
Published as a conference paper at ICLR 2025

TRUNCATED CONSISTENCY MODELS

Sangyun Lee∗
Carnegie Mellon University

Yilun Xu
NVIDIA

Tomas Geffner
NVIDIA

Giulia Fanti
Carnegie Mellon University

Karsten Kreis
NVIDIA

Arash Vahdat
NVIDIA

Weili Nie
NVIDIA

ABSTRACT

Consistency models have recently been introduced to accelerate sampling from
diffusion models by directly predicting the solution (i.e., data) of the probability
flow ODE (PF ODE) from initial noise. However, the training of consistency
models requires learning to map all intermediate points along PF ODE trajectories
to their corresponding endpoints. This task is much more challenging than the
ultimate objective of one-step generation, which only concerns the PF ODE’s
noise-to-data mapping. We empirically find that this training paradigm limits the
one-step generation performance of consistency models. To address this issue, we
generalize consistency training to the truncated time range, which allows the model
to ignore denoising tasks at earlier time steps and focus its capacity on generation.
We propose a new parameterization of the consistency function and a two-stage
training procedure that prevents the truncated-time training from collapsing to a
trivial solution. Experiments on CIFAR-10 and ImageNet 64× 64 datasets show
that our method achieves better one-step and two-step FIDs than the state-of-the-
art consistency models such as iCT-deep, using more than 2× smaller networks.
Project page: https://truncated-cm.github.io/

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020) have demonstrated remarkable capabilities in
generating high-quality continuous data such as images, videos, or audio (Ramesh et al., 2022; Ho
et al., 2022; Huang et al., 2023). Their generation process gradually transforms a simple Gaussian
prior into data distribution through a probability flow ordinary differential equation (PF ODE).
Although diffusion models can capture complex data distributions, they require longer generation
time due to the iterative nature of solving the PF ODE.

Consistency models (Song et al., 2023) were recently proposed to expedite the generation speed
of diffusion models by learning to directly predict the solution of the PF ODE from the initial noise
in a single step. To circumvent the need for simulating a large number of noise-data pairs to learn
this mapping, as employed in prior works (Liu et al., 2022b; Luhman & Luhman, 2021), consistency
models learn to minimize the discrepancy between the model’s outputs at two neighboring points
along the ODE trajectory. The boundary condition at t = 0 serves as an anchor, grounding these
outputs to the real data. Through simulation-free training, the model gradually refines its mapping
at different times, propagating the boundary condition from t = 0 to the initial t = T .

However, the advantage of simulation-free training comes with trade-offs. Consistency models must
learn to map any point along the PF ODE trajectory to its corresponding data endpoint, as shown
in Fig. 1a. This requires the learning of both denoising at smaller times on the PF ODE, where the
data are only partially corrupted, and generation towards t = T , where most of the original data
information has been erased. This dual task necessitates larger network capacity, and it is challenging
for a single model to excel at both tasks. Our empirical observations in Fig. 2 demonstrate the model
would gradually sacrifice its denoising capability at smaller times to trade for generation quality as
training proceeds. While this behavior is desirable as the end goal is generation rather than denoising,
we argue for explicit control over this trade-off, rather than allowing the model to allocate capacity

∗Work mostly done while interning at NVIDIA

1

https://truncated-cm.github.io/

Published as a conference paper at ICLR 2025

uncontrollably across times. This raises a key question: Can we explicitly reduce the network capacity
dedicated to the denoising task in order to improve generation?

In this paper, we propose a new training algorithm, termed Truncated Consistency Models (TCM), to
de-emphasize denoising at smaller times while still preserving the consistency mapping for larger
times. TCM relaxes the original consistency objective, which requires learning across the entire
time range [0, T] of PF ODE trajectories, to a new objective that focuses on a truncated time range
[t′, T], where t′ serves as the dividing time between denoising and generation tasks. This allows the
model to dedicate its capacity primarily to generation, freeing it from the denoising task at earlier
times [0, t′). Crucially, we show that a proper boundary condition at t′ is necessary to ensure the new
model adheres to the original consistent mapping. To achieve this, we propose a two-stage training
procedure (see Fig. 1a): The first stage involves pretraining a standard consistency model over the
whole time range. This pretrained model then acts as the boundary condition at t′ for the subsequent
truncated consistency training stage of the TCM.

Experimentally, TCM improves both the sample quality and the training stability of consistency
models across different datasets and sampling steps. On CIFAR-10 and ImageNet 64× 64 datasets,
TCM outperforms the iCT (Song & Dhariwal, 2023), the previous best consistency model, in both
one-step and two-step generation using similar network size. TCM even outperforms iCT-deep
that uses a 2× larger network across datasets and sampling steps. By using our largest network,
we achieve a one-step FID of 2.20 on ImageNet 64 × 64, which is competitive with the current
state-of-the-art. In addition, the divergence observed during standard consistency training is not
present in TCM. We show through extensive ablation experiments why the various design choices of
truncated consistency models (including the strength of mandating boundary conditions, two-stage
training, etc.) are necessary to obtain these results.

Contributions. (i) We identify an underlying trade-off between denoising and generation within
consistency models, which negatively impacts both stability and generation performance. (ii) Building
on these insights, we introduce Truncated Consistency Models, a novel two-stage training framework
that explicitly allocates network capacity towards generation while preserving consistency mapping.
(iii) Extensive validation of TCM demonstrates significant improvements in both one-step and two-
step generation, achieving state-of-the-art results within the consistency models family on multiple
image datasets. Additionally, TCM exhibit improved training stability. (iv) We provide in-depth
analyses, along with ablation and design choices that demonstrate the unique advantages of the
two-stage training in TCM.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models are a class of generative models that synthesize data by reversing a forward process
in which the data distribution pdata is gradually transformed into a tractable Gaussian distribution. In
this paper, we use the formulation proposed in Karras et al. (2022), where the forward process is
defined by the following stochastic differential equation (SDE):

dxt =
√
2tdwt, (1)

where t ∈ [0, T] and wt is the standard Brownian motion from t = 0 to t = T . Here, we define pt
as the marginal distribution of xt along the forward process, where p0 = pdata. In this case, pt is a
perturbed data distribution with the noise from N (0, t2I). In diffusion models, T is set to be large
enough so that pT is approximately equal to a tractable Gaussian distribution N (0, T 2I).

Diffusion models come with the reverse probability flow ODE (PF ODE) that starts from t = T to
t = 0 and yields the same marginal distribution pt as the forward process in Eq. (1) (Song et al., 2020):

dxt = −tst(xt)dt, (2)

where st(xt) := ∇x log pt(x) is the score function at time t ∈ [0, T]. To draw samples from
the data distribution pdata, we first train a neural network to learn st(x) using the denoising score
matching (Vincent, 2011), initialize xT with a sample from N (0, T 2I), and solve the PF ODE
backward in time: x0 = xT +

∫ 0

T
(−tst(xt))dt. However, numerically solving the PF ODE requires

multiple forward passes of the neural score function estimator, which is computationally expensive.

2

Published as a conference paper at ICLR 2025

ImageNet 64x64

CIFAR-10

Stage 2: Truncated consistency training

Stage 1: Standard consistency training

Data NoiseProbability flow ODE

(a) (b)

blows up!

Figure 1: (a) Two-stage training of TCM. In Stage 1, a standard consistency model is trained to
provide both the boundary condition and initialization for TCM training in Stage 2. TCM focuses
on learning in the [t′, T] range, discarding denoising tasks at earlier times and allocating network
capacity toward generation-like tasks at later times. (b) Sample quality (FID, lower is better) of the
two training stages. TCM (Stage 2) improves over standard consistency training (Stage 1) across
datasets. Additionally, standard consistency training shows instability on challenging datasets like
ImageNet 64x64, where the model could diverge during training.

