
Appendices
We provide additional implementation details in Section A, details of our linear evaluation protocol
in Section B, experiments on transfer of the compressive representations to other classification tasks
in Section C, and further ablations in Section E. We provide further details about our robustness
evaluation in Section F. Finally, we provide a more detailed explanation of the relation between
Lipschitz continuity and SimCLR with CEB compression, introduced in Section 2.4 of the main
paper, in Section G.

A Implementation details and hyperparameters

In this section, we further describe our implementation details. Our implementation is based off
of the public implementation of SimCLR [12]. In general, we closely follow the design choices of
BYOL [30] for both of our SimCLR and BYOL implementations. Despite having different objectives,
BYOL and SimCLR share many components, including image augmentations, network architectures,
and optimization settings. As explained in the original paper [30], BYOL itself may be considered
as a modification to SimCLR with a slow moving average target network, an additional predictor
network, and switching the learning target from InfoNCE to a regression loss. Therefore, many of the
design choices and hyperparameters are applicable to both. As explained in Section 3.1, we align
SimCLR with BYOL on the choices of image augmentations, network architecture, and optimization
settings in order to reduce the number of variables in comparison.

A.1 Image augmentations

During self-supervised training, we use the set of image augmentations from BYOL [30] for all our
models.

• Random cropping: randomly select a patch of the image, with an area uniformly sampled
between 8% and 100% of that original image, and an aspect ratio logarithmically sampled
between 3/4 and 4/3. Then this patch is resized to 224× 224 using bicubic interpolation.

• Left-to-right flipping: randomly flip the patch.

• Color jittering: brightness, contrast, saturation and hue of an image are shifted by a uniformly
random offset. The order to apply these adjustments is randomly selected for each patch.

• Color dropping: RGB pixel values of an image are converted to grayscale according to
0.2989r + 0.5870g + 0.1140b.

• Gaussian blurring: We use a 23× 23 kernel to blur the 224× 224 image, with a standard
deviation uniformly sampled over [0.1, 2.0].

• Solarization: This is a color transformation x = x · 1{x<0.5} + (1− x) · 1{x≥0.5} for pixels
with values in [0, 1] (we convert all pixel values into floats between [0, 1]).

As described in Sec. 2, we use augmentation functions t and t′ to transform an image into two views.
t and t′ are compositions of the above image augmentations in the listed order, each applied with a
predefined probability. The image augmentation parameters to generate t and t′ are listed in Table 6.

During evaluation, we perform center cropping, as done in [12, 30]. Images are resized to 256 pixels
along the shorter side, after which a 224 × 224 center crop is applied. During both training and
evaluation, we normalize image RGB values by subtracting the average color and dividing by the
standard deviation, computed on ImageNet, after applying the augmentations.

Differences from the original SimCLR [12]. Since the image augmentation parameters that
BYOL [30] uses are different from the original SimCLR, we list the original SimCLR parameters in
the last column of Table 6, which are the same for t and t′, to clarify the differences. Additionally, the
original SimCLR samples the aspect ratio of cropped patches uniformly, instead of logarithmically,
between [3/4, 4/3].

16

Table 6: Image augmentation parameters. We use the hyperparameter values from BYOL [30], and
include the values from the original SimCLR [12] as reference.

Parameter t t′ Orig. SimCLR [12]

Random crop probability 1.0 1.0 1.0
Flip probability 0.5 0.5 0.5
Color jittering probability 0.8 0.8 0.8
Brightness adjustment max strength 0.4 0.4 0.8
Contrast adjustment max strength 0.4 0.4 0.8
Saturation adjustment max strength 0.2 0.2 0.8
Hue adjustment max strength 0.1 0.1 0.2
Color dropping probability 0.2 0.2 0.2
Gaussian blurring probability 1.0 0.1 1.0
Solarization probability 0.0 0.2 0.0

A.2 Network architecture

Following [12, 30], we use ResNet-50 [34] as our backbone convolutional encoder (the “Conv” part
in Figure 1 and Figure 2). We vary the ResNet width [75] (and thus the number of parameters)
from 1× to 2×. In Sec. D, we additionally report C-BYOL results with different ResNet depth,
from 50 to 152. The representations hx, hy in SimCLR and h, ht, h′t in BYOL correspond to the
2048-dimensional (for ResNet-50 1×) final average pooling layer output. These representations
are projected to a smaller space by an MLP (called “projection“ in Figure 1 and Figure 2). As in
[30], this MLP consists of a linear layer with output size 4096 followed by batch normalization [41],
ReLU, and a final linear layer with output dimension 256. q(·) in BYOL/C-BYOL (Fig. 2) is called
the predictor. The predictor q(·) is also a two-layer MLP which shares the same architecture with the
projection MLP [30].

