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A DETAILED ALGORITHM DESCRIPTIONS

This appendix provides detailed descriptions of the offline reinforcement learning algorithms eval-
uated in our benchmark. Each description outlines the core mechanism, architecture, and training
objective of the respective algorithm.

A.1 MULTI-AGENT OFFLINE ALGORITHMS

Our benchmark evaluates several multi-agent offline reinforcement learning algorithms. These
methods are designed to learn decentralized policies from pre-collected, static datasets without
further interaction with the environment, which is crucial for real-world applications where on-
line exploration is infeasible. For the multi-agent algorithm, we refer to the implementation in
og-marl(Formanek et al., 2023)

Random. The random baseline serves as a fundamental lower bound for multi-agent performance.
In this setup, each agent independently and randomly selects an action from the available space at
each step. This policy represents a complete lack of coordination or learned behavior. A specialized
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version can incorporate rudimentary budget awareness by prioritizing ”affordable” actions, but it
remains a non-learning-based approach.

discrete bc. This algorithm is a multi-agent adaptation of Behavior Cloning (BC) for discrete
action spaces. It learns a decentralized policy by directly mimicking expert actions from the offline
dataset. Each agent’s policy is represented by a DeepRNN (Recurrent Neural Network), which pro-
cesses the agent’s local observation. To enable agents to distinguish themselves, a one-hot encoded
agent ID is concatenated to each agent’s observation. The training objective is to minimize the
cross-entropy loss between the predicted action probabilities and the expert’s chosen actions. This
algorithm serves as a strong imitation learning baseline.

IQL-CQL. The IQL-CQL algorithm extends the Individual Q-learning (IQL) framework with Con-
servative Q-Learning (CQL) for multi-agent settings. Each agent learns its own Q-function using a
DeepRNN, where agent IDs are also appended to observations. The core idea of IQL is to train each
agent’s Q-function independently. CQL is integrated to address the overestimation bias inherent in
offline Q-learning by adding a regularization term to the objective that penalizes Q-values for out-
of-distribution actions. The overall loss combines the standard TD (Temporal Difference) error with
the CQL regularization term.

QMIX-CQL. QMIX-CQL combines the centralized training with decentralized execution (CTDE)
framework of QMIX with CQL for offline learning. Individual agents learn their own Q-functions
(using DeepRNNs with agent ID concatenation), but their Q-values are combined by a monotonic
mixing network (QMixer) to produce a global Q-value. For offline learning, CQL regularization is
applied to the mixed global Q-values, pushing down the values of actions not present in the dataset.
This approach leverages multi-agent coordination through the mixer while ensuring conservative
Q-value estimates for reliable offline policy learning.

A.2 CONSTRAINED SINGLE-AGENT OFFLINE ALGORITHMS

To provide a contrasting perspective to the decentralized multi-agent approaches, we also evalu-
ate several single-agent algorithms. These methods treat the entire system as a centralized control
problem, where a single policy makes all decisions. This allows us to benchmark the performance
of global optimization strategies, particularly those designed to handle explicit constraints. For the
single-agent algorithm, we refer to the implementation in osrl(Liu et al., 2024)

multitask bc. This is a single-agent Behavior Cloning (BC) approach that learns a policy
by mimicking expert demonstrations from the entire dataset. It is tailored for discrete action
spaces and handles dynamic budget information by concatenating the current budget with the
observation as input to the actor network (MLPActorDiscrete). This allows the pol-
icy to condition its actions on the remaining budget. Training is performed by minimizing the
nn.CrossEntropyLoss.

CDT (Constrained Decision Transformer). CDT adapts the Decision Transformer architecture
for constrained environments. It is designed to strictly adhere to constraints by conditioning its
predictions on both future returns (return-to-go) and future costs (cost-to-go). The transformer pre-
dicts actions based on the trajectory context (past states, actions, and rewards), while the attention
mechanism allows it to respect cumulative cost constraints. The model is trained to imitate expert
trajectories from the dataset that satisfy the given budget constraints.

multitask CPQ (Constrained Policy Q-learning). multitask CPQ is an adaptation of Con-
strained Policy Q-learning (CPQ), a model-free, off-policy algorithm for constrained RL with dis-
crete action spaces. This ”budget-aware” algorithm maintains two Q-networks: one for the expected
cumulative reward (q net) and another for the expected cumulative cost (qc net). Both net-
works take the concatenated state and budget as input. For constraint handling, a cost threshold
(qc thres) is calculated based on the cost limit. Actions predicted to lead to a future cumulative
cost exceeding this threshold are pruned by setting their Q-values to a very low number, ensuring
the policy learns to avoid constraint violations.
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B DETAILED NBI DATA PROCESSING PIPELINE