100000 200000 300000
Iteration

0.9

1.0

1.1

1.2

dF
ID

t

t = 0.2

100000 200000 300000
Iteration

1.2

1.4

1.6

dF
ID

t

t = 0.4

100000 200000 300000
Iteration

1.50

1.75

2.00

2.25

2.50

dF
ID

t

t = 0.8

100000 200000 300000
Iteration

1.5

2.0

2.5

3.0

3.5

dF
ID

t

t = 1.0

100000 200000 300000
Iteration

2

3

4

5

6

dF
ID

t

t = 1.5

100000 200000 300000
Iteration

5

10

15

dF
ID

t

t = 4.0

100000 200000 300000
Iteration

10

20

30

dF
ID

t

t = 16.0

100000 200000 300000
Iteration

5
10
15
20
25
30

FI
D

t = 80.0

Figure 2: Evolution of the denoising FID (dFIDt) during standard consistency training for different
t, where 0 < t ≤ 80 follows the EDM noise schedule (Karras et al., 2022). The model gradually
sacrifices its denoising capability at smaller times (t < 1.0) to trade for the improved generation
quality at t = 80 as training proceeds.

2.2 CONSISTENCY MODELS

Consistency models instead aim to directly map from noise to data, by learning a consistency
function that outputs the solution of PF ODE starting from any t ∈ [0, T]. The desired consistency
function f should satisfy the following two properties (Song et al., 2023): (i) f(x0, 0) = x0, and (ii)
f(xt, t) = f(xs, s), ∀(s, t) ∈ [0, T]2. The first condition can be satisfied by the reparameterization

fθ(x, t) := cout(t)Fθ(x, t) + cskip(t)x, (3)

where θ is the parameter of the free-form neural network Fθ : Rd × R → Rd, and cout(0) = 0,
cskip(0) = 1 following the similar design of Karras et al. (2022). Here, instead of training fθ directly,
we train a surrogate neural network Fθ under the above reparameterization. The second condition
can be learned by optimizing the following consistency training objective:

LCT(fθ, f
−
θ) := Et∼ψt,x∼pdata,ϵ∼N (0,I)[

ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)], (4)

where θ− = stopgrad(θ), ψt denotes the probability of sampling time t that also represents the
noise scale, ϵ denotes the standard Gaussian noise, ω(t) is a weighting function, d(·, ·) is a distance

3

Published as a conference paper at ICLR 2025

function defined in Sec. D.1.2, and ∆t represents the nonnegative difference between two consecutive
time steps that is usually set to a monotonically increasing function of t.

The gradient of LCT with respect to θ is an approximation of the underlying consistency distillation
loss with a O(maxt∆t) error (See Appendix D). Song et al. (2023) empirically suggests that ∆t

should be large at the beginning of training, which incurs biased gradients but allows for stable training,
and should be annealed in the later stages, which reduces the error term but increases variance.

Denoising FID By definition, consistency models can both generate data from pure Gaussian noise
as well as noisy data sampled from pt where 0 < t < T . To understand how consistency models
propagate end solutions through diffusion time, we need to empirically measure their denoising
capability across different time steps. To this end, we define denoising FID at time step t, termed
dFIDt, as the Fréchet inception distance (FID) (Heusel et al., 2017) between the original data pdata
and the denoised data by consistency models with inputs sampled from pt. When computing dFIDt,
we first add Gaussian noise from N (0, t2I) to 50K clean samples and then denoise them using
consistency models. Hence, dFID0 is close to zero, and dFIDT is the standard FID.

3 TRUNCATED CONSISTENCY MODEL

Standard consistency models pose a higher challenge in training than many other generative models:
instead of simply mapping noise to data, consistency models must learn the mapping from any point
along the PF ODE trajectory to its data endpoint. Hence, a consistency model must divide its capacity
between denoising tasks (i.e., mapping samples from intermediate times to data) and generation
(i.e., mapping from pure noise to data). This challenge mainly contributes to consistency models’
underperformance relative to other generative models with similar network capacities (see Table 1).

Interestingly, standard consistency models navigate the trade-off between denoising and generation
tasks implicitly. We observe that during standard consistency training, the model gradually loses
its denoising capabilities at the low t. Specifically, Fig. 2 shows a trade-off in which, after some
training iterations, denoising FIDs at lower t (t < 1) increase while the denoising FIDs at larger t
(t > 1) (including the generation FID at the largest t = 80) continue to decrease. This suggests that
the model struggles to learn to denoise and generate simultaneously, and sacrifices one for the other.

Truncated consistency models (TCM) aim to explicitly control this tradeoff by forcing the consistency
training to ignore the denoising task for small values of t, thus improving its capacity usage for
generation. We thus generalize the consistency model objective in Eq. (4) and apply it only in the
truncated time range [t′, T] where the dividing time t′ lies within (0, T). The time probability ψt in
TCM only has support in [t′, T] as a result.

Naive solution A straightforward approach is to directly train a consistency model on the truncated
time range. However, the model outputs can collapse to an arbitrary constant because a constant
function (i.e., fθ(x, t) = const) is a minimizer of the consistency training objective (Eq. (4)). In
standard consistency models, the boundary condition f(x0, 0) = x0 prevents collapse, but in this
naive example, there is no such meaningful boundary condition. For example, if the free-form neural
network Fθ(x, t) = −cskip(t)x/cout(t) for all t ∈ [t′, T], fθ(x, t) is 0, and thus Eq. (4) becomes zero.
To handle this, we propose a two-stage training procedure and design a new parameterization with a
proper boundary condition, as outlined below.

Proposed Solution Truncated consistency models conduct training in two stages:

1. Stage 1 (Standard consistency training): We pretrain a consistency model to convergence in
the usual fashion, with the training objective in Eq. (4); we denote the pre-trained model as fθ0

.
2. Stage 2 (Truncated consistency training): We initialize a new consistency model fθ with the

first-stage pretrained weights fθ0 , and train over a truncated time range [t′, T]. The boundary
condition at time t′ is provided by the pretrained fθ0 . This stage is explained further below.

To explain the details of TCM, we first introduce the following parameterization:

f trunc
θ,θ−

0

(x, t) = fθ(x, t) · 1{t ≥ t′}+ fθ−
0
(x, t) · 1{t < t′}, (5)

4

Published as a conference paper at ICLR 2025

where 1{·} is the indicator function, and similarly, θ−
0 = stopgrad(θ0). Intuitively, we only use our

final model fθ when t ≥ t′, and we inquire the pre-trained fθ−
0

otherwise. This approach ensures
that (1) fθ does not waste its capacity learning in the [0, t′) range, and (2) if fθ is trained well, it will
learn to generate data by mimicking the pre-trained model fθ−

0
at the boundary. When t′ = 0, we

recover the standard consistency model parameterization Eq. (3). During sampling, as f trunc
θ,θ−

0

= fθ for

all t ∈ [t′, T], we can discard this parameterization and just use fθ for generating samples.

To describe the boundary condition, we then partition the support of the time sampling distribution
ψt, i.e., [t′, T] into two time ranges: (i) the boundary time region St′ := {t ∈ R : t′ ≤ t ≤ t′ +∆t},
and (ii) the consistency training time region S−

t′ ≜ [t′, T] \ St′ = {t ∈ R : t′ +∆t < t ≤ T}. To
effectively enforce the boundary condition using the first-stage pre-trained model fθ0

, a nonnegligible
amount of t’s, sampled from ψt, must fall within the interval St′ . Otherwise the consecutive time
steps t and t−∆t in consistency training will mostly be larger or equal to t′, limiting the influence
of the pre-trained model.

With this time partitioning and our new parameterization, Eq. (4) can be decomposed as follows:

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) =

∫
t∈St′

ψt(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−

0
(x+ (t−∆t)ϵ, t−∆t)dt︸ ︷︷ ︸

Boundary loss

+

∫
s∈S−

t′

ψt(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)dt︸ ︷︷ ︸

Consistency loss

,

(6)

where we apply our parameterization in Eq. (5) in the above two time partitions separately, and we
drop the expectation over x ∼ pdata, ϵ ∼ N (0, I) for notation simplicity. Unlike standard consistency
training, TCM have two terms: the boundary loss and consistency loss. The boundary loss allows the
model to learn from the pre-trained model, preventing collapse to a constant.

