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A IMPLEMENTATION DETAILS

We follow (Finn et al., 2017; Yao et al., 2019) by adopting the standard four-block convolutional
layers as the feature extractor for our episodic memory optimizer and all baselines. We also conduct
our experiments by ANIL (Raghu et al., 2019), which removes the inner-loop updates for the feature
extractor network, and applies inner-loop adaptation only to the classifier during training and testing.
For all experiments, we keep the outer-loop optimizer consistent with the traditional optimization-
based meta-learning approaches, e.g., Adam (Kingma & Ba, 2015). Our code will be publicly
released.

B PROOF OF CONVERGENCE

To analyze the convergence rate of the model, we first derive the upper bound for the expectation
E ∥∆θt+1∥2 with respect to the independent random noises for all previous gradients {ϵj}tj=1, where
∥·∥ is the spectral norm. We reformulate the aggregation process of our method as a linear multi-step
system. Thus the gradient for the t-th iteration is aggr(gt,Vt)=

∑S−1
s=0 wt,sgt−s, where S is the

number of step in the system. By incorporating the aggregation process into the update rule Eq. (??)
and subtracting θ∗ from both sides, we obtain the recursive formulation about the difference ∆θt as:

∆θt+1 = ∆θt − α

S−1∑
s=0

wt,sgt−s. (1)

In the paper, the gradient of each iteration is reformulated by adding its mean and the corresponding
noise in Eq. (??). For clarity in the proof below, we define the average rate of the gradient changes
from the t-th iteration of model parameters to the optimal as:

Rt =
∇f(θt)−∇f(θ∗)

∆θt
=

∫ 1

0

∇2f(θ∗ + u∆θt)du. (2)

With the assumptions about the objective function f , the average rate of gradient changes is also
bounded between µ and L. By incorporating Eq. (2) into Eq. (??), we simplify the recursive
formulation about the difference ∆θt as:

∆θt+1 = ∆θt − α

S−1∑
s=0

wt,sRt−s∆θt−s − α

S−1∑
s=0

wt,sϵt−s. (3)

We take recursive formulations about {∆θt+1−s}S−1
s=0 together and get the matrix version of the the

recursion below:
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
∆θt+1

∆θt
...

∆θt−S

 = At


∆θt

∆θt−1

...
∆θt−S+1

+


−α

∑S−1
s=0 wt,sϵt−s

0
...
0

 ,

where At =


I − αwt,0Rt −αwt,1Rt−1 · · · −αwt,S−2Rt−S+2 −αwt,S−1Rt−S+1

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 .

(4)

Note that At is the system matrix at the t-th iteration. By unrolling the recursion below, the upper
bound of the expectation E ∥∆θt+1∥2 can be derived :

E ∥∆θt+1∥2 ≤ Eϵt,··· ,ϵ1

∥∥∥∥∥∥∥∥


∆θt+1

∆θt
...

∆θt−S


∥∥∥∥∥∥∥∥
2

= Eϵt,··· ,ϵ1

∥∥∥∥∥∥∥∥∥At


∆θt

∆θt−1

...
∆θt−S+1

+


−α

∑S−1
s=0 wt,sϵt−s

0
...
0


∥∥∥∥∥∥∥∥∥
2

= ∥At∥2 Eϵt−1,··· ,ϵ1

∥∥∥∥∥∥∥∥


∆θt
∆θt−1

...
∆θt−S+1


∥∥∥∥∥∥∥∥
2

+ α2
S∑

s=0

w2
t,sEϵt−s

∥ϵt−s∥2

≤ ∥At∥2 Eϵt−1,··· ,ϵ1

∥∥∥∥∥∥∥∥


∆θt
∆θt−1

...
∆θt−S+1


∥∥∥∥∥∥∥∥
2

+ α2Sσ2

· · ·

≤
t∏

j=1

∥Aj∥2 ∥∆θ1∥2 + α2Sσ2
S∑

j=1

(∥At∥2 · · · ∥Aj+1∥2).

(5)

According to the definition of the spectral norm and the properties of block matrix (Polyak, 1964;
Assran & Rabbat, 2020; McRae et al., 2022), we get the upper bound of the spectral norm below:

∥At∥ ≤ λt(Â
⊤
t Ât),

where Ât =


1− αwt,0τt −αwt,1τt−1 · · · −αwt,S−2τt−S+2 −αwt,S−1τt−S+1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .
(6)

Note that λt(Â
⊤
t Ât) is the square root of the largest eigenvalue of the matrix Â⊤

t Ât. The matrix
Ât ∈ RS×S has bounded hyperparameters: τt ∈ [µ,L] and wt ∈ [0, 1]. We introduce λmax as
the upper bound for all λt corresponding to all system matrices. Since the learning rate is chosen
sufficiently small such that λmax < 1, we further simplify Eq. (5) below:

E ∥∆θt+1∥2 ≤ λ2t
max ∥∆θ1∥2 +

α2σ2S

1− λ2
max

. (7)
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Recall that f(·) is assumed to be L-smooth, we get the convergence rate of our model as

f(θt+1)− f(θ∗) ≤ L

2
(λ2t

max ∥∆θ1∥2 +
α2σ2S

1− λ2
max

). (8)

C MORE RESULTS

C.1 COMPARISON WITH OTHER OPTIMIZERS

Table 1: Comparison with other optimizers on Meta-Dataset-BTAF under the 5-way 1-shot setting.
EMO achieves better performance compared to other optimizers on all datasets.

MAML

Dataset w/ SGD w/ Momentum w/ Adam w/ EMO

Bird 53.94 ± 1.45 52.98 ± 1.42 52.55 ± 1.41 56.32 ± 1.33

Texture 31.66 ± 1.31 31.38 ± 1.31 30.95 ± 1.34 34.75 ± 1.41

Aircraft 51.37 ± 1.38 51.09 ± 1.35 50.15 ± 1.33 53.99 ± 1.33

Fungi 42.12 ± 1.36 41.54 ± 1.35 41.04 ± 1.31 43.15 ± 1.36

To show the benefit of the episodic memory optimizer, we compare MAML (Finn et al., 2017),
Meta-SGD (Li et al., 2017), and ANIL (Raghu et al., 2019) with their EMO variants, where each
variant uses EMO as the inner-loop optimizer. Table 1 shows each method with EMO achieves better
performance by a large margin than the original methods on four different datasets. More importantly,
the most challenging, which has the largest domain gap Texture, delivers 34.75%, surpassing the
Meta-SGD by 2.09%. We attribute the improvements to our model’s ability to leverage the episodic
memory to adjust the model parameters, allowing the model to update the test task model using the
most training task-like update, and thus leading to improvements over original models.

C.2 EFFECT OF DIFFERENT AGGREGATION FUNCTIONS

We also give the ANIL with EMO for ablating the effect of EMO’s aggregation function used
to compute the new gradients. We report the performance of ANIL with EMO using different
aggregation functions in Table 2. The best-suited aggregation function for ANIL with EMO is
the Transformer. To ensure consistency of implementation on each dataset, we choose the
Transformer aggregation function for ANIL with EMO.

Table 2: Effect of ANIL with different aggregation functions. Mean achieves better performance
than alternatives.

ANIL with EMO

Dataset sum Mean Transformer

Bird 54.91 ± 1.33 55.18 ± 1.34 54.78 ± 1.33

Texture 32.71 ± 1.30 33.14 ± 1.40 33.15 ± 1.41

Aircraft 53.16 ± 1.40 52.11 ± 1.38 52.79 ± 1.33

Fungi 43.17 ± 1.34 43.07 ± 1.31 43.75 ± 1.36

C.3 EFFECT OF MEMORY CONTROLLER

We further assess the effect of the memory controller with ANIL with EMO and Meta-SGD with
EMO in Table 3. With CLOCK-EM, Meta-SGD with EMO achieves better performance on all datasets,
while ANIL with EMO leads to a small but consistent gain under all the datasets with LRU-EM. To
ensure consistency of implementation on each dataset, we choose the LRU-EM function for ANIL
with EMO, and CLOCK-EM is used for Meta-SGD with EMO.

3



Under review as a conference paper at ICLR 2023

Table 3: Effect of ANIL with different memory controllers. LRU-EM achieves better performance
than alternatives.

ANIL with EMO

Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 50.11 ± 1.31 53.91 ± 1.34 54.78 ± 1.43

Texture 29.11 ± 1.41 32.94 ± 1.40 33.15 ± 1.31

Aircraft 47.96 ± 1.40 53.91 ± 1.35 52.79 ± 1.33

Fungi 40.97 ± 1.35 43.17 ± 1.35 43.75 ± 1.31

Table 4: Effect of Meta-SGD with different memory controllers. LRU-EM achieves better perfor-
mance than alternatives.

Meta-SGD with EMO

Dataset FIFO-EM CLOCK-EM LRU-EM

Bird 53.05 ± 1.34 58.95 ± 1.41 57.31 ± 1.34

Texture 32.13 ± 1.41 36.26 ± 1.33 35.95 ± 1.41

Aircraft 49.16 ± 1.41 55.21 ± 1.35 56.19 ± 1.34

Fungi 41.61 ± 1.34 45.24 ± 1.35 44.75 ± 1.36

C.4 ANALYSIS OF EPISODIC MEMORY

In this section, we further analysis of our proposed episodic memory with the other three datasets. In
this experiment, we meta-train MAML and MAML with EMO on the Texture, Aircraft, and Fungi
datasets, respectively, and meta-test on Meta-Dataset-BTAF. Therefore the episodes saved in the
memory are from the Texture, Aircraft, and Fungi, respectively. The results are shown in Figure 1.
Consistent with the results in the Figure ??, MAML with EMO has a significant performance
improvement when the meta-training dataset is the same as the meta-test dataset. Interestingly, the
memory of Aircraft can also help Bird to achieve better performance in Figure 1 (b). Similarly, when
the test task has large distribution shifts with the training task, the memory will not be useful or even
harmful.

