effectiveness of the main components
within our architecture through quantita-
tive results. First, we introduce the base-
line models in (I) and (II), which simply
feed the feature embeddings or the cost
volume to the proposed upsampling de-
coder. We refer the readers to our sup-
plementary materials for the details of the
baseline architecture. We first add the proposed spatial and class aggregations to the cost aggrega-
tion baseline in (III) and (IV), respectively. In (V), we interleave the spatial and class aggregations.
Lastly, we add the proposed embedding guidance to (V), which becomes our final model.

As shown, we stress the gap between (I) and (II), which supports the findings presented in Fig. 2.
Given that PAS-20 shares most of its classes with the training datasets(Xu et al., 2022), the per-
formance gap between (I) and (II) is minor. However, for the challenging datasets such as A-847
or PC-459, the difference is notably significant, validating our cost aggregation framework for its
generalizablity. We also highlight that as we incorporate the proposed spatial and class aggrega-
tion techniques, our approach (V) outperforms (II), demonstrating the effectiveness of our design.
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Finally, (VI) shows that our embedding guidance further improves performance across all the bench-
marks.

Table 4: Analysis of fine-tuning methods for CLIP.
We additionally note the number of learnable parame-
ters of CLIP and memory consumption during training.
Our method not only outperforms full fine-tuning, but
also requires a smaller computational footprint.

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b #param. Memory
(M) (GiB)

(I) Freeze 4.8 8.7 20.8 52.5 84.5 76.7 5.8 20.0
(II) Prompt 8.8 14.3 30.5 55.8 93.2 74.7 7.0 20.9
(III) Full F.T. 13.6 22.2 34.0 61.1 97.3 79.7 393.2 26.8
(IV) Attn. F.T. 15.7 23.7 37.1 63.1 97.1 81.5 134.9 20.9
(V) QK F.T. 15.3 23.0 36.3 62.0 95.9 81.9 70.3 20.9
(VI) KV F.T. 16.1 23.8 37.6 62.4 96.7 82.0 70.3 20.9

(VII) QV F.T. (Img.) 13.9 22.8 35.1 62.0 96.3 82.0 56.7 20.9
(VIII) QV F.T. (Txt.) 14.7 22.2 35.1 60.0 95.8 80.3 19.9 20.0
(IX) QV F.T. (Both) 16.0 23.8 37.9 63.3 97.0 82.5 70.3 20.9

Analysis on fine-tuning of CLIP. In
this ablation study, we explore the vari-
ous fine-tuning approach for the encoders
of CLIP. In Table 4, we report the re-
sults of different approaches, which in-
clude the variant (I): without fine-tuning,
(II): adopting Prompt Tuning (Zhou et al.,
2022c; Jia et al., 2022), (III): fine-tuning
the entire CLIP, (IV): fine-tuning the at-
tention layer only (Touvron et al., 2022),
(V): fine-tuning query and key projections
only, (VI): fine-tuning key and value pro-
jections only, (VII): our approach for CLIP image encoder only, (VIII): our approach for text en-
coder only, and (IX): our approach for the both encoders. Note that both image and text encoders are
fine-tuned in (I-VI). Overall, we observed that fine-tuning enhances the performance of our frame-
work. Among the various fine-tuning methods, fine-tuning only the query and value projection yields
the best performance improvement while also demonstrating high efficiency. Additionally, as can
be seen in (VII-IX), fine-tuning both encoders leads to better performance compared to fine-tuning
only one of them in our framework.

Table 5: Training on various datasets. CLIP with
ViT-B is used for all methods. Our model demon-
strates remarkable generalization capabilities even on
relatively smaller datasets. The scores evaluated on the
same dataset used for training are colored in gray.

