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Figure 1: (a) Comparison of rendered results with the increasing lexical richness of texts (simple, medium, hard), based on SoTA
GS-based models, e.g., LucidDreamer [14]. It turns out that these models fail to generate the correct shapes for the lexically
complex texts. (b) Comparison of different initialization methods. (c) Rendered results of our initialization + LucidDreamer.
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Abstract

Text-to-3D content creation has recently received much attention,
especially with the prevalence of 3D Gaussians Splatting (3D GS).
In general, GS-based methods comprise two key stages: initializa-
tion and rendering optimization. To achieve initialization, existing
works directly apply random sphere initialization or 3D diffusion
models, e.g., Point-E, to derive the initial shapes. However, such
strategies suffer from two critical yet challenging problems: 1) the
final shapes are still similar to the initial ones even after training;
2) shapes can be produced only from simple texts, e.g., ‘a dog’, not
for lexically richer (or harder) texts, e.g., ‘a dog is sitting on the top
of the airplane’. To address these problems, this paper proposes
a novel general framework to boost the 3D GS Initialization for
text-to-3D generation upon the lexical richness. Our key idea is
to aggregate 3D Gaussians into spatially uniform voxels to repre-
sent complex shapes while enabling the spatial interaction among
the 3D Gaussians and semantic interaction between Gaussians
and texts. Specifically, we first construct a voxelized representa-
tion, where each voxel holds a 3D Gaussian with its position, scale,
and rotation fixed while setting opacity as the sole factor to de-
termine a position’s occupancy. We then design an initialization
network mainly consisting of two novel components: 1) Global
Information Perception (GIP) block and 2) Gaussians-Text Fusion
(GTF) block. Such a design enables each 3D Gaussian to assimilate
the spatial information from other areas and semantic informa-
tion from texts. Extensive experiments show the superiority of our
framework of high-quality 3D GS initialization against the existing
methods, e.g., Shap-E, by taking lexically simple, medium, and hard
texts. Also, our framework can be seamlessly plugged into state-of-
the-art training frameworks, e.g., LucidDreamer, for semantically
consistent text-to-3D generation. The project code is available at
https://vlislab22.github.io/DreamInit/.
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1 Introduction

3D asset creation finds its applications in the realms of multime-
dia, such as games and Metaverse. Text-to-3D is one of the pivotal
techniques that makes it possible for casual users to create seman-
tically consistent 3D content with text inputs. Typically, benefiting
from the text-to-2D image synthesis techniques [19, 20, 29, 30]
with diffusion models [33], Dreamfusion [25] proposes Score Dis-
tillation Sampling (SDS) for generating 3D assets by optimizing a
Neural Radiance Field (NeRF) [22] directly from the 2D diffusion
models. This catalyzes a surge in research interest in NeRF-based
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Figure 2: Influence of different initial shapes on the training
results, given the text prompt “a DSLR photo of a cat”.

text-to-3D generation, aiming to enhance the quality of generated
content [1, 13, 15, 17, 21, 28, 37, 40, 46, 48].

Despite their success, two notable limitations persist: slow train-
ing and rendering speed. Thanks to the growing prominence of 3D
Gaussian Splatting (3D GS) [12], it is dominantly adopted as the
representation for faster training and rendering [3, 5, 14, 35, 41, 44].
The common paradigm of these methods consists of 1) initializa-
tion and 2) rendering optimization. The initialization stage starts
from a randomly initialized sphere or generated point cloud from
Shap-E [10] or Point-E [23]. In the rendering optimization stage,
the SDS loss (or its variant) is used as the supervision.

While the GS-based methods demonstrate impressive generation
quality, they mainly focus on the text that only contains a single en-
tity and thus fail to generate plausible results for the lexically richer
texts. Fig. 1(a) illustrates the variation in generation difficulty across
different levels of lexical richness for the state-of-the-art (SoTA)
GS-based models, e.g., LucidDreamer [14], with the initialization
methods, e.g., Shap-E. To better measure the generation difficulty,
we categorize text inputs into three levels based on their lexical
richness: 1) Simple: text merely contains one entity, e.g., “A dog”.
2) Medium: text contains multiple entities but without spatial or
interaction relationships, e.g., “A dog and an airplane”. 3) Hard:
text contains multiple entities with complex spatial or interaction
relationships, e.g., “A dog is sitting on the top of the airplane”.