Our dataset construction follows a comprehensive multi-stage pipeline designed to transform raw
NBI records into a structured reinforcement learning benchmark. This is shown in Figure 1

B.1 DATA ACQUISITION AND PREPROCESSING

Our benchmark is derived from the National Bridge Inventory (NBI), a longitudinal database main-
tained by the U.S. Federal Highway Administration (FHWA) that contains comprehensive records
for all public road bridges in the United States.1 Our multi-stage data processing pipeline transforms
these raw records into a structured reinforcement learning benchmark.

Data Extraction and Cleaning. We utilized annual NBI data files from 1992 to 2023, performing
an initial filtering to retain only highway bridges (‘SERVICE ON 042A‘ = 1) located in Califor-
nia. This focus on a single state and infrastructure type minimizes confounding variables related to
differing state policies and environmental conditions. To address common issues in historical data,
we implemented a rigorous cleaning protocol. Missing temporal data, such as structural evaluation
scores, were imputed using a forward-fill followed by a backward-fill strategy to maintain the tem-
poral consistency of each bridge’s condition history. To ensure that our analysis was based on assets
with sufficient historical context, bridges with fewer than 20 years of records within our study period
were excluded. Furthermore, we applied statistical outlier detection methods based on interquartile
range to identify and correct or cap anomalous values in cost and rating fields, which likely represent
data entry errors.

Feature Engineering. To enrich the state representation beyond raw NBI fields, we engineered
several informative features designed to capture critical aspects of a bridge’s condition and im-
portance. These include ‘bridge age‘ (calculated as ‘current year‘ - ‘YEAR BUILT 027‘), which
is a primary driver of deterioration. We also computed ‘traffic density‘ as the ratio of ‘Aver-
age Daily Traffic 029‘ to ‘Deck Width 052‘, serving as a proxy for the operational stress on the
structure. To capture the recent health trajectory, we calculated a ‘deterioration rate‘ as the average
change in the primary structural rating over the preceding five years. Finally, we defined a composite
‘importance score‘ as a weighted sum of normalized ADT, age, and span length to approximate the
bridge’s systemic importance, helping an agent to prioritize critical assets.

Action Space Definition and Cost Estimation. To create a tractable action space, we abstracted the
specific maintenance codes from the NBI field ‘WORK PROPOSED 075A‘ into four discrete, high-
level actions: No Action, Minor Repair, Major Repair, and Replacement. The cost associated
with each action, ‘cost(a t)‘, was empirically derived by calculating the average of the inflation-
adjusted ‘TOTAL IMP COST 096‘ across all corresponding historical interventions. The cost for
‘No Action‘ is defined as zero. Table 4 provides a detailed summary of this mapping and the resultant
cost structure used throughout our experiments.

Table 4: Mapping of NBI Work Codes to Action Categories and Associated Costs

Action Category Assigned NBI Work Codes Calculated Avg. Cost ($)
No Action 0 0.00
Minor Repair 33 71.56
Major Repair 31, 34, 35 1643.31
Replacement 32, 36, 37, 38 2433.53

B.2 NATIONAL BRIDGE INVENTORY (NBI) FEATURE DETAILS

To provide clarity on the raw data used, this section details the key NBI items referenced in our
pipeline. Definitions are based on the FHWA’s Recording and Coding Guide. The bridge’s health
state is categorized into four distinct levels based on structural evaluation scores: Good (rating ≥
7), Fair (5 ≤ rating 7), Poor (3 ≤ rating 5), and Critical (rating 3).

1The NBI public data is accessible at: https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm
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Condition Ratings (Items 58, 59, 60). The core of the state representation is derived from the
condition ratings for the Deck, Superstructure, and Substructure. Each is rated on a 0-9 scale, as
detailed in Table 5. Our primary health score is the minimum of these three values, representing the
weakest link principle.

Table 5: NBI Condition Rating Scale and Our Health State Categorization

Code Description Our Categorization
9 EXCELLENT Good
8 VERY GOOD Good
7 GOOD Good
6 SATISFACTORY Fair
5 FAIR Fair
4 POOR Poor
3 SERIOUS Poor
2 CRITICAL Critical
1 ”IMMINENT” FAILURE Critical
0 FAILED Critical

Action and Cost Items. Our action space and costs are derived from the following fields:

• WORK PROPOSED 075A: This field indicates the type of work proposed to be done on
the bridge. Our action mapping uses the following codes: 31 (Widening), 32 (Deck Re-
placement), 33 (Deck Widening), 34 (Rehabilitation), 35 (Repair), 36 (Strengthening), 37
(Painting), 38 (Other).