Differences from the original SimCLR [12]. The original SimCLR [12] uses a 2048-d hidden
layer and a 128-d output layer for the projection MLP, after which an additional batch normalization
is applied to the 128-d output. Both BYOL [30] and our work do not have this batch normalization
on the last layer. We did not observe significant change in performance for the uncompressed models
and found it harmful to the compressed models.

A.3 von Mises-Fisher Distributions

We use the vMF implementation in public Tensorflow Probability (TFP) library [17], specifically
the current TFP version 0.13. We have found that sampling and computing log probabilities in high
dimensions with the current TFP version has become sufficiently stable and fast to train all of the
models in our paper.5

A.4 Optimization

We follow BYOL [30] for our optimization settings. During self-supervised training, we use the
LARS optimizer [74] with a cosine decay learning rate schedule [49] over 1000 epochs and a linear
warm-up period at the beginning of training. The linear warm-up period is 10 epochs in most cases.
We increase it to 20 epochs for BYOL and C-BYOL with larger ResNets (ResNet-50 2x, ResNet-101,
ResNet-152) as we found it helpful to prevent mode collapse and improve performance. In most
cases, we set the base learning rate to 0.2 and scale it linearly by batch size (LearningRate = 0.2
× BatchSize/256). For C-BYOL, we increase the base learning rate to 0.26 for better performance.
For careful comparison, we extensively searched base learning rate for BYOL but did not find a
configuration better than 0.2 as used in the original work [30]. We use a weight decay of 1.5× 10−6.
For the BYOL/C-BYOL target network, the exponential moving average update rate α starts from

5Previous versions of TFP were unstable for sampling from vMF distributions with higher than 5 dimensions,
and at the time of writing, the authors of the library have not updated the documentation to indicate that this is
no longer the case.

17

Table 7: Ablation study on BYOL models trained for 300 epochs. Top-1 denotes the linear evaluation
Top-1 accuracy on ImageNet.

Method Top-1

BYOL wbyol = 1.0 72.5
BYOL wbyol = 5.0 72.8
BYOL wbyol = 5.0 + 256-d linear layer + l2-normalization 72.8
BYOL wbyol = 5.0 + 256-d linear layer + l2-normalization + sampling 72.8
C-BYOL wbyol = 5.0 73.6

Table 8: The effect of loss weights on BYOL models trained for 1000 epochs. Top-1 denotes the
linear evaluation Top-1 accuracy on ImageNet.

Method Top-1

BYOL wbyol = 1.0 74.2
BYOL wbyol = 2.0 74.2
BYOL wbyol = 5.0 74.2

αbase = 0.996 and ramps up to 1 with a cosine schedule, α , 1 − (1 − αbase)(cos(πk/K) + 1)/2
where k is the current training step and K is the total number of training steps.

For 300-epoch models used in ablations, we set the base learning rate to 0.3 in most cases, and
increase it to 0.35 for C-BYOL. We use a weight decay of 10−6. For BYOL and C-BYOL, the base
exponential moving average update rate αbase is set to 0.99.

We note that there is a small chance that both BYOL and C-BYOL can end up with collapsed
solutions, but it mostly happens in early phase of training and is easy to observe with the learning
objective spiking or reaching NaN.

Differences from the original SimCLR [12]. Optimization settings of the original SimCLR are
very similar but, for 1000-epoch training, they use a base learning rate of 0.3 and weight decay of
10−6.

A.5 SimCLR and C-SimCLR details

As described in Section A.1, Section A.2, Section A.4, we made minor modifications to the original
SimCLR to align with BYOL on the choices of image augmentations, network architecture, and
optimization settings. With these modifications, our SimCLR baseline reproduction outperforms the
original (top-1 accuracy 70.6% versus 69.3%).