Upon investigating the underlying reason for this phenomenon,
we identify that 3D GS-based methods exhibit a pronounced sensi-
tivity to shape initialization. Taking LucidDreamer as an example
in Fig. 2, the optimized shapes are still similar to the initial shapes,
car, table, and sphere. As a result, given that Point-E and Shap-E are
limited to generating objects for simple text, the existing methods
relying on their initialization face challenges in generating a se-
mantically consistent 3D shape. The reason is that the absence of a
lexical-rich dataset for training Point-E and Shap-E results in their
inability to generate initial shapes that accurately reflect texts with
complex lexical structures. As shown in Fig. 1(b), this restriction
becomes the critical bottleneck and hinders these GS-based models’
ability to accurately generate complex shapes.

In light of this, this paper explores a crucial yet challenging ques-
tion: how to develop a general framework to create high-quality
initial 3D shapes for semantically consistent text-to-3D upon the
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Figure 3: Comparison of different initialization methods.

lexical richness. Fig. 1(b) shows that taking our initialization, Lu-
cidDreamer can generate semantically consistent 3D content even
with hard text inputs. Moreover, as depicted in Fig. 1(c), it is also
evident that our framework can generate high-quality 3D assets.
To make this possible, we employ the 2D diffusion model to ini-
tialize a 3D shape, given the richer 2D text-image paired data com-
pared to 3D data. Based on this, our key idea is to aggregate 3D
Gaussians into spatially uniform voxels to represent complex shapes
while enabling the spatial interaction among the 3D Gaussians and
semantic interaction between Gaussians and texts. Specifically, we
first construct a voxelized representation, where each voxel con-
tains a Gaussian with the position, scale, and rotation fixed. Only
the opacity and color can be updated during training. Thus, the
shape is determined solely following the opacity, which reduces the
complexity significantly. This spatial-uniform representation also
enables it to represent the more complex scenes (Sec. 3.2.1). As for
information interaction, we design a novel initialization network
consisting of two core blocks: the Global Information Perception
(GIP) block and the Gaussians-Text Fusion (GTF) block. The pur-
pose of the GIP block is to construct a spatially global information
interaction among the voxelized 3D Gaussians (Sec. 3.2.2). However,
establishing pair-wise interactions among each Gaussian presents a
computational challenge of O(n?), where n denotes the total num-
ber of 3D Gaussians. Therefore, considering the interaction among
coarse areas is enough, we equally partition the space into 163 3D
grids for simplification and implement a self-attention mechanism
among these subdivisions. The GTF block aims at enhancing the
semantic consistency of lexical-rich texts by fusing the Gaussian
feature and text feature (Sec. 3.2.3). By utilizing a cross-attention
mechanism, this block can effectively bind each 3D Gaussian to
a more related word for better feature fusion. A comparison of
different initialization methods is shown in Fig. 3.

To demonstrate the effectiveness of our framework, we set three
groups of comparisons: 1) Comparisons of different initialization
methods. 2) Comparisons of rendered results using the same SoTA
GS-based model, e.g., LucidDreamer with different initialization
methods; 3) Comparisons of the rendered results among different
SoTA GS-based models (e.g., LucidDreamer, DreamGaussion and
GaussianDreamer) based on our initialization. All these experimen-
tal results demonstrate the superiority of our general framework.

In summary, our contributions are three-fold: (I) We comprehen-
sively analyze the importance of the initialization of the SoTA GS-
based text-to-3D methods and examine their generation capacities
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upon the lexical richness of input texts. (I) We propose a general
framework for lexically richer text-to-3D generation. The proposed
initialization framework can be plugged into other GS-based text-
to-3D methods. (IIT) We propose the voxelized 3D Gaussians for
better initialization. Moreover, we design the Global Information
Perception block and the Gaussians-Text Fusion block to impose the
spatial interactions among 3D Gaussians and semantic interactions
between Gaussians and texts. (IV) Extensive experiments prove
that our method can provide a feasible initial shape for subsequent
training of SoTA text-to-3D GS methods.