• TOTAL IMP COST 096: The estimated total cost of the improvement proposed in Item
75A, recorded in thousands of dollars. We use this to derive the empirical cost for our
action space.

State and Feature Items. The following fields are used to construct the state space and engineered
features:

• SERVICE ON 042A: Type of service on the bridge. We filter for code ‘1‘, indicating a
highway bridge.

• YEAR BUILT 027: The year the bridge was originally constructed, used to calculate
‘bridge age‘.

• AVERAGE DAILY TRAFFIC 029: The average number of vehicles per day carried by
the bridge.

• DECK WIDTH 052: The out-to-out width of the bridge deck in meters, used to calculate
‘traffic density‘.

• LAT 016 & LONG 017: The latitude and longitude of the bridge, used for our geographic
regional partitioning.

B.3 REWARD FUNCTION FORMULATION

The reward function is central to guiding agent behavior and is composed of two primary compo-
nents: a health-based reward Rhealth and a cost-based penalty Rcost. The total reward for a single
agent is R(st, at, st+1) = Rhealth −Rcost.

Health Reward Component (Rhealth). This component is designed to reflect the change in a
bridge’s structural integrity and incentivize proactive maintenance. Its calculation depends on
whether the bridge’s condition changed over the timestep. To handle potential data anomalies, any
recorded single-year evaluation change greater than 6 points is disregarded. If the structural evalua-
tion score remains unchanged, a static reward is assigned based on the current condition: a positive
reward is given for maintaining a ‘Good‘ state (score 7), a smaller positive reward for a ‘Fair‘ state
(score 5), and a penalty for remaining in a ‘Critical‘ state (score 3). This encourages preserving
good condition cost-effectively while penalizing inaction on failing assets. If the evaluation score
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changes, the health reward is dynamic and directly proportional to the magnitude of this change,
providing a strong signal for actions that lead to tangible improvements or deteriorations.

Cost Penalty Component (Rcost) and Parameter Selection. The cost penalty is defined as Rcost =
β · cost(at), where cost(at) is the empirically derived average cost for a given action and β is a
critical hyperparameter. The selection of β was guided by an empirical analysis on over 615,000
transition samples. We performed a sensitivity analysis to find a β value that ensures the expected
cost penalty and the expected health reward are of a similar order of magnitude, preventing one
component from systematically dominating the learning signal. Our goal was to find a β that places
the ratio of the average cost penalty to the average health reward magnitude within a target range of
[0.5, 2.0]. The key results of this analysis are summarized in Table 6.

Table 6: Sensitivity analysis for the cost-weighting parameter β. The ratio of the average cost
penalty to the average health reward magnitude is shown for different β values. Our goal was a ratio
between 0.5 and 2.0.

β Value Cost/Health Ratio Comment

1.0× 10−5 0.01 Cost is negligible; agent would ignore costs.
5.0× 10−4 0.52 Balanced; cost is a significant consideration.
1.0× 10−3 1.05 Well-balanced; chosen value.
1.0× 10−2 10.50 Cost is dominant; agent would be overly frugal.

Based on this analysis, we selected β = 1.0× 10−3 for all experiments. As the table demonstrates,
this value yields a cost-to-health reward ratio of approximately 1.05, creating a reward signal that
appropriately values both structural health and economic efficiency.

B.4 STATE TRANSITION MATRIX ESTIMATION

We constructed an empirical state transition matrix, P (st+1|st, at), for each of the four action types
by aggregating all observed one-year transitions in the dataset and normalizing the counts into prob-
abilities. These matrices (visualized in Figure 5 in the main text) empirically validate our action
categorization. The matrix for No Action shows a strong diagonal and sub-diagonal, indicating high
probabilities of a bridge remaining in its current state or deteriorating. The matrix for Minor Re-
pair shows a modest upward shift in probability mass, primarily serving to arrest deterioration. In
contrast, the matrix for Major Repair offers substantial restoration, with significant probabilities of
moving bridges from ‘Poor‘ or ‘Critical‘ states to ‘Fair‘ or ‘Good‘. Finally, the Replacement matrix
overwhelmingly concentrates probability mass in the ‘Good‘ state column, correctly representing a
complete renewal of the asset.