Methods Training dataset A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

ZegFormer COCO-Stuff 5.6 10.4 18.0 45.5 89.5 65.5
ZSseg COCO-Stuff 7.0 9.0 20.5 47.7 88.4 67.9
CAT-Seg (ours) COCO-Stuff 12.0 19.0 31.8 57.5 94.6 77.3
ZegFormer A-150 6.8 7.1 33.1 34.7 77.2 53.6
ZSseg A-150 7.6 7.1 40.3 39.7 80.9 61.1
CAT-Seg (ours) A-150 14.4 16.2 47.7 49.9 91.1 73.4
ZegFormer PC-59 3.8 8.2 13.1 48.7 86.5 66.8
ZSseg PC-59 3.0 7.6 11.9 54.7 87.7 71.7
CAT-Seg (ours) PC-59 9.6 16.7 27.4 63.7 93.5 79.9

Training with various datasets. In this
experiment, we further examine the gener-
alization power of our method in compar-
ison to other methods (Ding et al., 2022a;
Xu et al., 2022) by training our model on
smaller-scale datasets, which include A-
150 and PC-59, that poses additional chal-
lenges to achieve good performance. The
results are shown in Table 5. As shown,
we find that although we observe some
performance drops, which seem quite nat-
ural when a smaller dataset is used, our
work significantly outperforms other com-
petitors. These results highlight the strong generalization power of our framework, a favorable
characteristic that suggests the practicality of our approach.

Table 6: Efficiency comparison. All results are mea-
sured with a single RTX 3090 GPU.

Methods ZegFormer ZSSeg OVSeg CAT-Seg (Ours)

# of learnable params. (M) 103.3 102.8 408.9 70.3
# of total params. (M) 531.2 530.8 532.6 433.7
Training time (min) 1,148.3 958.5 - 875.5
Inference time (s) 2.70 2.73 2.00 0.54
Inference GFLOPs 19,425.6 22,302.1 19,345.6 2,121.1

Efficiency comparison. In Table 6, we
thoroughly compare the efficiency of our
method to recent methods (Ding et al.,
2022a; Xu et al., 2022; Liang et al., 2022).
We measure the number of learnable pa-
rameters, the total number of parameters,
training time, inference time, and infer-
ence GFLOPs. Our model demonstrates strong efficiency in terms of both training and inference.
This efficiency is achieved because our framework does not require an additional mask genera-
tor (Ding et al., 2022a).

5 CONCLUSION

In conclusion, our approach to open-vocabulary semantic segmentation reinterprets the task as an
pixel-to-text correspondence challenge, effectively leveraging a tailored cost aggregation method.
Through the introduction of our CAT-Seg framework, we harmonize the processing of CLIP’s em-
bedding space and its fine-tuning capabilities, enabling not only a superior generalization ability
but also a practical computational efficiency. Our method surpasses previous state-of-the-arts in
standard benchmarks, and also in scenarios with vast domain difference. The success in diverse
domains, underscores the promise and potential of our cost aggregation framework in advancing the
field of open-vocabulary semantic segmentation.
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APPENDIX

In the following, we first provide more experimental results in Section A, followed by implemen-
tation details in Section B. We then provide additional analysis and ablation study in Section C.
Finally, we present qualitative results for all the benchmarks and human part segmentation in Sec-
tion D and a discussion of limitations in Section E.

A MORE RESULTS

Table 7: Full results of quantitative evaluation on MESS (Blumenstiel et al., 2023).
General Earth Monitoring Medical Sciences Engineering Agri. and Biology
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Random (LB) 1.48 1.31 1.27 0.23 0.56 2.16 0.56 8.02 18.43 3.39 5.18 27.99 27.25 31.25 31.53 9.3 26.52 4.52 6.49 5.3 0.06 13.08 10.27
Best sup. (UB) 44.8 63.9 50.0 45.1 42.22 45.71 65.3 87.56 92.71 82.22 67.8 93.7 97.05 73.45 93.77 49.92 85.9 82.3 52.5 74.0 84.6 87.23 70.99