Training on the objective (6) can still collapse to a constant if we do not utilize the boundary condition
sufficiently by not sampling enough time t’s in St′ . In particular, this can happen for ∆t close to
zero when consistency training is near convergence (Song & Dhariwal, 2023; Geng et al., 2024). To
prevent this, we design ψt to satisfy

∫
t∈St′

ψt(t)dt > 0. In other words, we have a strictly positive
probability of sampling a point in St′ , even when ∆t is close to zero. Specifically, we define ψt as a
mixture of the Dirac delta function δ(·) at point t′ and another distribution ψ̄t:

ψt(t) = λbδ(t− t′) + (1− λb)ψ̄t(t), (7)

where the weighting coefficient λb ∈ (0, 1). ψ̄t has the support (t′, T] and can be instantiated in
different ways (e.g., log-normal or log-Student-t distributions); the effect of different ψ̄t choices is
explored in Section 4.4.

By definition, we can see that
∫
t∈St′

ψt(t)dt ≥ λb, and λb controls how significantly we emphasize
the boundary condition. Assume that the first-stage consistency model is perfectly trained in [0, t′],
i.e., fθ0

(xt, t) = x0 for all t ∈ [0, t′]. If fθ(xt′ , t
′) ̸= fθ0

(xt′ , t
′), fθ will be penalized by the

boundary loss. Minimizing the boundary loss enforces the boundary condition in second-stage
model fθ (i.e., fθ(xt′ , t′) = fθ0

(xt′ , t
′) = x0), while minimizing the consistency loss propagates the

boundary condition to the end time (i.e., fθ(xT , T) = fθ(xt′ , t
′)). Consequently, the loss in Eq. (6)

effectively guides the model towards the desired solution fθ(xT , T) = x0. With the time distribution
ψt defined in Eq. (7), our training objective becomes

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) ≈ λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′))︸ ︷︷ ︸
Boundary loss:=LB(fθ,fθ−

0
)

(8)

+(1− λb)Eψ̄t
[
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)]︸ ︷︷ ︸

Consistency loss:=LC(fθ,fθ−)

. (9)

5

Published as a conference paper at ICLR 2025

Algorithm 1 Truncated Consistency Training
1: Standard consistency training
2: θ0 ← argminθ̂ LCT(fθ̂, fθ̂−) ▷ Optimize consistency training loss for the regular model
3: Truncated training
4: NB ← ⌊Bρ⌋ ▷ Number of boundary samples
5: for each training iteration do
6: x1, ...,xB ∼ pdata, ϵ1, ..., ϵB ∼ N (0, I)
7: Set t1, ..., tNB to t′, and tNB+1, ..., tB ∼ ψ̄t

8: Compute
∑NB

i=1(LB)i(fθ, fθ−
0
) using Eq. (8) with (xi, ϵi, ti) for i = 1, ..., NB

9: Compute
∑B

j=NB+1(LC)j(fθ, fθ−) using Eq. (9) with (xj , ϵj , tj) for j = NB + 1, ..., B

10: Compute∇θLTCM using Eq. (11)
11: Update θ using the computed gradient
12: end for

where the approximation in Eq. (8) holds when ∆t is sufficiently small (which is true for the truncated
training stage). Please see Appendix E for the detailed derivation. For simplicity of notation, we relax
the above objective by absorbing the (1− λb) factor into λb and express our final training loss as:

LTCM := wbLB(fθ, fθ−
0
) + LC(fθ, fθ−), (10)

where wb = λb/(1−λb) is a tunable hyperparameter that controls the weighting of the boundary loss.
To estimate the two losses, we partition each mini-batch of size B into two subsets. The boundary
loss LB is estimated using NB = ⌊Bρ⌋ samples, where ρ ∈ (0, 1) is a hyperparameter controlling
the allocation of samples. The consistency loss LC is estimated with the remaining B −NB samples.
Increasing ρ reduces the variance of the boundary loss gradient estimator but increases the variance
of the consistency loss gradient estimator, and vice versa. The final mini-batch loss is as follows:

LTCM ≈ wb
NB

NB∑
i=1

∇θ(LB)i(fθ, fθ−
0
) +

1

B −NB

B∑
j=NB+1

∇θ(LC)j(fθ, fθ−), (11)

where (LB)i and (LC)j are the boundary loss and the consistency loss at the i-th sample from
δ(t− t′) and the j-th sample from ψ̄t, respectively. We provide the training algorithm in Algorithm 1.

4 EXPERIMENTS

In this section, we evaluate TCM on standard image generation benchmarks and compare it against
state-of-the-art generative models. We begin by detailing the experimental setup in Sec. 4.1. We then
study the behavior of denoising FID and its impact on generation FID in Sec. 4.2. We benchmark
TCM against a variety of existing methods in Sec. 4.3, and provide detailed analysis on various
design choices in Sec. 4.4.

4.1 SETUP

We evaluate TCM on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet 64×64 (Deng et al.,
2009) datasets. We consider the unconditional generation task on CIFAR-10 and class-conditional
generation on ImageNet 64×64. We measure sample quality with Fréchet Inception Distance
(FID) (Heusel et al., 2017) (lower is better), as is standard in the literature.

For consistency training in TCM, we mostly follow the hyperparameters in ECT (Geng et al., 2024),
including the discretization curriculum and continuous-time training schedule. For all experiments,
we choose a dividing time t′ = 1 and set ψ̄t to the log-Student-t distribution. We use wb = 0.1
and ρ = 0.25 for the boundary loss. We discuss these choices in Sec. 4.4. In line with Geng et al.
(2024), we initialize the model with the pre-trained EDM (Karras et al., 2022) / EDM2 (Karras et al.,
2024) for CIFAR-10 / ImageNet 64× 64, respectively. On CIFAR-10, we use a batch size of 512 and
1024 for the first and the second stage, respectively. On ImageNet with EDM2-S architecture, we
use a batch size of 2048 and 1024 for the first and the second stage, respectively. For EDM2-XL,
to save compute, we initialize the truncated training stage with the pre-trained checkpoint from the
ECM work (Geng et al., 2024) that performs the standard consistency training, and conduct the
second-stage training with a batch size of 1024. Please see Appendix F for more training details.

6

Published as a conference paper at ICLR 2025

300000 400000
Iteration

1.0
1.5
2.0
2.5
3.0
3.5

dF
ID

t

t = 0.2

Stage 1
Stage 2

300000 400000
Iteration

1.2
1.5
1.8
2.1
2.4
2.7

dF
ID

t

t = 0.4
Stage 1
Stage 2

300000 400000
Iteration

1.4

1.5

1.6

dF
ID

t

t = 0.8

Stage 1
Stage 2

300000 400000
Iteration

1.5

1.6

1.7

dF
ID

t

t = 1.0
Stage 1
Stage 2

300000 400000
Iteration

1.7

1.8

1.9
dF

ID
t

t = 1.5
Stage 1
Stage 2

300000 400000
Iteration

2.3

2.4

2.5

dF
ID

t

t = 4.0

Stage 1
Stage 2

300000 400000
Iteration

2.5
2.6
2.7
2.8

dF
ID

t

t = 16.0

Stage 1
Stage 2

300000 400000
Iteration

2.6

2.8

3.0

FI
D

t = 80.0

Stage 1
Stage 2

t
 t

'
t

>
 t

'

Figure 3: Denoising FID (dFID) for continuation of standard consistency training at later
iterations (Stage 1) and TCM model (Stage 2) at various ts on CIFAR-10 during the course of
training. For TCM, we set the dividing time t′ = 1. We can see, in the second stage, the dFID
exhibits a dramatic increase at times below the dividing time t′, while the dFID at times above t′
and FID at t = T continue to improve. Notably, the rate of dFID in the truncated stage increase
at earlier times is significantly faster compared to standard consistency training, suggesting a more
efficient “forgetting” of the denoising tasks.

4.2 TRUNCATED TRAINING ALLOCATES CAPACITY TOWARD GENERATION

Table 1: FID, NFE and # param. on CIFAR-10. Bold
indicates the best result for each category and NFE.