B.5 REGIONAL PARTITIONING AND EPISODE GENERATION

Neighborhood-based Regional Partitioning. To create meaningful multi-agent scenarios that re-
flect localized management challenges, we partitioned the statewide dataset into geographically co-
herent regions. Instead of a global clustering algorithm, we employed a neighborhood-based sam-
pling method. To form a single region, a bridge was first randomly selected from the entire pool to
act as a seed. Then, the N − 1 bridges with the smallest Manhattan distance (calculated from their
latitude and longitude coordinates) to this seed were identified. This collection of N bridges—the
seed and its nearest neighbors—constitutes one region. This process was repeated, sampling with-
out replacement, until 400 distinct regions were generated. This approach ensures that agents within
an episode manage a set of geographically proximate assets and face realistic, localized resource
competition. For each region, a static, binary connectivity matrix W is constructed based on geo-
graphical proximity, capturing the inter-bridge spatial relationships.

Sliding Window for Episode Generation. From each region’s full time-series data, we generated
multiple episodes by applying a sliding window of 15 years with a stride of 5 years. This technique
augments the number of distinct trajectories available for training while ensuring that each episode
maintains its internal temporal coherence. This process resulted in a final benchmark dataset of 2000
episodes.
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Figure 5: State transition matrices for different maintenance actions. Each matrix shows the proba-
bility of transitioning from one health state (rows) to another (columns) given a specific action. The
four sub-figures correspond to: (top-left) No Action, (top-right) Minor Repair, (bottom-left) Major
Repair, (bottom-right) Replacement.

B.6 FINAL DATASET STRUCTURE AND NORMALIZATION

Data Structure Specification. Each episode in the final benchmark is stored as a dictionary-like ob-
ject containing a collection of NumPy arrays. The dimensions below represent a single episode, with
T being the time horizon and N the number of agents in the region. The arrays include: ‘obs arr‘
[T,N, obs dim], ‘act arr‘ [T,N ], ‘rew arr‘ [T,N ], ‘cost arr‘ [T,N ], the static ‘connectivity‘ matrix
[N,N ], the shared ‘budget arr‘ [T ], and a ‘metadata‘ dictionary containing episode-specific infor-
mation.

Global Normalization. All continuous features were normalized using parameters computed solely
from the training set to prevent data leakage. We employed a mixed strategy tailored to feature
characteristics: Z-score normalization for features with Gaussian-like distributions (e.g., traffic
density); Min-max normalization for features with defined bounds (e.g., bridge age); and Robust
scaling (using median and interquartile range) for features with significant outliers, such as mainte-
nance costs.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C MORE EXPERIMENTAL DETAILS

This section provides a more granular analysis of the experimental results presented in Section 5.1,
offering deeper insights into algorithm performance, budget sensitivity, and the effectiveness of
various resource allocation strategies.

C.1 HOW IS THE ALGORITHM PERFORMANCE?

The static evaluation on the held-out test set provides a clear visualization of the fundamental trade-
offs inherent in this task. Figure 6, which plots health improvement versus budget ratio, serves as
the primary basis for this analysis. The ideal algorithm would reside in the upper-left quadrant,
indicating a greater health improvement than the historical baseline for a lower relative cost. We
analyze each algorithm’s position on this plot to understand its specific strengths and weaknesses.

Figure 6: Core performance trade-offs on the test set. The vertical axis represents health improve-
ment relative to the historical baseline, while the horizontal axis shows the budget ratio compared
to historical spending. The origin (0,1) represents the historical baseline performance and cost. The
upper-left quadrant is the optimal region.

multitask cpq: The Theoretical Optimum. As shown in Figure 6, multitask cpq dom-
inates the optimal upper-left quadrant. It achieves a remarkable 28.30% health improvement over
the historical baseline while theoretically requiring only 33.7% of the budget. Its efficiency is un-
paralleled at 12.88 health units per $1M. This superior performance stems from its discovery of a
highly effective, low-cost maintenance strategy (favoring Action 1) that deviates significantly from
expert behavior (behavioral similarity of only 0.139). However, its primary weakness is its complete
disregard for budgetary constraints, evidenced by a 71.8% violation rate. Therefore, its position on
the plot represents an idealized, operationally infeasible outcome. Its value is not as a deployable
agent, but as a benchmark for the maximum achievable performance if constraints could be perfectly
managed.