For C-SimCLR, we use κe = 1024 for the true encoder e(·|x) and κb = 10 for the backward encoder,
where e(·|x) and b(·|y) are von Mises-Fisher distributions. The compression factor β that we use for
C-SimCLR is 1.0. Note that the original SimCLR has temperature τ = 0.1 which is equivalent to
having κb = 10, since κb = 1/τ .

A.6 BYOL and C-BYOL details

As shown in Table 7 and Table 8, our BYOL implementation stably reproduces results comparable to
[30] with 300 and 1000 epochs of training. An interesting behavior we observed is that, for shorter
training with 300 epochs, scaling the BYOL regression loss can improve performance. Specifically
we add a weight multiplier wbyol = κd/2 to the BYOL loss Eq. (13).

Lbyol = wbyol||µe − y′||22 (23)

Table 7 shows that multiplying the loss by five increases the linear evaluation accuracy from 72.5%
to 72.8%. This improvement is consistent across multiple runs. Therefore, we choose wbyol = 5
for 300-epoch BYOL/C-BYOL. However, we do not see the same improvement for 1000-epoch
models. Table 8 shows that wbyol makes little difference for 1000-epoch BYOL models. We still
choose wbyol = 2 for all 1000-epoch BYOL and C-BYOL models since it tends to work better than
wbyol = 1 for the compressed models and models with larger ResNets.

18

Table 9: Transfer to other classification tasks, by performing linear evaluation. The backbone network
is ResNet-50, pretrained in a self-supervised fashion for 1000 epochs.

Method Food101 CIFAR10 CIFAR100 Flowers Pet Cars Caltech-101 DTD SUN397 Aircraft Birdsnap

SimCLR 72.5 91.1 74.4 88.4 83.5 49.7 89.5 72.5 61.8 51.6 35.4
C-SimCLR 73.0 91.6 75.2 89.0 84.0 52.7 91.2 73.0 62.3 53.5 38.2

Furthermore, Table 7 verifies that the additional linear layer with l2-normalization that we added
for C-BYOL and z sampling (both were described in Section 2.3) do not result in a difference in
performance. The improvement happens only when CEB compression is used.

We set κe = 16384.0, κb = 10.0, and the compression factor beta = 1.0 for C-BYOL if not specified
otherwise.

B Linear evaluation protocol on ImageNet

As common in self-supervised learning literature [30, 12, 43, 14], we assess the performance of our
representations learned on the ImageNet training set (without labels) by training a linear classifier on
top of the frozen representations using the labeled data. For training this linear classifier, we only
apply the random cropping and flipping image augmentations. We optimize the cross-entropy loss
using SGD with Nesterov momentum over 40 epochs. We use a batch size of 1024 and momentum of
0.9 without weight decay, and sweep the base learning rate over {0.4, 0.3, 0.2, 0.1, 0.05} to choose the
best learning rate on a validation set, following [30]. We perform center cropping during evaluation,
as done in [12, 30]. Images are resized to 256 pixels along the shorter side, after which the 224× 224
center crop is selected. During both training and evaluation, we normalize image RGB values by
subtracting the average color and dividing by the standard deviation, computed on ImageNet, after
applying the augmentations.

Learning with a few labels In Section 3.2 we described learning the linear classifier on 1% and
10% of the ImageNet training set with labels. We performed this experiment with the same 1% and
10% splits from [12].

C Transfer to other classification tasks

We analyze the effect of compression on transfer to other classification tasks in Table 9. This allows
us to assess whether the compressive representations learned by our method are generic and transfer
across image domains.

Datasets. We perform the transfer experiments on the Food-101 dataset [7], CIFAR-10 and CIFAR-
100 [46], Birdsnap [6], SUN397 [72], Stanford Cars [45], FGVC Aircraft [51], the Describable
Texture Dataset (DTD) [16], Oxford-IIIT Pets [55], Caltech-101 [25], and Oxford 102 Flowers [52].
We carefully follow their evaluation protocol, i.e. we report top-1 accuracy for Food-101, CIFAR-10,
CIFAR-100, Birdsnap, SUN397, Stanford Cars, anad DTD; mean per-class accuracy for FGVC
Aircraft, Oxford-IIIT Pets, Caltech-101, and Oxford 102 Flowers. These datasets are also used
by [12, 30, 44]. More exhaustive details about train, validation, and test splits of these datasets can
be found in Section D of [30] (arXiv v3).