Method NFE FID # param. (M)

Diffusion models
EDM (Karras et al., 2022) 35 1.97 55.7
PFGM++ (Xu et al., 2023b) 35 1.91 55.7
DDPM (Ho et al., 2020) 1000 3.17 35.7
LSGM (Vahdat et al., 2021) 147 2.10 475

Consistency models
1-step
iCT (Song & Dhariwal, 2023) 1 2.83 56.4
iCT-deep (Song & Dhariwal, 2023) 1 2.51 112
CTM (Kim et al., 2023) (w/o GAN) 1 5.19 55.7
ECM (Geng et al., 2024) 1 3.60 55.7
TCM (ours) 1 2.46 55.7

2-step
iCT (Song & Dhariwal, 2023) 2 2.46 56.4
iCT-deep (Song & Dhariwal, 2023) 2 2.24 112
ECM (Geng et al., 2024) 2 2.11 55.7
TCM (ours) 2 2.05 55.7

Variational score distillation
DMD (Yin et al., 2024b) 1 3.77 55.7
Diff-Instruct (Luo et al., 2024) 1 4.53 55.7
SiD (Zhou et al., 2024) 1 1.92 55.7

Knowledge distillation
KD (Luhman & Luhman, 2021) 1 9.36 35.7
DSNO (Zheng et al., 2022a) 1 3.78 65.8
TRACT (Berthelot et al., 2023) 1 3.78 55.7

2 3.32 55.7
PD (Salimans & Ho, 2022) 1 9.12 60.0

2 4.51 60.0

Our proposed TCM aims to explictly reallocate
network capacity towards generation by
de-emphasizing denoising tasks at smaller t’s.
Empirical analysis in Fig. 3 further characterizes
this behavior, showing a rapid increase in dFIDs
at smaller t’s below the threshold t′ during the
truncated training stage. Conversely, dFIDs
continue to decrease at larger t’s. In addition,
TCM exhibit a more pronounced “forgetting”
of the denoising task compared to consistency
training (Fig. 2) at earlier times. For instance,
dFID at t = 0.2 increases up to 3.5 in the
truncated training, whereas it remains below 1
in the standard consistency training. TCM also
significantly accelerate the process of forgetting
the denoising tasks at these earlier times,
achieving a substantially improved generation
FID. This suggests that by explicitly controlling
the training time range, the neural network can
effectively shift its capacity towards generation.

Fig. 1(b) demonstrates how this reallocation
of network capacity directly translates to im-
proved sample quality and training stability. For
CIFAR-10 / ImageNet 64 × 64, the truncated
training stage (Stage 2) is initialized from the
Stage 1 model at 250K / 150K iterations, respec-
tively. We can see that the truncated training
improves FID over the consistency training on
the two datasets. Moreover, we find that the
truncated training is more stable than the original consistency training, as their ImageNet FID blows
up after 150K iterations, while TCM continues to improve FID from 2.83 to 2.46, showcasing its
robustness (See Figure 7 for more analysis).

4.3 TCM IMPROVES THE SAMPLE QUALITY OF CONSISTENCY MODELS

7

Published as a conference paper at ICLR 2025

Table 2: FID, NFE and # param. on ImageNet 64×64. Dotted
lines separate results by # param. Bold indicates the best result
for each category and NFE.

Method NFE FID # param. (M)

Diffusion models
EDM2-S (Karras et al., 2024) 63 1.58 280
EDM2-XL (Karras et al., 2024) 63 1.33 1119

Consistency models
1-step
iCT (Song & Dhariwal, 2023) 1 4.02 296
iCT-deep (Song & Dhariwal, 2023) 1 3.25 592
ECM (Geng et al., 2024) (EDM2-S) 1 4.05 280
TCM (ours; EDM2-S) 1 2.88 280

MultiStep-CD (Heek et al., 2024) 1 3.20 1200
ECM (Geng et al., 2024) (EDM2-XL) 1 2.49 1119
TCM (ours; EDM2-XL) 1 2.20 1119

2-step
iCT (Song & Dhariwal, 2023) 2 3.20 296
iCT-deep (Song & Dhariwal, 2023) 2 2.77 592
ECM (Geng et al., 2024) (EDM2-S) 2 2.79 280
TCM (ours; EDM2-S) 2 2.31 280

MultiStep-CD (Heek et al., 2024) 2 1.90 1200
ECM (Geng et al., 2024) (EDM2-XL) 2 1.67 1119
TCM (ours ; EDM2-XL) 2 1.62 1119

Variational score distillation
DMD2 w/o GAN (Yin et al., 2024a) 1 2.60 296
Diff-Instruct (Luo et al., 2024) 1 5.57 296
EMD-16 (Xie et al., 2024) 1 2.20 296
Moment Matching (Salimans et al., 2024) 1 3.00 400

2 3.86 400
SiD (Zhou et al., 2024) 1 1.52 296

Knowledge distillation
DSNO (Zheng et al., 2022a) 1 7.83 329
TRACT (Berthelot et al., 2023) 1 7.43 296

2 4.97 296
PD (Salimans & Ho, 2022) 1 15.4 296

2 8.95 296

To demonstrate the effectiveness of TCM,
we compare our method with three lines of
works that distill diffusion models to one
or two steps: (i) consistency models (Song
& Dhariwal, 2023; Kim et al., 2023; Geng
et al., 2024) that distills the PF ODE
mapping in a simulation-free manner; (ii)
variational score distillation (Yin et al.,
2024b; Luo et al., 2024; Zhou et al., 2024)
that performs distributional matching by
utilizing the score of pre-trained diffusion
models; (iii) knowledge distillation (Luh-
man & Luhman, 2021; Zheng et al., 2022a;
Berthelot et al., 2023; Salimans & Ho,
2022) that distill the PF ODE through
off-line or on-line simulation using the
pre-trained diffusion models. We exclude
the methods that additionally use the
GAN loss, which causes more training
difficulties, for fair comparison.

Results. In Table 1 and Table 2, we re-
port the sample quality measured by FID
and the sampling speed measured by the
number of function evaluations (NFE), on
CIFAR-10 and ImageNet-64×64, respec-
tively. We mostly borrow the baseline re-
sults from the original papers. We also
include the number of model parameters.
Our main findings are: (1) TCM signif-
icantly outperforms improved Consis-
tency Training (iCT) (Song & Dhariwal,
2023), the state-of-the-art consistency
model, across datasets, number of steps
and network sizes. For example, TCM im-
proves the one-step FID from 2.83 / 4.02
in iCT to 2.46 / 2.88, on CIFAR-10 / ImageNet. Further, TCM’s one-step FID even rivals iCT’s
two-step FID on both datasets. When using EDM2-S model, TCM also surpasses iCT-deep, which
uses 2× deeper networks, in both one-step (2.88 vs 3.25) and two-step FIDs (2.31 vs 2.77) on
ImageNet. (2) TCM beats all the knowledge distillation methods and performs competitively
to variational score distillation methods. Note that TCM do not need to train additional neural
networks as in VSD methods, or to run simulation as in knowledge distillation methods. (3) Two-step
TCM performs comparably to the multi-step EDM (Karras et al., 2022), the state-of-the-art
diffusion model. For example, when both using the same EDM network, two-step TCM obtains a
FID of 2.05 on CIFAR-10, which is close to 1.97 in EDM with 35 sampling steps. We further provide
the uncurated one-step and two-step generated samples in Fig. 5. Please see Appendix G for more
samples.

4.4 ANALYSES OF DESIGN CHOICES

Time sampling distribution ψ̄t. We explore various time sampling distributions ψ̄t supported on
[t′, T], and find that the truncated log-Student-t distribution works best (i.e., ln(t) follows Student-t
distribution). The Student-t distribution, being heavier-tailed than the Gaussian distribution employed
in previous consistency training (Song & Dhariwal, 2023; Geng et al., 2024), inherently allocates
more probability mass towards larger t’s. This aligns with the motivation of TCM, which emphasizes
enhancing generation capabilities at later times. The degree of freedom ν effectively controls the
thickness of the tail, with the Student-t distribution converging to a Gaussian distribution as ν → ∞.
Figure 4a shows the shape of ψ̄t with varying standard deviation σ and the degree of freedom ν
in three cases: (1) heavy-tailed and a low probability mass around small t’s (σ = 2, ν = 10000),

8

Published as a conference paper at ICLR 2025

Table 3: CIFAR-10 FID when varying the dividing
time t′.

t′ value 0.17 0.8 1.0 1.5

FID 2.70 2.69 2.56 2.79

Table 4: CIFAR-10 FID for different training
stages.