2 Related Work

3D Gaussians Initialization. The traditional 3D Gaussian Splat-
ting method utilizes the SfM algorithm [31] to get the initial sparse
key points from multi-view images. However, the text-to-3D gener-
ation can’t provide these. Therefore, for GS-based text-to-3D, there
are three mainstream initialization methods in total, random sphere,
Point-E [23], Shap-E [10]. DreamGaussian [35] applies a random
sphere initialization, thereby limiting their capacity to generate
the complex shape. GaussianDreamer [44] designs an algorithm to
employ Shap-E to obtain the initial point cloud. LucidDreamer [14]
directly utilizes a Point-E to generate point cloud as its initializa-
tion. However, all these methods fail to deal with lexical-richer
texts. On the contrary, our method squeezes the ability of the 2D
diffusion model for 3D initialization, significantly promoting the
lexical richer initialization.

Text-to-3D based on 3D GS. Recently, the appearance of differ-
ential 3D representation methods such as NeRF [22], DMTet [32],
3D Gaussian Splatting [12], etc, construct the foundation for text-
to-3D. SDS loss [25] provides the key technique to optimize these
differential representations from a 2D diffusion model given text
input. And extensive researches follow it to improve based on
NeRF [2, 4, 7, 8, 16-18, 26, 38, 39, 42, 47]. Due to the extremely high
rendering speed and training speed of 3D GS representation, an
increasing number of text-to-3D frameworks [5, 6, 9, 14, 35, 43-45]
apply the 3D GS representation as their 3D model. DreamGaus-
sian [35] proposes a two-stage training method consisting of 3D
GS training and mesh appearance finetuning extracted by 3D GS.
However, the poor performance of the geometry damages the mesh
appearance finetuning. GSGEN [5] utilizes 2D SDS and 3D SDS at
the same time in its method. Nonetheless, due to the lack of lexical-
rich generation ability of the 3D diffusion model, the performance is
relatively poor for the hard texts. LucidDreaer [14] proposes a novel
loss called Interval Score Matching (ISM) to solve over-smoothing
and low quality in 3D generation. GaussianDreamer [44] employs
noisy point growing and color perturbation during initialization to
further enrich the content. In this paper, we deeply focus on the
initialization, which is different from the others.

3 Method

In Sec. 3.1, we briefly revisit the general GS-based text-to-3D pipeline.
And we focus on its initialization phase. In Sec. 3.2, we introduce
our proposed general framework to boost 3D GS initialization.

3.1 Revisiting General Text-to-3D GS Pipeline

The general training pipeline of GS-based text-to-3D methods
mainly consists of: Initialization and Rendering Optimization.
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Figure 4: Overview of the proposed framework for initialization and rendering optimization. In Phase I, an initialization
network is designed to generate the initial GS shape. In Phase II, the initial GS shape can be freely plugged into one of the SoTA
GS-based models (selected from the pool) for rendering optimization. “X4” means the four stacks of these modules.

Initialization There are two mainstream methods for obtaining ini-
tialized shapes. The first involves randomly sampling some points
to form a spherical shape. The second utilizes a 3D diffusion model,
e.g., Point-E [23] or Shap-E [10], to generate initial points of a shape.
Point-E is a two-stage framework. It first utilizes the text-to-image
diffusion model to generate a corresponding image. Then the image
is used as the input of a point cloud diffusion model to produce the
3D RGB point cloud.