(a) Trained only Texture (b) Trained only Aircraft (c) Trained only Fungi

Figure 1: Analysis of episodic memory.

C.5 COMPARISON WITH THE STATE-OF-THE-ART ON FEW-SHOT LEARNING DATASETS

We further conduct experiments on the Meta-Dataset-BTAF and miniImageNet under the 5-way
5-shot setting in Table 5. We also give the comparative results for few-shot learning on miniImageNet
and tiredImageNet using a ResNet-12 back in the Table 6. In these comparison, we apply ARML Yao
et al. (2020) with EMO to do the experiment. Our method achieves state-of-the-art performance on
all benchmarks under the 5-way 5-shot setting.
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Table 5: Comparative results of different algorithms on the Meta-Dataset-BTAF using a Conv-4
backbone under the 5-way 5-shot setting. The results of other methods are provided by (Yao et al.,
2019; Jiang et al., 2022). Equipping ARML with EMO makes it a consistent top-performer.

Method Bird Texture Aircraft Fungi miniImageNet

MAML (Finn et al., 2017) 68.52 ± 0.79 44.56 ± 0.68 66.18 ± 0.71 51.85 ± 0.85 63.11 ± 0.92

Meta-SGD (Li et al., 2017) 67.87 ± 0.74 45.49 ± 0.68 66.84 ± 0.70 52.51 ± 0.81 64.03 ± 0.94

HSML (Yao et al., 2019) 71.68 ± 0.73 48.08 ± 0.69 73.49 ± 0.68 56.32 ± 0.80 65.91 ± 0.95

ARML (Yao et al., 2020) 73.34 ± 0.70 49.67 ± 0.67 74.88 ± 0.64 57.55 ± 0.82 66.87 ± 0.93

TSA-MAML (Zhou et al., 2021) 72.31 ± 0.71 49.50 ± 0.68 74.01 ± 0.70 56.95 ± 0.80 65.52 ± 0.92

ANIL (Raghu et al., 2019) 70.67± 0.72 44.67 ± 0.95 66.05 ± 1.07 52.89 ± 0.30 61.50 ± 0.92

BMG (Flennerhag et al., 2021) 71.56 ± 0.76 49.44 ± 0.73 66.83 ± 0.79 52.56 ± 0.89 66.73 ± 0.91

MUSML (Jiang et al., 2022) 76.69 ± 0.72 52.41 ± 0.75 77.76 ± 0.82 57.74 ± 0.81 65.12 ± 1.48

ARML with EMO 77.17 ± 0.65 53.25 ± 0.68 77.83 ± 0.63 59.15 ± 0.79 71.05 ± 0.91

Table 6: Comparative results for few-shot learning on miniImagenet and tieredImagenet using a
ResNet-12 backbone. ARML with EMO can also improve performance for traditional few-shot
learning.

miniImagenet 5-way tieredImagenet 5-way
Method 1-shot 5-shot 1-shot 5-shot
SNAIL (Mishra et al., 2018) 55.71 ± 0.99 68.88 ± 0.92 - -
Dynamic FS (Gidaris & Komodakis, 2018) 55.45 ± 0.89 70.13 ± 0.68 - -
TADAM (Oreshkin et al., 2018) 58.50 ± 0.30 76.70 ± 0.30 - -
MTL (Sun et al., 2019) 61.20 ± 1.80 75.50 ± 0.80 - -
VariationalFSL (Zhang et al., 2019) 61.23 ± 0.26 77.69 ± 0.17 - -
TapNet (Yoon et al., 2019) 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12

MetaOptNet (Lee et al., 2019) 62.64 ± 0.61 78.63 ± 0.46 65.81 ± 0.74 81.75 ± 0.53

CTM (Li et al., 2019) 62.05 ± 0.55 78.63 ± 0.06 64.78 ± 0.11 81.05 ± 0.52

CAN (Hou et al., 2020) 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37

HVM (Du et al., 2022) 67.83 ± 0.57 83.88 ± 0.51 73.67 ± 0.71 88.05 ± 0.44

ARML with EMO 69.15 ± 0.34 84.13 ± 0.25 75.17 ± 0.35 89.05 ± 0.25
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