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A IMPLEMENTATION DETAILS

We follow (Finn et al., 2017; Yao et al., 2019) by adopting the standard four-block convolutional
layers as the feature extractor for our episodic memory optimizer and all baselines. We also conduct
our experiments by ANIL (Raghu et al., 2019), which removes the inner-loop updates for the feature
extractor network, and applies inner-loop adaptation only to the classifier during training and testing.
For all experiments, we keep the outer-loop optimizer consistent with the traditional optimization-
based meta-learning approaches, e.g., Adam (Kingma & Ba, 2015). Our code will be publicly
released.

B PROOF OF CONVERGENCE

To analyze the convergence rate of the model, we first derive the upper bound for the expectation

E || A6, ||* with respect to the independent random noises for all previous gradients {ej}i—1, where

||| is the spectral norm. We reformulate the aggregation process of our method as a linear multi-step
system. Thus the gradient for the ¢-th iteration is aggr(g, V;)= Zf;ol Wy, sJi—s» Where S is the
number of step in the system. By incorporating the aggregation process into the update rule Eq. (??)
and subtracting 6* from both sides, we obtain the recursive formulation about the difference Af; as:

S—1

Ay = A0 —a ) wi g ()
s=0

In the paper, the gradient of each iteration is reformulated by adding its mean and the corresponding
noise in Eq. (??). For clarity in the proof below, we define the average rate of the gradient changes
from the ¢-th iteration of model parameters to the optimal as:
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With the assumptions about the objective function f, the average rate of gradient changes is also
bounded between p and L. By incorporating Eq. (2) into Eq. (??), we simplify the recursive
formulation about the difference A#g; as:

S5-1 S—1
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We take recursive formulations about {AHtH,S}f;& together and get the matrix version of the the
recursion below:
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Note that A; is the system matrix at the ¢-th iteration. By unrolling the recursion below, the upper
bound of the expectation E || A6, || can be derived :
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According to the definition of the spectral norm and the properties of block matrix (Polyak, 1964;
Assran & Rabbat, 2020; McRae et al., 2022), we get the upper bound of the spectral norm below:

1Al < M (AT Ay),
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where A\t = 0 1 T 0 0 .
0 0 e 1 0

Note that )\t(ﬁj Et) is the square root of the largest eigenvalue of the matrix Aktr ﬁt. The matrix
A; € R5%S has bounded hyperparameters: 7; € [u, L] and w; € [0,1]. We introduce A\pax as
the upper bound for all \; corresponding to all system matrices. Since the learning rate is chosen
sufficiently small such that A\,.x < 1, we further simplify Eq. (5) below:
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Recall that f(-) is assumed to be L-smooth, we get the convergence rate of our model as
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C MORE RESULTS

C.1 COMPARISON WITH OTHER OPTIMIZERS

Table 1: Comparison with other optimizers on Meta-Dataset-BTAF under the 5-way 1-shot setting.
EMO achieves better performance compared to other optimizers on all datasets.

MAML
Dataset w/ SGD w/ Momentum w/ Adam w/ EMO

Bird 53.94 + 145 52.98 +142 52.55 +141 56.32 +133
Texture 31.66 + 131 31.38 +1.31 30.95 134 34.75 + 141
Aircraft  51.37 +1.38 51.09 + 135 50.15 £133  53.99 +133
Fungi 42.12 + 136 41.54 + 135 41.04 + 131 43.15 + 136

To show the benefit of the episodic memory optimizer, we compare MAML (Finn et al., 2017),
Meta-SGD (Li et al., 2017), and ANIL (Raghu et al., 2019) with their EMO variants, where each
variant uses EMO as the inner-loop optimizer. Table 1 shows each method with EMO achieves better
performance by a large margin than the original methods on four different datasets. More importantly,
the most challenging, which has the largest domain gap Texture, delivers 34.75%, surpassing the
Meta-SGD by 2.09%. We attribute the improvements to our model’s ability to leverage the episodic
memory to adjust the model parameters, allowing the model to update the test task model using the
most training task-like update, and thus leading to improvements over original models.

C.2 EFFECT OF DIFFERENT AGGREGATION FUNCTIONS

We also give the ANIL with EMO for ablating the effect of EMO’s aggregation function used
to compute the new gradients. We report the performance of ANIL with EMO using different
aggregation functions in Table 2. The best-suited aggregation function for ANIL with EMO is
the Transformer. To ensure consistency of implementation on each dataset, we choose the
Transformer aggregation function for ANIL with EMO.

Table 2: Effect of ANIL with different aggregation functions. Mean achieves better performance
than alternatives.

ANIL with EMO
Dataset sum Mean Transformer

Bird 5491 +133 55.18 +1.34 54.78 +1.33
Texture 32.71 £130 33.14 + 140 3315+ 141
Aircraft 53.16 =140 52.11 +138 52.79 +133
Fungi 43.17 £ 134 43.07 £ 131 43.75 + 136

C.3 EFFECT OF MEMORY CONTROLLER

We further assess the effect of the memory controller with ANIL with EMO and Meta-SGD with
EMO in Table 3. With CLOCK-EM, Meta-SGD with EMO achieves better performance on all datasets,
while ANIL with EMO leads to a small but consistent gain under all the datasets with LRU-EM. To
ensure consistency of implementation on each dataset, we choose the LRU-EM function for ANIL
with EMO, and CLOCK-EM is used for Meta-SGD with EMO.
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Table 3: Effect of ANIL with different memory controllers. LRU-EM achieves better performance
than alternatives.