As for the denoising network, transformer [36] is chosen, with

the input taking the embedding of an image encoded by CLIP [27],
timestep t, and the noisy point cloud x; to predict the noise. Shap-E
first trains an encoder to encode the latent representation — pa-
rameters of the MLP. Then, a diffusion model is trained based on
the latent representation. Due to the lack of complex shapes of the
dataset for training, it is difficult for existing methods to generate
correct shapes given the lexically richer texts. To the best of our
knowledge, our work is the first to focus on such a problem in the
entire GS-based text-to-3D pipeline.
Rendering Optimization. 3D Gaussian splatting[12] is superior
by high inference speed, training speed, and reconstruction quality.
3D GS represents the scene through a set of Gaussian ellipsoids.
The attributes of a 3D Gaussian are composed of a center x € R3,a
scaling factors s € R>, a rotation quaternion q € R4, a color feature
¢ € R? and an opacity value a € R, totaling 14 attributes. Given
camera pose 7, 3D Gaussians can be projected to 2D Gaussians,
which are then used to form the corresponding image through
volumetric rendering[11].

Stable-Diffusion[29] uses text prompt as a condition for genera-
tion. Ignoring the UNet Jacobian[25], the gradient of SDS loss on
can be formulated as:

ar(6, )

o N0

Vo Lsps(0) = Eren[a(t)(ep(xs t, €) —€)

where w(t) is a weighting function that depends on the timestep t.
The noise € follows the distribution N'(0,1). And €4 (x¢, t, €) is the
noise predicted by the network ey with the given text prompt e.
r(-) is a differentiable renderer, 7 is a camera pose, and 6 represents
the parameters of the renderer.

3.2 The Proposed Framework

Our general framework consists of two phases, including Phase I
for 3D GS initialization and Phase II for rendering optimization
by plugging the initialized results into one of the SOTA GS-based
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models pool for training. Our key idea is to aggregate 3D Gaus-
sians into spatially uniform voxels to represent complex shapes
while enabling the spatial interaction among the 3D Gaussians and
semantic interaction between Gaussians and texts.

Overview. As depicted in Fig. 4, the input of our pipeline is the
given text. We first place the designed voxelized 3D Gaussians
in the space (Sec. 3.2.1). Then, the coordinates x € RNXNXNx3
of the 3D Gaussians are encoded to a higher dimensional feature
F € RNXNXNXD for Jater interaction. ¥ is then passed to our
feature interaction network, which mainly consists of the Global
Information Perception blocks (Sec. 3.2.2) and Gaussians-Text Fu-
sion blocks (Sec. 3.2.3), to obtain the feature ¥/ € RNXNXNXD
Finally, we decode the feature 7 to opacity @ € RN*NXNX1 34
SH color ¢ € RNXNXNX3, Considering that the opacity represents
shape and the SH coefficient represents color, we use two separate
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modules to output them.
a =1 (Softplus(I5(F7))), @)
SH = I§(Softplus(I£(F7))), (©)

where [$ | means linear layer in the shape decoder, and lf‘) means

linear layer in the color decoder. As for other properties, scale, and
rotation, we set them as fixed values for faster convergence. The
whole network is optimized by utilizing the 2D diffusion model [25]
trained on the lexical-rich dataset. After 1K iterations, we filter out
the positions whose opacity is less than the threshold 7 and use the
remaining part to formulate the initial shape. We can select one of
the SoTA GS-based methods for rendering optimization in Phase II
to obtain the final results. We now articulate the technical details.

3.2.1 Voxelized 3D Gaussians Representaion. As stated in the previ-
ous, the initial shape is a vital factor for the shape of 3D Gaussians.
The final shape after rendering optimization is similar to its initial
shape, which suggests that the traditional 3D Gaussians and point
cloud representation are not appropriate for our target. A spatial-
uniform representation can accommodate more possibilities for
complex shapes. It enables to form an object at any position rather
than the specific parts.

To obtain the initial shape, there is no need to construct a detailed
representation. The semantic consistency is a critical factor for the
initialization phase. Upon the determination of the rough shape, it is
easy for the existing SOTA methods to enrich its details. Therefore,
we can place the 3D voxels in space, where each voxel contains a
3D Gaussian sphere with position, scale, and rotation fixed. In this
manner, the visibility of a voxel is only determined by the opacity,
which significantly decreases the difficulty of training. After several
iterations, we can remove the invisible 3D Gaussians, i.e., whose
opacity is less than 7. Finally, we only record the coordinates of the
remaining voxels with their colors to formulate the initial shape.