discrete bc 50 and iqlcql marl: The Pragmatic Compromises. These two multi-agent
algorithms are clustered near the historical baseline point (0,1). Discrete bc 50 resides in the
upper-right quadrant, delivering a solid 4.77% health improvement at a slightly increased budget
ratio of 1.06. IQLCQL MARL sits almost directly on the baseline, offering a marginal 1.12% health
improvement for a slightly reduced budget ratio of 0.97. Their key strength is their high fidelity
to expert decision-making, with behavioral similarity scores of 0.943 and 0.944, respectively. This
mimicry allows them to inherit the experts’ implicit constraint adherence, resulting in manageable
violation rates (around 8.6%). Their weakness is the flip side of this strength: by closely following
historical patterns, they fail to discover novel, more efficient policies, limiting their performance
gains. They represent the most reliable and deployment-ready options, offering modest but safe
improvements.

cdt: The Frugal Underperformer. The Conditional Decision Transformer (cdt) is positioned
in the lower-left quadrant. Its primary strength is frugality, achieving a low budget ratio of 0.348.
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However, this cost-saving comes at the expense of performance, resulting in a 4.71% degradation
in network health compared to the historical baseline. While it exhibits high behavioral similarity
(0.859), it appears to have learned a policy that is overly conservative, prioritizing inaction or the
lowest-cost options to a degree that is detrimental to the long-term health of the infrastructure. The
trade-off it makes—sacrificing health for cost savings—is ultimately suboptimal.

qmix cql and multitask bc: The Inefficient Spenders. Both of these algorithms are located
in the undesirable lower-right quadrant, indicating that they spend more money to achieve worse
results than the historical baseline. QMIX-CQL incurs a 75% increase in budget (1.75 ratio) for
a 16.62% decline in health. Multitask bc is even less effective, with a 54% budget increase
leading to a 40.95% health decline. Their clear weakness is a failure to learn a coherent policy from
the offline data. For qmix cql, this likely points to the inherent difficulty of learning a joint multi-
agent value function from a static dataset. For the single-agent multitask bc, it suggests that a
centralized agent cannot effectively manage the spatially and temporally complex decisions required
for the entire network, leading to inefficient and poorly coordinated actions. These algorithms serve
as important baselines, demonstrating that naive application of standard methods can be highly
detrimental.

C.2 HOW IS THE ALGORITHM’S SENSITIVITY TO BUDGET?

To investigate how algorithms adapt their policies in response to varying levels of resource availabil-
ity, we conducted a 100-year longitudinal simulation, scaling the total budget from 0.25× to 4.0×
the historical average. Figure 7 illustrates the response of six key algorithms, revealing two distinct
behavioral archetypes.

Budget-Sensitive Algorithms. The first three algorithms in the figure—discrete bc 50,
multitask bc, and iqlcql marl—demonstrate a clear and predictable response to budget
changes. As the budget multiplier increases, their total expenditure (blue line) rises almost linearly.
Correspondingly, the average network health (green line) also improves, confirming that these algo-
rithms effectively utilize additional resources to perform more or higher-cost maintenance. However,
the efficiency (orange line), representing health gain per dollar, shows a clear trend of diminishing
returns; doubling the budget does not double the health outcome. This behavior confirms they have
learned a direct association between resource levels and action selection from the training data.

Budget-Insensitive Algorithms. In contrast, the latter three algorithms—cdt, multitask cpq,
and qmix cql—exhibit more irregular patterns. For multitask cpq, increasing the budget has
a negligible effect on its expenditure, which remains consistently low. Its policy is rigidly governed
by its learned Q-values and constraint model, not by the opportunity to spend more. CDT and
QMIX-CQL show non-monotonic and unpredictable spending habits. This behavior is attributed to
their underlying optimization objectives, which are not designed to simply consume a budget but
to achieve other goals (e.g., a target return for CDT). This irregular behavior is likely exacerbated
by distribution shift, as large deviations from the training data’s budget conditions create out-of-
distribution states that challenge the models’ generalization capabilities.

C.3 HOW DOES THE ORIGINAL DATASET’S ALLOCATION STRATEGY COMPARE TO
RULE-BASED ALTERNATIVES?

To investigate the impact of resource distribution, we tested several rule-based allocation strategies
against the empirically derived strategy from the historical data. To clarify the methodologies tested,
Table 7 provides a comprehensive description of the main budget allocation strategies evaluated in
our 100-year simulations.