Stage 1 Stage 2 Stage 3

FID 2.77 2.46 2.46

(2) heavy-tailed and a high probability mass around small t’s (σ = 0.2, ν = 0.01), (2) light-tailed
(σ = 0.2, ν = 2). From Fig. 4b, we observe that the log-Student-t distribution with σ = 0.2, ν = 0.01
is the best among the three. Hence we use σ = 0.2, ν = 0.01 in all the experiments.

0 1 2 3 4
ln(t)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y

=0.2, =0.01
=0.2, =2
=2, =10000

(a)

3 4 5 6
Iterations (×105)

2.6

2.8

3.0

3.2

3.4

3.6

FI
D

=0.2, =2
=0.2, =0.01
=2, =10000

(b)

3 4
Iterations (×105)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

FI
D

= 0.5, wb = 0.1.
= 0.25, wb = 0.01.
= 0.25, wb = 0.1.
= 0.1, wb = 0.1.
= 0.25, wb = 1.

(c)

Figure 4: (a) Comparison of Student-t distributions with different standard deviations σ and degree
of freedom ν. (b) FID evolution on CIFAR-10 for different σ and ν. wb = 0.1, ρ = 0.25, t′ = 1, and
a batch size of 128 are used for all plots. (c) Effect of ρ and wb on the FID on CIFAR-10. We use a
batch size of 128. t′ is set to 1.

Strength for boundary loss. Figure 4c shows the effect of two key hyper-parameters that control the
strength of imposing boundary condition in the TCM objective (Eq. 10). We observe that the FID is
relatively stable with a wide range of ρ and wb (from 0.1 to 0.5 for ρ and from 0.1 to 1 for wb). How-
ever, when using a very small weight for the boundary loss (wb = 0.01), FID explodes as the model
fails to maintain the boundary condition. Thus, we use ρ = 0.25, wb = 0.1 in all the experiments.

Dividing time t′. The boundary t′ ideally represents the point where the task in the PF ODE transitions
from denoising to generation. However, this transition is gradual, and there is no single definitive
point. Fig. 2b suggests this transition occurs roughly between t′ = 0.8 and t′ = 1.5, where we
observe a change in dFID behavior: it primarily deteriorates during training before this range, but then
stabilizes afterwards (more indicative of a generation task). Based on this analysis, we experimented
with multiple t′ values around this range. Table 3 shows that t′ = 1 provides the best results among
the choices. Note that here we use a batch size of 128, while it is 1024 in our default setting.

Are two stages enough? A natural question is whether we can extend our two-stage training pro-
cedures to three or more stages by gradually increasing t′. However, recall that our methodology was
motivated by the fact that in the first-stage training (standard consistency training), we observe increas-
ing dFIDs at smaller t values of the training range, as seen in Fig. 2. This trade-off is notably absent
in the second stage over the time range [t′, T], as seen in Fig. 3. This suggests that during the second
stage, the model tackles tasks that are more or less similar to generation, and introducing another trun-
cated training stage may not yield further gains. In support of this hypothesis, we implement the third
stage where the dividing time is t′ = 4, but do not observe improvement, as shown in Table 4. We
also consider adding an intermediate training stage between stage 1 and stage 2 that finetunes fθ0 in
the time range (0, t′) but it produces a slightly worse performance, which we discuss in Appendix C.

5 RELATED WORK

Consistency models. Song et al. (2023) first proposed consistency models as a new class of generative
models that synthesize samples with a single network evaluation. Later, Song & Dhariwal (2023);
Geng et al. (2024) presented a set of improved techniques to train consistency models for better
sample quality. Luo et al. (2023) introduced latent consistency models (LCM) to accelerate the
sampling of latent diffusion models. Kim et al. (2023) proposed consistency trajectory models
(CTM) that generalize consistency models by enabling the prediction between any two intermediate
points on the same PF ODE trajectory. The training objective in CTM becomes more challenging

9

Published as a conference paper at ICLR 2025

1-
st

ep
2-

st
ep

CIFAR-10 ImageNet 64x64

Figure 5: Uncurated one-step (top) and two-step (bottom) generated samples from TCM (EDM) on
CIFAR-10 and TCM (EDM2-XL) on ImageNet 64×64, respectively.

than standard consistency models that only care about the mapping from intermediate points to
the data endpoints. Heek et al. (2024) proposed multistep consistency models that divide the PF
ODE trajectory into multiple segments to simplify the consistency training objective. They train the
consistency models in each segment separately, and need multiple steps to generate a sample. Similar
direction is also explored in Wang et al. (2024). Ren et al. (2024) combined CTM with progressive
distillation (Salimans & Ho, 2022), by performing segment-wise consistency distillation where the
number of ODE trajectory segments progressively reduces to one. Similar to CTM, it relies on the
adversarial loss (Goodfellow et al., 2014) to achieve good performance.

Fast sampling of diffusion models. While a line of work aims to accelerate diffusion models via fast
numerical solvers for the PF-ODE (Lu et al., 2022; Karras et al., 2022; Liu et al., 2022a; Xu et al.,
2023a), they usually still require more than 10 steps. To achieve low-step or even one-step generation,
besides consistency models, other training-based methods have been proposed from three main
perspectives: (i) Knowledge distillation, which first used the pre-trained diffusion model to generate
a dataset of noise and image pairs, and then applied it to train a single-step generator (Luhman &
Luhman, 2021; Zheng et al., 2022a). Progressive distillation (Salimans & Ho, 2022; Meng et al.,
2023) iteratively halves the number of sampling steps required, without needing an offline dataset.
(ii) Variational score distillation, which aims to match the distribution of the student and teacher
output via an approximate (reverse) KL divergence (Yin et al., 2024b;a; Xie et al., 2024), implicit
score matching (Zhou et al., 2024) or moment matching (Salimans et al., 2024). (iii) Adversarial
distillation, which leverages the adversarial training to fine-tune pre-trained diffusion models into a
few-step generator (Sauer et al., 2023; 2024; Lin et al., 2024; Xu et al., 2024). Compared with these
training-based diffusion acceleration methods, our method is most memory and computation efficient.

Truncated training of diffusion models. Balaji et al. (2022) propose to train different diffusion
models for each time step range. Since consistency models solve a more difficult task (learning to
integrate PF-ODE) than diffusion models (learning the drift of PF-ODE), they can benefit more from
such a strategy but also require a specific parameterization (Eq. (5)) to satisfy the boundary condition.
Zheng et al. (2022b) use GANs to generate the noised data and use diffusion models to map them to
clean data. Different from ours, they train diffusion models on the first half of the interval.

6 CONCLUSION

We have introduced a truncated consistency training method that significantly enhances the sample
quality of consistency models. To generalize consistency models to the truncated time range, we have
proposed a new parameterization of the consistency function and a two-stage training process that
explicitly allocates network capacity towards generation. We also discussed about our design choices
arising from the new training paradigm. Our approach achieves superior performance compared to
state-of-the-art consistency models, as evidenced by improved one-step and two-step FID scores
across different datasets and network sizes. Notably, these improvements are achieved while utilizing
similar or even smaller network architectures than baselines.

10

Published as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We provide sufficient details for reproducing our method in the main paper and also in the Appendix. F,
including a pseudo code of the training algorithm, model initialization and architecture, model
parameterization, learning rate schedules, time step sampling procedures, and other training details.
We also specify hyperparameter choices like the dividing time t′, boundary loss weight wb, and
boundary ratio ρ. Additionally, we discuss the computational costs of our method compared to
standard consistency training. For evaluation, we describe our sampling procedure for both one-step
and two-step generation.