3.22  Global Information Perception (GIP) Block. This block aims
to construct the global information perception among different regions
in the space. The input is the feature ¥ of each 3D Gaussian. And the
output is the feature after spatial interaction among 3D Gaussians.
The details of GIP block are depicted in Fig. 5.

For the target, we need to construct the global information in-
teraction. There are two mainstream methods to achieve this, self-
attention mechanism [36] or Graph Neural Network (GNN). Since
self-attention can be viewed as one type of the GNNs, we choose the
self-attention mechanism. However, in conventional self-attention,
each 3D Gaussian needs to be scored once with all the others. If
there is a total of n 3D Gaussians, it needs to be calculated n® times,
which results in the complexity of O(n?). Necessarily, there are tens
of thousands of 3D Gaussians to form our voxelized representation,
making it unacceptable. In addition, there is no necessity for such
fine-detail information interaction. The grid-wise interaction can
also fulfill our target. Therefore, we can simplify the point-wise
self-attention to grid-wise self-attention.

Specifically, as shown in Fig. 5, we first transform the feature
F to query g € RNXNXNXD 'poy k¢ RNXNXNXD 'and value
0 € RNXNXNXD through the linear transformation matrices Wo,
Wk, and Wy, respectively. Then, we partition the voxel space into
G? grids equally. For each grid, we use the average feature vector
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qq € RGXGXGXD’ kg e RGXGXGXD, and vg € RGXGXGXD of the
3D Gaussians, whose center is in this grid, to represent the query,
key, and value of this grid. In addition, when splitting the space,
we also record the grid_indices, which is the index that each 3D
Gaussian belongs to. We use the following equation to calculate
the grid-wise self-attention [36] feature 7, € RO*C*C*D

k
Fq :softmax(qg—g)vg. 4)

VD

Finally, grid feature ¥ is mapped back to each 3D Gaussian feature
Fs € RNXNXNXD

according to the recorded grid_indices.

3.2.3 Gaussians-Text Fusion Block. The goal is to fuse the 3D Gaus-
sians and text features, thereby constructing the information interac-
tion between them. Naturally, to achieve this target, a directive way
is to calculate the cross-attention by setting the Gaussian features
as the query and setting the text embeddings as the key and value.
The process is depicted in Fig. 6. The inputs are the text embed-
ding and the features ¥ of each 3D Gaussian. And the output is
the fused features ¥;. Considering that the complexity of cross-
attention is linear, we don’t split the space into the grid to simplify
the calculation.

Specifically, we first flatten the feature Fs to {x1, x2, ..., xn }, which
is the output of the last block, to the one-dimensional shape and as
the query. Then, we set the text embedding y to the key and value.
the cross-attention is calculated by

Wo (F)Wk (y)
VD

where WQ, Wk, Wy are the transformation matrix of query, key,
and value. In this process, the Gaussians can be assigned higher
scores to their most related parts. For example, the part of the 3D
Gaussians that should be composed of “dog” will be assigned a
higher score to this word, thereby assimilating more information
about this word by the weighted sum. This mechanism enables
the 3D Gaussians that compose the same entity to have higher
similarity, thereby achieving our target.

Fe = softmax( MWy (y), ©)



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Point-E Shap-E Ours
“A and a

playing tic-tac-toe with

Lutao Jiang, et al.

Point-E Shap-E Ours
“A potted is on the ”

i s L
with butterfly
while sitting on a giant

, reading a fairy

»

“A young

Figure 7: Comparison of different initialization methods (Point-E, Shap-E, Ours).

Table 1: The definition of the lexical richness criteria, includ-
ing "simple", ’medium" and "hard".