For this analysis, we focused exclusively on the three algorithms identified as ’budget-
sensitive’—multitask bc, iqlcql marl, and discrete bc 50. This selection is delib-
erate: since budget-insensitive algorithms do not consistently respond to changes in the *total*
budget, they are unlikely to yield meaningful insights into the nuances of budget *distribution*. An
experiment on allocation strategy is only meaningful for models that have learned to actively man-
age a given budget. Figure 8 presents the outcomes for these three algorithms under the different
allocation strategies.
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Table 7: Description of Budget Allocation Strategies.

Strategy Name Description Allocation Rule (Bi is budget for bridge i)
Basic and Historical Strategies

Original Mimics the historical spending distribution from the dataset. Bi = Btotal ·
Chistorical

i∑
j C

historical
j

Uniform Distributes the total budget equally among all bridges. Bi =
Btotal

N

Uniform Top-10% Importance Concentrates the budget equally on the 10% of bridges with the highest importance scores. Bi =

{Btotal

0.1N if i ∈ Top 10% Importance
0 otherwise

Health-Driven Strategies

Critical First Allocates budget only to bridges in a critical health state (Hi ≤ 0.3). Bi =

{
Btotal

|{j:Hj≤0.3}| if Hi ≤ 0.3

0 otherwise

Health Threshold Generalizes ’Critical First’, allocating budget to bridges below a health threshold θ. Bi =

{
Btotal

|{j:Hj<θ}| if Hi < θ

0 otherwise

Preventive Focuses budget on bridges in a moderate health range to prevent deterioration. Bi =

{
Btotal

|{j:0.3≤Hj≤0.7}| if 0.3 ≤ Hj ≤ 0.7

0 otherwise

Integrated and Cyclical Strategies

Importance-Health Weighted Allocates budget proportionally to a weighted score of importance and health. Scorei = 0.6 · Impi + 0.4 · (1−Hi); Bi = Btotal ·
Scorei∑
j Scorej

Rotating Focus Divides bridges into 3 groups, cycling the full budget between them yearly. Bi =

{
Btotal

N/3 if i ∈ active group for year t
0 otherwise

A striking observation from Figure 8 is the remarkable consistency in the relative performance of the
strategies across all three algorithms. The original allocation strategy from the dataset consistently
achieves a superior balance, positioning it in the upper-right region of the Health vs. Cost plots.
This indicates it secures high health outcomes for a moderate and efficient total cost.

In contrast, rule-based heuristics demonstrate clear deficiencies. Strategies that focus resources on a
small subset of bridges (e.g., uniform top-10% important) result in high efficiency but lead
to poor overall network health because a large portion of the infrastructure is neglected. Conversely,
strategies that distribute the budget uniformly (uniform) lead to excessive expenditure. This is be-
cause they create a dense budget allocation that is far out-of-distribution from the sparse allocations
seen during training, causing the algorithms to utilize resources inefficiently. This analysis vali-
dates the expert-driven allocation strategy found in the historical data as a robust and well-balanced
heuristic and underscores the critical importance of maintaining consistency between the distribu-
tional characteristics of the training data and the allocation method used during deployment.

D HYPERPARAMETER AND COMPUTATIONAL DETAILS

This section provides a comprehensive summary of the hyperparameter configurations, training pro-
cedures, and computational environment used for all experiments. The parameters were determined
through a combination of standard practices in offline reinforcement learning literature and a lim-
ited grid search. Table 8 outlines the general optimization, network, and batching settings that were
applied across most algorithms. Following this, Table 9 delves into the unique architectural and
algorithmic parameters specific to each model family, such as those for Decision Transformers and
Conservative Q-Learning. Finally, Table 10 details the hardware and software stack used for the
experiments, along with the resulting training performance metrics like duration and memory usage.

E MORE DISCUSSION

This section provides additional details and nuances that complement the main discussion in the
body of the paper. We delve deeper into the core findings, the specific benefits and drawbacks of
multi-agent formulations, and the inherent limitations of this study.

E.1 THE CONSTRAINT-PERFORMANCE PARADOX AND POLICY DISCOVERY

A central finding of our study is a fundamental paradox: algorithms optimized for maximal per-
formance gains consistently exhibit the poorest adherence to operational constraints. Multitask
CPQ epitomizes this conflict. Its superior performance, marked by a 38.03% health improvement
over the historical baseline, is not arbitrary. This gain is attributed to the algorithm’s identification
of a novel and highly efficient policy—a strong preference for ”Action 1,” which represents low-
cost, preventative maintenance. This discovery highlights the potential of reinforcement learning to
identify superior policies that deviate from established human practice, in this case suggesting the

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: General Training Hyperparameters. These settings were applied across all applicable algo-
rithms unless specified otherwise.