8 ETHICS STATEMENT

This paper raises similar ethical concerns to other papers on deep generative models. Namely, such
models can be (and have been) used to generate harmful content, such as disinformation and violent
imagery. We advocate for the responsible deployment of such models in practice, including guardrails
to reduce the risk of producing harmful content. The design of these protections is orthogonal to
our work. Other ethical concerns may arise regarding the significant resource costs required to train
and use deep generative models, including energy and water usage. This work increases the training
cost of consistency models, but it also enables the models to be run with only 1 NFE and requires
smaller neural network architectures, both of may which reduce inference-time costs relative to
other diffusion-based models. Nonetheless, the environmental impact of training and deploying deep
generative models remains an important limitation.

ACKNOWLEDGMENTS

We thank Zhengyang Geng for helpful feedback on reproducing ECM. This work was supported in
part by the National Science Foundation through RINGS grant 2148359. GF also acknowledges the
generous support of the Sloan Foundation, Intel, Bosch, and Cisco.

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv preprint
arXiv:2403.06807, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

11

Published as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models. arXiv preprint arXiv:2301.12661, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv preprint arXiv:2206.00364, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. International Conference on Learning Representations, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. Instaflow: One step is enough
for high-quality diffusion-based text-to-image generation. arXiv preprint arXiv:2309.06380, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

12

Published as a conference paper at ICLR 2025

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv preprint
arXiv:2404.13686, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
diffusion models via moment matching. arXiv preprint arXiv:2406.04103, 2024.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast high-resolution image synthesis with latent adversarial diffusion distillation. arXiv preprint
arXiv:2403.12015, 2024.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency model.
arXiv preprint arXiv:2405.18407, 2024.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy,
Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. arXiv
preprint arXiv:2405.16852, 2024.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8196–8206, 2024.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. Advances in Neural Information Processing Systems,
36:76806–76838, 2023a.

Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and T. Jaakkola. Pfgm++:
Unlocking the potential of physics-inspired generative models. In International Conference on
Machine Learning, 2023b.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024b.

13

Published as a conference paper at ICLR 2025

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. arXiv preprint arXiv:2211.13449, 2022a.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion probabilistic
models and diffusion-based adversarial auto-encoders. arXiv preprint arXiv:2202.09671, 2022b.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

14

Published as a conference paper at ICLR 2025

Stage 1 Stage 2

Figure 6: One-step text-to-image generation results of the standard consistency model (stage 1) and
TCM (stage 2).

A LIMITATION

TCM introduces an additional training stage on top of the standard consistency model training.
Compared to the standard consistency training, the truncated training requires a slight increase in
per-iteration training time due to the additional boundary loss in Eq. (10). Standard consistency
training necessitates two forward passes per training iteration, while our parameterization (Eq. 5)
requires three. Also, the truncated training incurs a minor additional memory cost as we need to
maintain a pre-trained consistency model (in evaluation mode) for the boundary loss. We observe that
on ImageNet 64×64 with EDM2-S, TCMs have an 18% increase in training time per iteration and an
15% increase in memory cost. Moreover, the one-step sample quality of TCM still has a considerable
performance gap from the diffusion models with a large NFE, but we believe this is an important step
toward closing the gap.

15

Published as a conference paper at ICLR 2025

B TEXT-TO-IMAGE RESULTS

Table 5: Zero-shot FID scores on MSCOCO dataset measured with 30k generated samples.

Stage 1 Stage 2

FID ↓ 18.32 15.58

To show the scalability of our method, we train TCM on COYO dataset 1, using consistency distillation
with a fixed classifier-free guidance (Ho & Salimans, 2022) scale of 6. We initialize our models with
stable diffusion (Rombach et al., 2022) 1.5. We use a batch size of 512 for a quick validation, though
using a larger batch size (≥ 1, 024) is standard (Liu et al., 2023; Yin et al., 2024a) and would lead to
better generative performance. For the first stage, we train for 80,000 iterations (after which FID starts
to increase), and in the second stage, we additionally train for another 200,000 iterations. We provide
visual comparison between the standard consistency model and TCM in Fig. 6. Captions used are:
"A photo of an astronaut riding a horse on Mars", "Robot serving dinner, metallic textures, futuristic
atmosphere, high-tech kitchen, elegant plating, intricate details, high quality, misc-architectural style,
warm and inviting lighting", and "A photo of a dog" for each row.

We also measure the FID on MSCOCO dataset (Lin et al., 2014) in Table. 5. We see that TCM
achieves a better FID than the standard consistency model (the first stage).

C ADDITIONAL EXPERIMENTS

Fig. 7 shows that the gradient spikes during the first stage training while the second stage training is
relatively smooth. We hypothesize that the truncated training is more stable because it is less affected
by the biased gradient norms across different t.

0 50000 100000 150000 200000 250000 300000
Iterations

0
25
50
75

100
125
150
175
200

Gr
ad

ie
nt

 N
or

m

Stage 2
Stage 1

Figure 7: Gradient norm evolution during the first and second stage training on ImageNet 64× 64
(corresponding to Fig. 1(b)). The red circles indicate where the gradient norms are larger than 100.
Stage 1 training blows up after the last few gradient spikes. It shows that the truncated consistency
training is more stable than the standard consistency training.

Fig. 8 shows the dFIDt evolution during the standard consistency training. We see that dFIDs at
larger t’s start from larger values and converges more slowly.

Adding an intermedate training stage In our parameterization Eq. (5), we only use the pre-trained
model fθ0 in [0, t′). One may wonder if we can fine-tune fθ0 on the truncated time range [0, t′)
to provide a better boundary condition for the truncated training. We find that although doing so
improved the dFIDt′ of fθ0

from 1.51 to 1.43, it led to a worse final FID of >2.7 for the truncated
consistency model, regardless of whether we initialized fθ with the pre-trained model or the fine-tuned
model. In contrast, our proposed method achieved an FID of 2.61 with the same hyperparameters.
We hypothesize that fine-tuning the pre-trained model on the truncated time range [0, t′) makes the
model fθ0

forget about how the early mappings properly propagate to the later mappings in the range
of [t′, T]. This may hinder the learnability of its mapping at the boundary time, making it harder for
fθ to transfer the knowledge learned in fθ0 to its generation capability.

1https://github.com/kakaobrain/coyo-dataset

16

Published as a conference paper at ICLR 2025

100 101 102

t
0

5

10

15

20

25

30

dF
ID

t

Iter 80000
Iter 120000
Iter 160000
Iter 200000
Iter 240000
Iter 280000
Iter 320000
Iter 360000

Figure 8: Evolution of the denoising FIDs (dFIDt) at different times t’s during standard consistency
training for different iterations. For t ∈ (1, 10), dFIDt has different convergence speeds while in both
small times (t < 1) and large ’s (t > 10), dFIDt converges with a more similar speed.

D BACKGROUND ON CONSISTENCY MODELS

Most of this part has been introduced by previous works (Song et al., 2023; Song & Dhariwal, 2023).
Here, we introduce the background of consistency models, in particular the relationship between
consistency training and consistency distillation, for completeness.

D.1 DEFINITION OF CONSISTENCY FUNCTION

D.1.1 PROBABILITY FLOW ODE

The probability flow ODE (PF ODE) of Karras et al. (2022) is as follows:

dxt = −tst(xt)dt, (12)

where st(xt) is the score function at time t ∈ [0, T]. To draw samples from the data distribution
pdata, we initialize xT with a sample from N (0, T 2I) and solve the PF ODE backward in time. The
solution x0 = xT +

∫ 0

T
(−tst(xt))dt is distributed according to pdata.

D.1.2 CONSISTENCY FUNCTION

Integrating the PF ODE using numerical solvers is computationally expensive. Consistency function
instead directly outputs the solution of the PF ODE starting from any t ∈ [0, T]. The consistency
function f satisfies the following two properties:

1. f(x0, 0) = x0.

2. f(xt, t) = f(xs, s) ∀(s, t) ∈ [0, T]2.

The first condition can be trivially satisfied by setting f(x, t) = cout(t)F(x, t) + cskip(t)x where
cout(0) = 0 and cskip(0) = 1 following EDM (Karras et al., 2022). The second condition can be
satisfied by optimizing the following objective:

min
f

Es,t,xt
[d(f(xt, t), f(xs, s))], (13)

where d is a function satisfying:

1. d(x,y) = 0 ⇐⇒ x = y.

2. d(x,y) ≥ 0.