Lexical Richness | Definition Example
“Simple” The text contains just one entity. "A dog"
The text contains multiple entities but | ,
« L . . . . . ‘A dog and an
Medium without spatial relationship and inter- | °. .
. . . airplane
action relationship.
The text contains multiple entities that | "A dog is sitting
“Hard’ have complex spatial and interaction re- | on the top of the
lationships airplane”

4 Experiments

4.1 Implementation Details

All our experiments are conducted on a single Nvidia A40 48GB
or a single RTX 3090 24GB. Our code is constructed based on Py-
Torch framework [24]. For the initialization phase, we use Deep-
FloydIF [34] to calculate the SDS loss, due to its stronger semantic
understanding ability. But it can provide the supervision of just
64 X 64 resolution. Therefore, for the next training of DreamGaus-
sian [35], GaussianDreamer [44], and LucidDreamer [14], we still
keep consistent to their original setting, utilizing the version V2.1
of the Stable Diffusion [29], which can provide the supervision
of 512 X 512 resolution. We set scale to (0.05,0.05,0.05) and set
rotation to (1,0,0,0).

4.2 Comparison Results

In Tab. 1, we provide the difficulty classification criteria of text. As
shown in Fig. 1 (a), following the difficulty increasing, the existing
methods can’t generate the corresponding 3D assets. Therefore,
in the following comparison, we mainly focus on the hard texts.
Firstly, we compare our initialization method with the mainstream
initialization methods, Point-E [23], and Shap-E [10]. Secondly, we
compare the rendering optimization results from different initial-
ization methods based on the LucidDreamer [14] model. Thirdly,
we compare the different rendering optimization models based on
our initialization methods, including DreamGaussian [35], Gaus-
sianDreamer [44], and LucidDreamer [14]. Finally, we provide user

studies about different initialization methods and different render-
ing optimization methods.

4.2.1 Comparisons among Initialization Methods. To demonstrate
the superiority of our initialization method, we show the visual com-
parison in Fig. 7. The first demo is for medium text, and the others
are for hard texts. It’s obvious that both Point-E and Shap-E can’t
generate semantically consistent initial shapes for these two types
of lexical richness. By contrast, our method can provide a better
initialization for lexical-rich texts, which proves our effectiveness.

4.2.2  Comparisons among Initialization Methods Based on Lucid-
Dreamer. In Fig. 8, we show the visual results of hard texts based
on the LucidDreamer [14] model. For LucidDreamer with sphere
random initialization, all test texts don’t get rid of their basic shapes,
which makes it difficult to generate the semantic-correct 3D assets.
Moreover, it sometimes generates the content at the surface of the
sphere, as shown in the demo of kangaroos. For Point-E initializa-
tion, though some entities exist in the results, they still lack some
entities, and the relationships between entities are mistakes. While
Shap-E is better than Point-E, it is also difficult to achieve the target
of generating semantically consistent 3D assets. On the contrary,
our initialization method demonstrates strong and robust results,
which proves that our method can facilitate the development of
lexical-richer text-to-3D.

4.2.3 Comparisons among Rendering Optimization Models Based on
Our Initialization. In Fig. 9, we show the visual results of hard texts
based on our initialization framework with DreamGaussian [35],
GaussianDreamer [44], and LucidDreamer [14]. The experiments
show that our method has strong generality. Our initialization
method can perfectly adapt to different rendering optimization
models. With our good initialized shape, we conclude that Lucid-
Dreamer and GaussianDreamer both achieve SoTA performance.

4.2.4 User Studies. We conduct the user studies based on a survey
involving 50 participants, and 20 prompts with their corresponding
3D scene options. These scenes are generated using four initial-
ization methods based on LucidDreamer [14], including Sphere,
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“Two kangaroos having a boxing match in a playful manner.”
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“a rabbit is cutting grass with a lavwnmower.”

Figure 8: Comparison of rendered results using different initialization based on LucidDreamer [14].