Parameter Value / Setting
Optimization
Learning Rate (Policy/Actor) 3e-4
Learning Rate (Value/Critic) 1e-3
Optimizer Adam
Adam Betas (β1, β2) (0.9, 0.999)
Learning Rate Schedule Cosine Annealing with Warm Restarts
Weight Decay 1e-4
Gradient Clipping Norm 10.0

Network Architecture
Hidden Layer Dimensions 64-128
Network Depth 2-3 hidden layers
Activation Function ReLU
Dropout Rate 0.1

Batching and Training Loop
Batch Size (Single-Agent) 1024
Batch Size (Multi-Agent) 16 episodes
Training Steps 200,000
Evaluation Frequency Every 2 epochs
Early Stopping Patience 20 evaluations

Table 9: Algorithm-Specific Hyperparameters.

Algorithm Family Parameter Value / Setting
Decision Transformer (CDT) Context Length 10 timesteps

Embedding Dimension 128
Transformer Layers 4
Attention Heads 8
Return-to-Go Normalization Per-episode z-score normalization
Layer Normalization Applied

Conservative Q-Learning (CQL) CQL Regularization Weight (α) Tuned in {2.0, 3.0}
(Used in IQL-CQL, QMIX-CQL, CPQ) Discount Factor (γ) 0.95

Target Network Update Rate (τ ) 0.005 (soft update)
Target Update Frequency Every 100 training steps
Temperature Parameter (β) 1.0

Recurrent Networks (RNN) RNN Type GRU
(Used in MARL-BC, IQL-CQL, QMIX-CQL) RNN Hidden State Dimension 64

Sequence Sampling Length 32
Data Augmentation Time-shift augmentation

QMIX-CQL Mixer Network Hidden Dimension 32
Centralized Training Sampling Episode-based

long-term value of frequent, minor interventions. However, the unconstrained pursuit of this strategy
resulted in a 71.8% budget violation rate, rendering the policy operationally infeasible. In contrast,
imitation-based approaches such as discrete bc achieve more modest but reliable improvements
by closely replicating the demonstrator’s behavior, thereby inheriting its implicit adherence to con-
straints.

The 100-year simulations reveal another critical challenge: long-term sustainability and distribution
shift. While many deployed policies can successfully mitigate network-wide deterioration over a
century-long horizon, they often do so at the cost of substantially increased expenditures that may
prove economically unsustainable. This issue is compounded by a distribution shift, wherein algo-
rithms exhibit performance degradation when encountering out-of-distribution states not prevalent
in the training data, such as a network of predominantly healthy bridges. The behavior of budget-
sensitive algorithms further suggests that historical expert decisions reflect a calculated compromise
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Table 10: Computational Environment and Training Performance.

Component Specification / Value
Hardware Specifications
GPU 10 × NVIDIA GeForce RTX 2080Ti (11GB VRAM)
System RAM 256 GB
Storage High-speed SSD

Software Dependencies
Framework PyTorch 2.4.1, CUDA 13.0
Multi-Agent Library Custom implementation based on PyMARL
Data Processing Pandas, NumPy, SciPy

Training Performance Metrics
Total Training Time (All Algs) ∼180 minutes

- Single-Agent BC 15-20 minutes
- Multi-Agent BC 25-30 minutes
- CDT 60-75 minutes
- CPQ 25-30 minutes
- IQL-CQL 10-15 minutes
- QMIX-CQL 20-25 minutes

Peak GPU Memory Usage 8-10 GB per GPU for largest models

between ideal maintenance outcomes and fiscal responsibility, rather than constituting a purely sub-
optimal strategy.

For immediate, risk-averse applications, our results suggest that imitation-based methods offer the
most pragmatic solution due to their reliable constraint adherence. These methods should therefore
be viewed not as a definitive goal, but as a robust safety baseline. The primary promise of reinforce-
ment learning lies in its capacity to surpass the limitations of historical data and discover novel,
more efficient operational strategies, as evidenced by multitask cpq. The imperative for fu-
ture research, underscored by our benchmark, is to develop algorithms that reconcile this innovative
potential with the strict constraint satisfaction mandated by safety-critical systems.