3. ∂d(x,y)
∂y |y=x = 0

4. ∂fθ
∂θ and ∂d

∂y2 are well-defined and bounded.

17

Published as a conference paper at ICLR 2025

D.2 CONSISTENCY DISTILLATION

D.2.1 OBJECTIVE

In practice, Song et al. (2023) consider the following objective instead:
min
θ

Et,xt
[d(fθ(xt, t), fθ−(xt−∆t

, t−∆t))], (14)

where we parameterize the consistency function f with a neural network fθ, and 0 < ∆t < t. Here,
fθ− is the identical network with stop gradients applied and is called teacher. Since ∆t > 0, the
teacher always receives the less noisy input, and the student fθ is trained to mimic the teacher.
Optimizing Eq. (14) requires computing xt−∆t

, which we can be approximated using one step of
Euler’s solver:

xt−∆t = xt +

∫ t−∆t

t

(−usu(xu))du ≈ xt + tst(xt)∆t. (15)

When st(xt) is approximated by a pre-trained score network, Eq. (14) becomes the consistency
distillation objective in Song et al. (2023). If ∆t is sufficieintly small, the approximation in Eq. (15)
is quite accurate, making LCD a good approximation of Eq. (14). The precision of the approximation
depends on ∆t and also the trajectory curvature of the PF ODE.

D.2.2 GRADIENT WHEN ∆t → 0

Let us rewrite Eq. (14) as follows:
Et,xt

[d(fθ(xt, t), fθ−(xt−∆t
, t−∆t))] (16)

= Et,xt [d(fθ(xt, t), fθ (xt, t)︸ ︷︷ ︸
y

+ fθ−(xt−∆t , t−∆t)− fθ (xt, t)︸ ︷︷ ︸
∆y

)] (17)

= Et,xt
[d(fθ(xt, t), fθ (xt, t)) +

∂d

∂y
∆y +

1

2
(∆y)T

∂2d

∂y2
∆y +O(||∆y||3)] (18)

=
1

2
Et,xt [(∆y)T

∂2d

∂y2
∆y +O(||∆y||3)] (19)

, where we define ∆y = fθ−(xt−∆t
, t−∆t)− fθ (xt, t).

Let’s take the derivative with respect to θ:
1

2

∂

∂θ
Et,xt [(fθ−(xt−∆t , t−∆t)− fθ (xt, t))

T ∂
2d

∂y2
(fθ−(xt−∆t , t−∆t)− fθ (xt, t)) +O(||∆y||3)]

(20)

= Et,xt
[
∂2d

∂y2
(fθ−(xt−∆t

, t−∆t)− fθ (xt, t))
∂fθ
∂θ

+O(||∆y||3)].

(21)

As

fθ−(xt−∆t , t−∆t) = fθ−(xt, t)−
∂fθ−

∂xt

∂xt
∂t

∆t −
∂fθ−

∂t
∆t +O(∆2

t), (22)

we have

fθ−(xt−∆t , t−∆t)− fθ−(xt, t) = −(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)∆t +O(∆2

t). (23)

Since fθ (xt, t) has the same value as fθ−(xt, t), we can plug this into Eq. (21):

Et,xt [
∂2d

∂y2
(fθ−(xt−∆t , t−∆t)− fθ (xt, t))

∂fθ
∂θ

+O(||∆y||3)] (24)

= −Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t) +O(||∆y||3)] (25)

= −Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t)]. (26)

18

Published as a conference paper at ICLR 2025

As the gradient is O(∆t), it becomes zero when ∆t → 0, so it cannot be used for training. To make
the gradient non-zero, Song et al. (2023) divide the by ∆t. Then, we have

∂

∂θ
LCD(θ,θ

−) =
∂

∂θ
Et,xt

[
1

∆t
d(fθ(xt, t), fθ−(xt−∆t

, t−∆t))] (27)

= −Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

+O(∆t)] (28)

= −Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

] (29)

= −Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt
(−t · st(xt)) +

∂fθ−

∂t
)
∂fθ
∂θ

] (30)

= Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt
(t · st(xt))−

∂fθ−

∂t
)
∂fθ
∂θ

] (31)

in the limit of ∆t → 0.

Hessian of d. Here, we provide the Hessians of the L2 squared loss and the Pseudo-Huber loss.

1. If d(x,y) = ||x− y||22, ∂
2d
∂y2 |y=x = 2I.

2. If d(x,y) =
√
||x− y||22 + c2 − c, ∂

2d
∂y2 |y=x = 1

c I.

D.3 CONSISTENCY TRAINING

Song et al. (2023) show that Eq. (31) can be estimated without a pre-trained score network. From
Tweedie’s formula, we express the score function as

st(xt) =
Ep(x|xt)[x]− xt

t2
. (32)

Plugging this into Eq. (31), we have

Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt
(t · st(xt))−

∂fθ−

∂t
)
∂fθ
∂θ

] = Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt

Ep(x|xt)−xt
[x]

t
− ∂fθ−

∂t
)
∂fθ
∂θ

]

(33)

= Et,xt
[Ep(x|xt)[

∂2d

∂y2
(
∂fθ−

∂xt

x− xt
t

− ∂fθ−

∂t
)
∂fθ
∂θ

]]

(34)

= Et,x,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

x− xt
t

− ∂fθ−

∂t
)
∂fθ
∂θ

],

(35)

where we now have the expectation over three random variables t,x,xt and do not require a score
function. In the next section, we will reverse-engineer an objective such that its gradient matches
Eq. (35).

D.3.1 OBJECTIVE

It turns out that the following objective is the one we are looking for:

LCT(θ,θ
−) = Et,x,ϵ[

1

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t))], (36)

where ϵ ∼ N (0, I) is a random noise vector. The objective in Eq. (36) is called the consistency
training objective. We can show that the gradient of LCT indeed matches Eq. (35) in the limit of

19

Published as a conference paper at ICLR 2025

∆t → 0. First, we apply the Taylor expansion to the unweighted loss in Eq. (36):

Et,x,ϵ[d(fθ(x+ tϵ, t), fθ(x+ tϵ, t)︸ ︷︷ ︸
y

+ fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t)︸ ︷︷ ︸
∆y

)] (37)

= Et,x,ϵ[d(fθ(x+ tϵ, t), fθ(x+ tϵ, t)) +
∂d

∂y
∆y + (∆y)T

∂2d

∂y2
∆y +O(||∆y||3)] (38)

= Et,x,ϵ[(∆y)T
∂2d

∂y2
∆y +O(||∆y||3)] (39)

where we define ∆y as ∆y = fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t).

Let’s take the derivative with respect to θ:

∂

∂θ
Et[LCT(θ,θ

−)] = Et,x,ϵ[
∂2d

∂y2
(fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t))

∂fθ
∂θ

+O(||∆y||3)].

(40)

Using the Taylor expansion, we have

fθ−(x+ (t−∆t)ϵ, t−∆t) = fθ−(x+ tϵ, t)− ∂fθ−

∂x
ϵ∆t −

∂fθ−

∂t
∆t +O(∆2

t), (41)

fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ−(x+ tϵ, t) = −∂fθ
−

∂x
ϵ∆t −

∂fθ−

∂t
∆t +O(∆2

t). (42)

Since fθ(x+ tϵ, t) has the same value as fθ−(x+ tϵ, t), we can plug this into Eq. (40):

Et,x,ϵ[
∂2d

∂y2
(fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t))

∂fθ
∂θ

+O(||∆y||3)] (43)

= Et,x,ϵ[
∂2d

∂y2
(−∂fθ

−

∂x
ϵ− ∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t) (44)

= Et,x,xt [
∂2d

∂y2
(−∂fθ

−

∂x

xt − x

t
− ∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t), (45)

where in Eq. (45), we use the reparametrization trick x + tϵ = xt and ϵ = xt−x
t . Finally, we can

show that Eq. (45) matches Eq. (35) in the limit of ∆t → 0 and after dividing by ∆t:

lim
∆t→0

∂

∂θ
LCD(θ,θ

−) = lim
∆t→0

∂

∂θ
LCT(θ,θ

−) (46)

We can add a weighting function ω(t) without affecting this equality, leading to the objective in
Eq. (4).