Table 2: User preference
for different initializa-
tion methods based on

Table 3: User preference for differ-
ent rendering optimization meth-
ods based on our initialization

LucidDreamer [14]. method.
Initialization | Preference Optimization Preference
Sphere 3.2% DreamGaussian [35] 2.8%
Point-E [23] 4.0% GaussianDreamer [44] 31.6%
Shap-E [10] 4.8% LucidDreamer [14] 65.6%
Ours 88.0%

Point-E [23], Shap-E [10], and Ours. As shown in Tab. 2, most par-
ticipants (88%) think our initialization methods can provide the
best generation results. Furthermore, we also compare the different
rendering optimization methods based on our initialization method.
As demonstrated in Tab. 3, the users preferred our initialization
with LucidDreamer.

4.3 Ablation Study

4.3.1 The Training Process of Initialization. In Fig. 10, we provide
the detailed process of our initialization training. With only 1, 000
iterations (12 minutes and 20 seconds), our method can generate
the semantically consistent initialization shape.

4.3.2 The Validation of Blocks. To validate the effectiveness of
our designed GIP block and GTF block, we conduct the ablation
studies. As demonstrated in Fig. 11 (a), we show the comparison of
complete design, w/o GTF, and w/o GIP. It is obvious that without the
GIP block, the man is standing in a spare area, which loses some
semantic consistency. A similar tendency is shown without the GTF

block. Our complete design can enable the initialized shape to have
a semantic consistency with the text.

4.3.3 The Number of Grid in Grid-wise Self-attention. As shown in
Fig. 11 (b), we validate the choice of the number of grids G when
partitioning the space in the GIP block, according to the quality
of the initialized shape. When setting G to 16, the connection line
between the man and the lawnmower can be partly initialized. How-
ever, when setting the G to 12, it disappears. When G decreases,
the semantic consistency also decreases. Therefore, taking the bal-
ance between the calculation burden and the effectiveness into
consideration, we set G to 16.

4.3.4  Whether to Fix the Scale and Rotation. To decide whether to
fix the attributes of scale and rotation in our initialization phase,
we compare the convergence speed and the initialized quality in
Fig. 11 (c). With the scale and rotation fixed, we can finish a seman-
tically consistent initialization using only about 12 minutes. On
the contrary, without the scale and rotation fixed, even though it
costs 20 minutes, it still fails to generate a feasible initialized shape.
Consequently, we can attribute this phenomenon to that fixing the
scale and rotation can significantly reduce the training difficulty.
Due to the clear objective, by only determining the occupancy of a
voxel, we can finish our target rapidly.

5 Conclusion

In this paper, we analyzed the importance of the initialization in GS-
based text-to-3D frameworks. We then proposed an initialization
framework that can be viewed as a plug-and-play initializer for
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“A stylish fox typing on a vintage typewriter.”

“A whale breaching the ocean surface and splashing back down.’
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“a man reclining in a cozy armchair, watching his favorite movie on a tablet.”

b ais

“A knight is setting up a campfire..”

A4

]

Figure 9: Comparison of rendered results with different training frameworks based on our initialization.

) & d & 4 &

100 iter 1minl4s 300 iter 3min42s 500 iter 6min10s 700 iter 8min28s 900 iter 11min6s 1000 iter 12min20s

Figure 10: The initialization training process of our method. We use "A knight is setting up a campfire." for illustration.

LR IILN

G=12

Complete w/o GTF w/o GIP

wy/ Fixing 12 min w/o Fixing 20 min
(a) The validation of GTF and GIP (b) The validation of choosing different G : (c) The validation of scale and rotation fixing

Figure 11: The ablation studies. The prompt is “a man cutting grass with a lawnmower”.

the different GS-based text-to-3D methods. To achieve the rapidly Future Work: Solving the multi-face Janus problem is particularly
semantic-consistent initialization, we proposed the voxelized 3D difficult when only supervised by a 2D diffusion model, especially
Gaussians representation and designed an initialization network for lexically richer (i.e., medium and hard) texts. Introducing some
consisting of the GIP block and GTF block. Extensive experiments other methods related to this is a valuable exploration direction.
show that our method can produce the initial shape for the lexical- Future work will be devoted to solving this problem.

richer text, facilitating the development of this field significantly.
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