ZSSeg-B 32.36 16.86 7.08 8.17 22.19 33.19 3.8 11.57 23.25 20.98 30.27 46.93 37.0 38.7 44.66 3.06 25.39 18.76 8.78 30.16 4.35 32.46 22.73
ZegFormer-B 14.14 4.52 4.33 10.01 18.98 29.45 2.68 14.04 25.93 22.74 20.84 27.39 12.47 11.94 18.09 4.78 29.77 19.63 17.52 28.28 16.8 32.26 17.57
X-Decoder-T 47.29 24.16 3.54 2.61 27.51 26.95 2.43 31.47 26.23 8.83 25.65 55.77 10.16 11.94 15.23 1.72 24.65 19.44 15.44 24.75 0.51 29.25 19.8
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Full quantitative results on MESS benchmark. In Table 7, we provide the results of all 22
datasets within MESS (Blumenstiel et al., 2023).

B MORE DETAILS

B.1 ARCHITECTURAL DETAILS

In the following, we provide more architectural details. Our detailed overall architecture is illustrated
in Fig. 5 (a).

Embedding guidance. In this paragraph, we provide more details of embedding guidance, which is
designed to facilitate the cost aggregation process by exploiting its rich semantics for a guidance. We
first extract visual and text embeddings from CLIP encoders (Radford et al., 2021). The embeddings
then undergo linear projection and concatenated to the cost volume before query and key projections
in aggregation layer. The design is illustrated in Fig. 5 (b).

Upsampling decoder. The detailed architecture is illustrated in Fig.5(c). In our upsampling decoder,
we start by taking high-resolution features from the CLIP ViT model Dosovitskiy et al. (2020). We
then apply a single transposed convolution layer to these extracted features to generate an upsampled
feature map. Initially, the extracted feature maps have a resolution of 24× 24 pixels. However, after
processing them with the transposed convolution operation, we increase their resolution to 48× 48
pixels for the first feature map, denoted as EV

Dec,1, and to 96× 96 pixels for the second feature map,
denoted as EV

Dec,2.

To obtain EV
Dec,1, we utilize the output of the 8th layer for the ViT-B/16 model, and for the ViT-

L/14 model, we use the output of the 16th layer. For the extraction of EV
Dec,2, we employ shallower

features: the output of the 4th layer for the ViT-B/16 model as a VLM, and the output of the 8th
layer for the ViT-L/14 model. These features are employed to enhance cost embeddings with fine
details using a U-Net-like architecture (Ronneberger et al., 2015).

B.2 OTHER IMPLEMENTATION DETAILS

Training details. A resolution of H = W = 24 is used during training for constructing cost volume.
The position embeddings of the CLIP image encoder is initialized with bicubic interpolation (Tou-
vron et al., 2021), and we set training resolution as 384 × 384. For ViT-B and ViT-L variants,
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Figure 6: Visualization of aggregation baselines. (a) concatenates the features extracted from
CLIP image and text encoders to feed into the upsampling decoder, while (b) constructs a cost
volume using the image and text features from CLIP.

we initialize CLIP (Radford et al., 2021) with official weights of ViT-B/16 and ViT-L/14@336px
respectively. All hyperparameters are kept constant across the evaluation datasets.

Text prompt templates. To obtain text embeddings from the text encoder, we form sentences with
the class names, such as "A photo of a {class}". We do not explore handcrafted prompts
in this work, but it is open for future investigation.

Feature and cost aggregation baselines. In this paragraph, we provide more details of the ar-
chitecture of two models introduced in Fig. 2: one is feature aggregation method and the other is
cost aggregation method. As shown in Fig. 6 (a), the feature aggregation method directly leverages
the features extracted from CLIP by feeding the concatenated image and text embeddings into the
upsampling decoder. Fig. 6 (b) shows the cost aggregation approach that constructs cost volume
instead, and subsequent embedding layer processes it to feed into upsampling decoder.