E.2 MULTI-AGENT COORDINATION: BENEFITS AND LIMITATIONS

The adoption of a multi-agent framework yields distinct advantages when appropriately designed
for an offline learning context. Multi-agent imitation learning algorithms, such as the discrete be-
havioral cloning variant, consistently outperformed their single-agent counterparts. This suggests
they successfully capture the spatial interdependencies inherent in expert maintenance decisions,
where the state of one asset influences actions taken on another. However, our results also highlight
the challenges for value-based multi-agent methods. QMIX-CQL, for instance, struggled to derive
a stable and effective policy. This difficulty likely stems from the fundamental challenge of esti-
mating a joint multi-agent value function from a static, fixed dataset without the ability to perform
environmental exploration. This underscores a significant limitation of current value-based multi-
agent RL techniques in safety-critical offline settings, where inaccurate value estimates can lead to
unpredictable and unreliable policies.

E.3 LIMITATIONS OF THE CURRENT STUDY

This research is subject to several limitations that should be considered when interpreting the results
and which present clear avenues for future work.

Dataset and Expert Bias. The National Bridge Inventory (NBI) dataset, while extensive, provides
only 30 years of temporal data. This duration may not be sufficient to capture the complete lifecycle
dynamics of infrastructure assets that have service lives exceeding 50 or 100 years. Furthermore,
the expert decisions recorded in the dataset are not a pure reflection of optimal engineering practice;
they are inherently biased by historical budget constraints, organizational policies, and established
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conventions. Consequently, algorithms trained via imitation risk perpetuating these potentially sub-
optimal patterns.

Model and Simulation Simplifications. The state transition model, although empirically derived
from historical data, is necessarily a simplification of the complex, stochastic processes governing
infrastructure deterioration. Our simulation environment abstracts away numerous real-world fac-
tors that can significantly impact maintenance planning and outcomes. These include, but are not
limited to, the effects of severe weather events, the need for emergency repair interventions, traffic
disruptions caused by maintenance activities, and the complex logistics of stakeholder coordination.

Offline Learning Paradigm. The offline setting, by definition, precludes algorithmic adaptation
to evolving operational conditions or novel environmental stressors not represented in the training
dataset. While our evaluation methodology is extensive, it ultimately relies on a simulated en-
vironment. Despite our efforts to ensure its realism, such a simulation cannot fully replicate the
multifaceted complexity and unpredictability of real-world infrastructure management scenarios.

F STATEMENT ON THE USE OF AI TOOLS

In the preparation of this manuscript, we utilized an artificial intelligence (AI) writing assistant,
specifically [e.g., gemini-2.5], to aid in the language polishing and proofreading process. The use
of the AI tool was primarily for improving grammar, enhancing sentence fluency, and correcting
spelling errors. The core content, ideas, and analysis presented in this paper are entirely the original
work of the authors. We manually reviewed and confirmed all suggestions proposed by the AI and
take full responsibility for the final content of the article.

G REPRODUCIBILITY AND CODE AVAILABILITY

G.1 REPRODUCIBILITY MEASURES

Deterministic Operations:

• Fixed random seeds (42 ,1024, 2025 for training)
• Deterministic GPU operations where computationally feasible
• Consistent data loading order across experiments
• Fixed initialization schemes for all neural networks

Environment Control:

• Conda environment specifications with exact version pinning
• Detailed documentation of hardware configurations

G.2 DATA AND MODEL AVAILABILITY

Upon paper acceptance, the following will be publicly available:

• Preprocessed benchmark datasets with comprehensive metadata
• Trained model checkpoints for all evaluated algorithms
• Complete experimental configurations with hyperparameter specifications
• Evaluation scripts for reproducing all reported results
• Visualization tools for generating paper figures and custom analyses

The benchmark will be maintained as an open-source project with:

• Regular updates incorporating new NBI data releases
• Community contributions for algorithm implementations
• Comprehensive testing suites for reliability assurance
• Documentation updates reflecting methodological advances
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Figure 7: Budget scaling sensitivity analysis for six algorithms. Each row displays an algorithm’s
response to budget multipliers (0.25×, 0.5×, 1.0×, 2.0×, 4.0×) under the original allocation strat-
egy. The plots show average health (green), total expenditure (blue), and efficiency (orange) over
the 100-year simulation.
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Figure 8: Comparison of different budget allocation strategies for budget-sensitive algorithms. Each
row shows the performance of one algorithm under nine different allocation strategies, with total
budget held constant. The plots show the trade-off between long-term health and total cost.
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