ANIL with EMO
Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 50.11 £131 5391 +134 54.78 +1.43
Texture 29.11 +141 3294 +140 33.15 + 131
Aircraft 47.96 £140 5391 +135 5279 +133
Fungi 4097 £135 4317 135 4375 131

Table 4: Effect of Meta-SGD with different memory controllers. LRU-EM achieves better perfor-
mance than alternatives.

Meta-SGD with EMO
Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 53.05+134 5895 +141 5731 +134
Texture 32.13 +141  36.26 +133 3595 +1.41
Aircraft 49.16 141 5521 +135 56.19 + 134
Fungi 41.61 £134 4524 +135 4475 +136

C.4 ANALYSIS OF EPISODIC MEMORY

In this section, we further analysis of our proposed episodic memory with the other three datasets. In
this experiment, we meta-train MAML and MAML with EMO on the Texture, Aircraft, and Fungi
datasets, respectively, and meta-test on Meta-Dataset-BTAF. Therefore the episodes saved in the
memory are from the Texture, Aircraft, and Fungi, respectively. The results are shown in Figure 1.
Consistent with the results in the Figure ??, MAML with EMO has a significant performance
improvement when the meta-training dataset is the same as the meta-test dataset. Interestingly, the
memory of Aircraft can also help Bird to achieve better performance in Figure 1 (b). Similarly, when

the test task has large distribution shifts with the training task, the memory will not be useful or even
harmful.
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Figure 1: Analysis of episodic memory.

C.5 COMPARISON WITH THE STATE-OF-THE-ART ON FEW-SHOT LEARNING DATASETS

We further conduct experiments on the Meta-Dataset-BTAF and minilmageNet under the 5-way
5-shot setting in Table 5. We also give the comparative results for few-shot learning on minilmageNet
and tiredlmageNet using a ResNet-12 back in the Table 6. In these comparison, we apply ARML Yao
et al. (2020) with EMO to do the experiment. Our method achieves state-of-the-art performance on
all benchmarks under the 5-way 5-shot setting.
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Table 5: Comparative results of different algorithms on the Meta-Dataset-BTAF using a Conv-4
backbone under the 5-way 5-shot setting. The results of other methods are provided by (Yao et al.,
2019; Jiang et al., 2022). Equipping ARML with EMO makes it a consistent top-performer.

Method Bird Texture Aircraft Fungi | minilmageNet
MAML (Finn et al., 2017) 68.52 £079 44.56 +068 66.18 071 51.85 085 63.11 092
Meta-SGD (Li et al., 2017) 67.87 £074 4549 1068 66.84 +070 52.51 +081 64.03 £ 094
HSML (Yao et al., 2019) 71.68 £073 48.08 £069 73.49 +068 56.32 +0.80 65.91 +095
ARML (Yao et al., 2020) 73.34 £070 49.67 £067 74.88 £064 57.55 +082 66.87 +0.93
TSA-MAML (Zhou et al., 2021)  72.31 071 49.50 +068 74.01 070 56.95 +0.80 65.52 + 09
ANIL (Raghu et al., 2019) 70.67+072 44.67 £095 66.05 £107 52.89 +£030 61.50 £092
BMG (Flennerhag et al., 2021) 71.56 +076 49.44 +073 66.83 £079 52.56 +0.89 66.73 + 0091
MUSML (Jiang et al., 2022) 76.69 £072 52414075 77.76 +082 57.74 + 0381 65.12 + 148
ARML with EMO 7717 +065 53.25 +o068 77.83 +063 59.15+079 71.05 + 091

Table 6: Comparative results for few-shot learning on minilmagenet and fieredlmagenet using a
ResNet-12 backbone. ARML with EMO can also improve performance for traditional few-shot
learning.

minilmagenet 5-way tieredImagenet 5-way

Method 1-shot 5-shot 1-shot 5-shot
SNAIL (Mishra et al., 2018) 55.71 £099 68.88 +0.92 - -
Dynamic FS (Gidaris & Komodakis, 2018) 55.45 +0.89  70.13 +0.68 - -
TADAM (Oreshkin et al., 2018) 58.50 £030 76.70 +0.30 - -
MTL (Sun et al., 2019) 61.20 £180 75.50 +0.80 - -
VariationalFSL (Zhang et al., 2019) 61.23 £026 77.69 +o0.17 - -
TapNet (Yoon et al., 2019) 61.65 015 76.36 £0.10 63.08 £0.15 80.26 +0.12
MetaOptNet (Lee et al., 2019) 62.64 061 78.63 +046 65.81 £074 81.75 +053
CTM (Li et al., 2019) 62.05 £055 78.63 006 64.78 £0.11  81.05 £ 052
CAN (Hou et al., 2020) 63.85 048 79.44 +034 69.89 051 84.23 +037
HVM (Du et al., 2022) 67.83 +o057 83.88 £051 73.67 £071 88.05 +044
ARML with EMO 69.15 +034 8413 +025 7517 035 89.05 +025
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