B.3 PATCH INFERENCE

The practicality of Vision Transformer (ViT) (Dosovitskiy et al., 2020) for high-resolution image
processing has been limited due to its quadratic complexity with respect to the sequence length.
As our model leverages ViT to extract image embeddings, CAT-Seg may struggle to output to the
conventional image resolutions commonly employed in semantic segmentation literature, such as
640 × 640 (Cheng et al., 2021; Ghiasi et al., 2022), without sacrificing some accuracy made by

17



Under review as a conference paper at ICLR 2024
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Figure 7: Illustration of the patch inference. During inference, we divide the input image into
patches, thereby increasing the effective resolution.

losing some fine-details. Although we can adopt the same approach proposed in (Zhou et al., 2022a)
to upsample the positional embedding (Zhou et al., 2022a), we ought to avoid introducing excessive
computational burdens, and thus adopt an effective inference strategy without requiring additional
training which is illustrated in Fig. 7.

To this end, we begin by partitioning the input image into overlapping patches of size H
NP

× W
NP

.
Intuitively, given an image size of 640×640, we partition the image to sub-images of size 384×384,
which matches the image resolution at training phase, and each sub-images has overlapping regions
128×128. Subsequently, we feed these sub-images and the original image that is resized to 384×384
into the model. Given the results for each patches and the image, we merge the obtained prediction,
while the overlapping regions are averaged to obtain the final prediction. In practice, we employ
NP = 2, while adjusting the overlapping region to match the effective resolution of 640× 640.

C ADDITIONAL ABLATION STUDY

C.1 ABLATION STUDY OF INFERENCE STRATEGY

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

CAT-Seg w/ training reso. 14.6 22.1 35.7 60.9 96.3 79.9
CAT-Seg (ours) 16.0 23.8 37.9 63.3 97.0 82.5

Table 8: Ablation study of inference strategy. CLIP with ViT-L is used for ablation.

Table 8 presents effects of different inference strategies for our model. The first row shows the results
using the training resolution at inference time. The last row adopts the proposed patch inference
strategy. It is shown that our proposed approach can bring large performance gains, compared to
using the training resolution.

C.2 EFFECTS OF UPSAMPLING DECODER

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

CAT-Seg w/o upsampling decoder 9.9 16.1 28.4 52.9 93.2 73.3
CAT-Seg (ours) 12.0 19.0 31.8 57.5 94.6 77.3

Table 9: Ablation study of upsampling decoder. CLIP with ViT-B is used for ablation.

We provide an quantitative results of adopting the proposed upsampling decoder in Table 9. The
results show consistent improvements across all the benchmarks.

C.3 MORE DETAILS OF MESS BENCHMARK

In Table 10, we provide details of the datasets in the MESS benchmark (Blumenstiel et al., 2023).
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Table 10: Full results of quantitative evaluation on mess (Blumenstiel et al., 2023).
Dataset Link Licence Split of classes Classes