Transfer via linear classifier. To demonstrate the effectiveness of compressed representations, we
compare SimCLR and C-SimCLR representations as an example. We freeze the representations
of our model and train an `2-regularized multinomial logitstic regression classifier on top of these
frozen representations. We minimize the cross-entropy objective using the L-BFGS optimizer. As
in [30, 12], we selected the `2 regularization parameter from a range of 45 logarithmically spaced
values between [10−6, 105].

We observe in Table 9 that our Compressed SimCLR model consistently outperforms the uncom-
pressed SimCLR baseline on each of the 11 datasets we tested. We note absolute improvements
in accuracy ranging from 0.5% (CIFAR-10, SUN397) to 3% (Stanford Cars). These experiments

19

Table 10: C-BYOL and BYOL trained for 1000 epochs with different ResNet depth. We report
ImageNet Top-1 accuracy from linear evaluation, averaged over 3 trials.

C-BYOL BYOL [30]
Architecture Top-1 Top-5 Top-1 Top-5

ResNet-50 75.6 92.7 74.3 91.6
ResNet-101 77.8 93.9 76.4 93.0
ResNet-152 78.7 94.4 77.3 93.7

suggest that the representations learned by compressed model are generic, and transfer beyond the
ImageNet domain which they were learned on.

D Extra C-BYOL results with Deeper ResNets

In Table 10, we additionally report results of C-BYOL and BYOL retrained for 1000 epochs with
ResNet-101 and ResNet-152, as it could be of interest to demonstrate improvements over the state-
of-the-art BYOL on these deeper ResNet models. It can be observed that C-BYOL gives significant
gains across ResNets with different depths.

E Additional Ablations

The hyperparameter and architecture choices of SimCLR and BYOL have been investigated in the
original works [12, 30]. Here we focus on analysing hyperparameters specific to C-SimCLR and
C-BYOL.

Table 11, Table 12 and Table 13 show how changing κe and κb affect the results, respectively. We
also investigate the effect of the compression factor β for C-BYOL (Table 14) in addition to the
compression analysis for SimCLR in Sec. 3.4. Similar to C-SimCLR, as compression strength (β)
increases, the linear evaluation result improves, with β = 1.0 obtaining the best results, but overly
strong compression leads to a drop in performance.

Finally, we conduct a preliminary exploration on the interplay between CEB compression and image
augmentations, using cropping area ratio as an example in Table 15. As described in Section A.1, we
follow [30, 12] to randomly crop an image to an area between 8% and 100% of the original image.
We refer to this 8% as the “area lower bound“, which is the most aggressive cropping area ratio that
can happen. As the area lower bound decreases, we are reducing the amount of information that can
be shared between the two representations, because there is less and less mutual information between
the two images: I(X;X ′) gets smaller the more we reduce the area lower bound [65]. Thus, smaller
area lower bounds should force the model to be more compressed. What we see in Table 15 is that the
SimCLR models are much more sensitive to the changes in the area lower bound than the C-SimCLR
models are. We speculate that this is because the compression done by the C-SimCLR objective
overlaps to some extent with the compression given by varying the area lower bound. Regardless, the
compression due to the area lower bound hyperparameter appears to be insufficient to adequately
compress away irrelevant information in the SimCLR model, which is why the C-SimCLR models
continue to outperform the SimCLR models at all area lower bound values.

F Robustness benchmark details

In this section, we provide some additional details on each of the datasets used in our robustness
evaluations. Note that we use the public robustness benchmark evaluation code of [19, 18].6

ImageNet-A [38]: This dataset of “Natural adversarial examples” consists of images of ImageNet
classes which a ResNet-50 classifier failed on. The dataset authors performed manual, human-
verification to ensure that the predictions of the ResNet-50 model were indeed incorrect and egre-
gious [38].

6https://github.com/google-research/robustness_metrics

20

https://github.com/google-research/robustness_metrics

Table 11: The effect of varying κe for C-SimCLR models. We report ImageNet Top-1 accuracy from
linear evaluation.

κe 256 512 1024 2048 4096 8192

ImageNet Top-1 accuracy 69.8 69.8 70.2 69.8 69.6 69.6

Table 12: The effect of varying κe for C-BYOL models. We report ImageNet Top-1 accuracy from
linear evaluation.