E TRAINING OBJECTIVE OF TCMS

By substituting Eq. (7) into Eq. (6), we have:

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) = λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′) (47)

+(1− λb)

∫
t∈St′

ψ̄t(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−

0
(x+ (t−∆t)ϵ, t−∆t)dt (48)

+(1− λb)

∫
t∈S−

t′

ψ̄t(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)dt (49)

The first two terms in RHS represent the boundary loss, and the last term is the consistency loss.
Let us define ∆t = (1 + 8 · sigmoid(−t))(1− r)t. We define tm to be the smallest point such that
tm −∆tm = t′. Then the volume of the set St′ := {t ∈ R : t′ ≤ t ≤ t′ +∆t} is ∆tm . We assume

20

Published as a conference paper at ICLR 2025

ψ̄t is properly designed to be upper bounded by a finite value (see Sec. 4.4). In the limit of r → 1,
we simplify the the second term in the above:

(1− λb)

∫
t∈St′

ψ̄t(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−

0
(x+ (t−∆t)ϵ, t−∆t)dt

(50)

= (1− λb)

∫
t∈St′

ψ̄t(t
′)
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′) +O(1)dt

(51)

= (1− λb)ψ̄t(t
′)
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′)V ol(St′) +

∫
t∈St′

O(1)dt

(52)

≈ (1− λb)ψ̄t(t
′)
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′)∆t′ +

∫
t∈St′

O(1)dt

(53)

≈ (1− λb)ψ̄t(t
′)ω(t′)d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′),

(54)

where in Eq. (51) we apply the Taylor expansion to the integrand, and in Eq. (53), we can see
that ∆tm = (1 + 8 · sigmoid(−tm))(1 − r)tm goes to zero as r → 1. Thus, tm → t′ and then
V ol(St′)/∆t′ = ∆tm/∆t′ =

(1+8·sigmoid(−tm))tm(1−r)
(1+8·sigmoid(−t′))t′(1−r) = 1 in the limit. Hence, the boundary loss is

(λb
ω(t′)

∆t′
+ (1− λb)ψ̄t(t

′)ω(t′))d(fθ(x+ t′ϵ, t′), fθ−
0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′) (55)

≈ λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′), (56)

where the first term (O(1/∆t)) dominates the second term (O(1)). We hence arrive at Eq. (9):

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) ≈ λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′))︸ ︷︷ ︸
Boundary loss:=LB(fθ,fθ−

0
)

(57)

+(1− λb)Eψ̄t
[
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)]︸ ︷︷ ︸

Consistency loss:=LC(fθ,fθ−)

, (58)

where because ∆t → 0, we can approximate S−
t′ ≈ (t′, T], leading to Eq. (58).

In practice, we set r close to one during the truncated training stage (see Section F). Note that here,
the boundary loss can dominate the consistency loss when fθ and f−θ0

are sufficiently different around
t = t′. However, in practice, as we set ∆t to be small enough but not all the way to zero, and as
we use Pseudo-Huber loss (see Section F) with small c value that normalizes the effect of the loss
magnitude on the gradient norm, we can balance the training.

F IMPLEMENTATION DETAILS

We provide detailed information about our implementation in the following.

Model initialization and architecture: All stage 1 models are initialized from pre-trained EDM or
EDM2 checkpoints as suggested by Geng et al. (2024). For CIFAR-10, we use EDM’s DDPM++
architecture, which is slightly smaller than iCT’s NCSN++. For ImageNet 64×64, we employ EDM2-
S (280M parameters) and EDM2-XL (approximately 1.1B parameters) architectures. EDM2-S is
slightly smaller than iCT’s ADM architecture (296M parameters).

21

Published as a conference paper at ICLR 2025

Model parameterization: Following EDM, we parameterize consistency models fθ as fθ =

cout(t)Fθ(x, t) + cskip(t)x, where cout(t) =
tσdata√
σ2

data+t
2

, cskip(t) =
σ2

data
σ2

data+t
2 , and σdata = 0.5.

Training details: We set ∆t = (1 + 8 · sigmoid(−t))(1 − r)t, where r = max{1 −
1/2⌈i/25000⌉, 0.999} for CIFAR-10 and max{1− 1/4⌈i/25000⌉, 0.9961} for ImageNet 64× 64, with
i being the training iteration. For CIFAR-10, we train for 250K iterations in Stage 1 and 200K
iterations in Stage 2. For ImageNet 64× 64, EDM2-S is trained for 150K iterations in Stage 1 and
120K iterations in Stage 2, while EDM2-XL is trained for 40K iterations in Stage 2 only. See Fig. 1(b)
for the FID evolution during training. For the second stage, we start with the maximum r values (i.e.,
0.999 or 0.9961) and do not change them. The weighting function ω(t) is set to 1 for CIFAR-10 and
∆t/cout(t)

2 for ImageNet 64× 64. As suggested by Song & Dhariwal (2023); Geng et al. (2024), we
use the Pseudo-Huber loss function d(x,y) =

√
||x− y||22 + c2 − c, with c = 1e− 8 for CIFAR-10

and c = 0.06 for ImageNet 64 × 64. This is especially crucial for our method as the boundary
loss can dominate the consistency loss. The boundary loss compares the outputs from the different
model fθ and fθ0

, it tends to be larger than the consistency loss, but Pseudo-Huber loss effectively
normalize the effect of the loss magnitude on the gradient norm. For ImageNet 64× 64, we employ
mixed-precision training with dynamic loss scaling and use power function EMA (Karras et al., 2024)
with γ = 6.94 (without post-hoc EMA search).

Learning rate schedules: EDM2 (Karras et al., 2024) architectures require a manual decay of the
learning rate. Karras et al. (2024) suggest using the inverse square root schedule αref√

max(t/tref ,1)
. For

the first stage training of EDM2-S on ImageNet, we use tref = 2000 and αref = 1e − 3 following
Geng et al. (2024). For the second stage training of EDM2-S, we use tref = 8000 and αref = 5e− 4.

Second stage training of EDM2-XL is initialized with the ECM2-XL checkpoint from Geng et al.
(2024). During the second stage, we use tref = 8000 and αref = 1e− 4 for EDM2-XL.

Time step sampling: For the first stage training, we use a log-normal distribution for ψ̄t. For
CIFAR-10, we use a mean of -1.1 and a standard deviation of 2.0 following Song & Dhariwal (2023).
For ImageNet, we use a mean of -0.8 and a standard deviation of 1.6 following Geng et al. (2024).

For EDM2-XL, we also explore t′ = 1.5 for truncated training, adjusting ν to 2 to ensure p̄t has high
probability mass around t′ = 1.5 and also has a long tail as discussed in Sec. 4.4. This way, we get
the FID of 2.15, which is slightly better than the result in Table 2.

During two-step generation, we evaluate the model at t = 80, 1 on CIFAR-10 and t = 80, 1.526 for
ImageNet.

G UNCURATED GENERATED SAMPLES

We provide the uncurated generated samples in Fig. 9-11.

22

Published as a conference paper at ICLR 2025

(a) One-step samples.

(b) Two-step samples.

Figure 9: Uncurated one-step and two-step samples on CIFAR-10.

(a) One-step samples.

(b) Two-step samples.

Figure 10: Uncurated one-step and two-step samples on ImageNet (EDM2-S).

23

Published as a conference paper at ICLR 2025

(a) One-step samples.

(b) Two-step samples.

Figure 11: Uncurated one-step and two-step samples on ImageNet (EDM2-XL).

24

	Introduction
	Preliminaries
	Diffusion models
	Consistency models

	Truncated consistency model
	Experiments
	Setup
	Truncated training allocates capacity toward generation
	TCM improves the sample quality of consistency models
	Analyses of design choices

	Related work
	Conclusion
	Reproducibility statement
	Ethics statement
	Limitation
	Text-to-image results
	Additional experiments
	Background on consistency models
	Definition of Consistency Function
	Probability flow ODE
	Consistency function

	Consistency distillation
	Objective
	Gradient when t 0

	Consistency training
	Objective

	Training objective of TCMs
	Implementation details
	Uncurated generated samples