BDD100K (Yu et al., 2020b) berkeley.edu custom val 19 [road; sidewalk; building; wall; fence; pole; traffic light; traffic sign; ...]
Dark Zurich (Sakaridis et al., 2019) ethz.ch custom val 20 [unlabeled; road; sidewalk; building; wall; fence; pole; traffic light; ...]
MHP v1 (Li et al., 2017) github.com custom test 19 [others; hat; hair; sunglasses; upper clothes; skirt; pants; dress; ...]
FoodSeg103 (Wu et al., 2021) github.io Apache 2.0 test 104 [background; candy; egg tart; french fries; chocolate; biscuit; popcorn; ...]
ATLANTIS (Erfani et al., 2022) github.com Flickr (images) test 56 [bicycle; boat; breakwater; bridge; building; bus; canal; car; ...]
DRAM (Cohen et al., 2022) ac.il custom (in download) test 12 [bird; boat; bottle; cat; chair; cow; dog; horse; ...]
iSAID (Waqas Zamir et al., 2019) github.io Google Earth (images) val 16 [others; boat; storage tank; baseball diamond; tennis court; bridge; ...]
ISPRS Potsdam (BSF Swissphoto, 2012) isprs.org no licence provided1 test 6 [road; building; grass; tree; car; others]
WorldFloods (Mateo-Garcia et al., 2021) github.com CC NC 4.0 test 3 [land; water and flood; cloud]
FloodNet (Rahnemoonfar et al., 2021) github.com custom test 10 [building-flooded; building-non-flooded; road-flooded; water; tree; ...]
UAVid (Lyu et al., 2020) uavid.nl CC BY-NC-SA 4.0 val 8 [others; building; road; tree; grass; moving car; parked car; humans]
Kvasir-Inst. (Jha et al., 2021) simula.no custom test 2 [others; tool]
CHASE DB1 (Fraz et al., 2012) kingston.ac.uk CC BY 4.0 test 2 [others; blood vessels]
CryoNuSeg (Mahbod et al., 2021) kaggle.com CC BY-NC-SA 4.0 test 2 [others; nuclei in cells]
PAXRay-4 (Seibold et al., 2022) github.io custom test 4x2 [others, lungs], [others, bones], [others, mediastinum], [others, diaphragm]
Corrosion CS (Bianchi & Hebdon, 2021) figshare.com CC0 test 4 [others; steel with fair corrosion; ... poor corrosion; ... severe corrosion]
DeepCrack (Liu et al., 2019) github.com custom test 2 [concrete or asphalt; crack]
PST900 (Shivakumar et al., 2020) github.com GPL-3.0 test 5 [background; fire extinguisher; backpack; drill; human]
ZeroWaste-f (Bashkirova et al., 2022) ai.bu.edu CC-BY-NC 4.0 test 5 [background or trash; rigid plastic; cardboard; metal; soft plastic]
SUIM (Islam et al., 2020) umn.edu MIT test 8 [human diver; reefs and invertebrates; fish and vertebrates; ...]
CUB-200 (Welinder et al., 2010) caltech.edu custom test 201 [background; Laysan Albatross; Sooty Albatross; Crested Auklet; ...]
CWFID (Haug & Ostermann, 2015) github.com custom test 3 [ground; crop seedling; weed]

D MORE QUALITATIVE RESULTS

We provide more qualitative results on A-847 (Zhou et al., 2019) in Fig. 8, PC-459 (Mottaghi et al.,
2014) in Fig. 9, A-150 (Zhou et al., 2019) in Fig. 10, and PC-59 (Mottaghi et al., 2014) in Fig. 11.
We also further compare the results in A-847 (Zhou et al., 2019) with other methods (Ding et al.,
2022a; Xu et al., 2022; Liang et al., 2022) in Fig. 12.

E LIMITATIONS

To evaluate open-vocabulary semantic segmentation results, we follow (Ghiasi et al., 2022; Liang
et al., 2022) and compute the metrics using the other segmentation datasets. However, since the
ground-truth segmentation maps involve some ambiguities, the reliability of the evaluation dataset
is somewhat questionable. For example, the last row of Fig. 4 (e) exemplifies how our predictions
in the mirror, “sky” and “car”, as well as “plant” in between the “fence”, are classified as wrong
segmentation as the ground truth classes are “mirror” and “fence”. Constructing a more reliable
dataset including ground-truths accounting for above issue for accurate evaluation is an intriguing
topic.
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Figure 8: Qualitative results on ADE20K (Zhou et al., 2019) with 847 categories.
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Figure 9: Qualitative results on PASCAL Context (Mottaghi et al., 2014) with 459 categories.
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Figure 10: Qualitative results on ADE20K (Zhou et al., 2019) with 150 categories.
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Figure 11: Qualitative results on PASCAL Context (Mottaghi et al., 2014) with 59 categories.
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Figure 12: Comparison of qualitative results on ADE20K (Zhou et al., 2019) with 847 cate-
gories. We compare CAT-Seg with ZegFormer (Ding et al., 2022a), ZSseg (Xu et al., 2022), and
OVSeg (Liang et al., 2022) on A-847 dataset.
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