κe 4096 8192 16384 32768

ImageNet Top-1 accuracy 73.0 73.3 73.6 73.2

Table 13: The effect of varying κb for C-SimCLR and C-BYOL models. We report ImageNet Top-1
accuracy from linear evaluation.

Method κb =1 3 10 15 20

C-SimCLR 65.0 68.5 70.2 69.1 68.6
C-BYOL 73.1 73.3 73.6 73.4 73.2

Table 14: The effect of β on C-BYOL. Note that Table 5 in the main paper studied this effect on
C-SimCLR. The final column is the uncompressed BYOL baseline.

β 1.5 1.0 0.1 0.01 BYOL

ImageNet Top-1 accuracy 73.4 73.6 73.1 73.0 72.8

Table 15: The effect of varying the area range lower rounds for SimCLR and Compressed SimCLR.
We report the ImageNet Top-1 accuracy from linear evaluation. Note how the baseline SimCLR
model is much more sensitive to this data-augmentation hyperparameter.

Method 8% 16% 25% 50%

SimCLR 69.0 68.6 67.6 61.4
C-SimCLR 70.2 70.0 68.9 64.3

ImageNet-C [37]: This dataset adds 15 corruptions to ImageNet images, each at 5 levels of severity.
We report the average accuracy over all the corruptions and severity levels.

ImageNet-R [36]: This dataset, which has the full name “Imagenet Rendition”, captures naturally
occuring distribution changes in image style, camera operation and geographic location.

ImageNet-v2 [58]: This is a new test set for ImageNet, and was collected following the same protocol
as the original ImageNet dataset. The authors posit that the collected images are more “difficult”, and
observed consistent accuracy drops across a wide range of models trained on the original ImageNet.

ObjectNet [5]: This is a more challenging test set for ImageNet, where the authors control for
different viewpoints, backgrounds and rotations. Note that ObjectNet has a vocabulary 313 object
classes, of which 113 are common with ImageNet. Following [18], we evaluate on only the images in
the dataset which have one of the 113 ImageNet labels. Our network is still able to predict any one of
the 1000 ImageNet classes though.

ImageNet-Vid and YouTube-BB [62] evaluate the robustness of image classifiers to natural perturba-
tions arising in video. This dataset was created by [62] by augmenting the ImageNet-Vid [60] and
YouTube-BB [57] datasets with additional annotations.

G Analysis of Lipschitz Continuity and Compression

In this section, we provide a more detailed explanation of the relation between Lipschitz continuity
and SimCLR with CEB compression, introduced in Section 2.4. Lipschitz Continuity provides a way
of measuring how smooth a function is. For some function f and a distance measureD(f(x1), f(x2)),

21

Lipschitz continuity defines an upper bound on how quickly f can change as x changes:

L||∆x|| ≥ D(f(x), f(x+ ∆x)) (24)

where L is the Lipschitz constant, ∆x is the vector change in x, and ||∆x|| > 0.

Frequently, the choice of D is the absolute difference function: |f(x1)− f(x2)|. However, we can
use a multiplicative distance rather than an additive distance by considering the absolute difference of
the logs of the functions:

D(f(x1), f(x2)) ≡ | log f(x1)− log f(x2)| (25)

It is trivial to see that Equation (25) obeys the triangle inequality, which can be written:

|a− b| ≥ |a| − |b| (26)

Equation (26) is true for any scalars a and b. Setting a = log f(x1) and b = log f(x2) is sufficient,
given that f(·) is a positive, scalar-valued function. For D(·) to be a valid distance metric, f(x)
must also satisfy the identity of indiscernibles requirement: f(x1) = f(x2) ⇔ x1 = x2. If that
requirement is violated, then D(·) becomes a pseudometric, which is inconsistent with Lipschitz
continuity.

Noting that |a − b| ≡ max(a − b, b − a), we will simplify the analysis by considering the two
arguments to the implicit max in Equation (25) one at a time, starting with:

L ≥ 1

||∆x||
(log f(x)− log f(x+ ∆x)) (27)

If we define f(x) to be our encoder distribution, e(z|x), we get a function of z of Lipschitz value:7

L(z) ≥ 1

||∆x||
(log e(z|x)− log e(z|x+ ∆x)) (28)

Note that the encoder distribution must not violate the identity of indiscernibles property: ∀z :
e(z|x1) = e(z|x2) ⇔ x1 = x2. This is not the case in general, but for reasonable distribution
families, the sets of z that violate this property for any (x1, x2) pair will have measure zero. In the
case that e(z|·) is parameterized by some function f(·), such as a neural network, f must also not
violate the identity of indiscernibles property. This argues in favor of using invertible networks for f ,
or at least not using activation functions like relu that are likely to cause f to map multiple x values to
some constant. We note that in practice, it doesn’t seem to matter, as shown empirically in Section 3.

As e(z|x) is parameterized by the output of our model, Equation (28) captures the semantically
relevant smoothness of the model. For example, if our encoder distribution is a Gaussian with learned
mean and variance, the impact of the model parameters on the means is semantically distinct from
the impact of the model parameters on the variance. In that setting, using the parameter vectors
themselves naively in a Lipschitz formulation like Lnaive||∆x|| ≥ ||fθ(x) − fθ(x + ∆x)||, where
fθ outputs concatenated mean and variance parameters, would clearly fail to correctly capture the
model’s smoothness. Our formulation using the encoder distribution directly does not have this flaw,
and thus generalizes to capture a notion of smoothness for any choice of distribution parameterization.
Note that this notion of smoothness of the distribution still depends directly on the the smoothness
of the underlying function that generates the distribution’s parameters, while also capturing the
smoothness of the distribution itself.

We can remove the dependence on z of Equation (28) by taking the expectation over z with respect
to e(z|x). This gives us an expected Lipschitz value:

Ez∼e(z|x)L(z) ≥ 1

||∆x||
Ez∼e(z|x) log e(z|x)− log e(z|x+ ∆x) (29)

=
1

||∆x||
KL[e(z|x)||e(z|x+ ∆x)] (30)

7Note that if we choose an encoder distribution where the density ever goes to 0 or ∞, Equation (28) will
have a maximum value of ∞. Of course, it’s generally easy to avoid this situation by choosing “well-behaved”
distributions like the Gaussian or von Mises-Fisher distributions, whose densities are non-zero on the entire
domain, and to parameterize them with variance or concentration parameters that don’t go to 0 or ∞, respectively.

22

It is important to note that Equation (30) no longer obeys the triangle inequality, due to the KL
divergence, since it is easy to find three distributions p, q, r such that KL[p||q] > KL[p||r]+KL[q||r].
We could also have computed the expectation over z ∼ e(z|x+ ∆x), yielding:

Ez∼e(z|x+∆x)L(z) ≥ − 1

||∆x||
KL[e(z|x+ ∆x)||e(z|x)] (31)

But this is trivially true due to L(z) being non-negative and the negative KL term being non-positive,
so we can ignore this term here. However, when we consider the second argument to the implicit
max in Equation (25), the negative and positive KL terms are swapped, and we are left with:

Ez∼e(z|x+∆x)L(z) ≥ 1

||∆x||
KL[e(z|x+ ∆x)||e(z|x)] (32)

When we take the expectations over z, the resulting KL divergences have an underlying quadratic
growth in ||∆x||: as ||∆x|| increases linearly, the KL divergences increase quadratically.8 This is
why the KL divergence violates the triangle inequality, and also why it is problematic for measuring
Lipschitz continuity: in general, L will be unbounded when measured by the KL even when the
underlying function f(x) parameterizing the distributions has a bounded Lipschitz constant, since
the KL will always grow faster then ||∆x||. We can address this by instead considering the squared
Lipschitz constant:

L2||∆x||2 ≥ KL[e(z|x)||e(z|x+ ∆x)] and L2||∆x||2 ≥ KL[e(z|x+ ∆x)||e(z|x)] (33)

which is equivalent to:

L2 ≥ 1

||∆x||
Ez∼e(z|x)L(z) and L2 ≥ 1

||∆x||
Ez∼e(z|x+∆x)L(z) (34)

Finally, we note the following relationship:

L2 = max
x,∆x

max

(
1

||∆x||2
KL[e(z|x)||e(z|x+ ∆x)],

1

||∆x||2
KL[e(z|x+ ∆x)||e(z|x)]

)
(35)

In words, the true squared Lipschitz constant of the encoder is equal to the least smooth (x,∆x) pair,
as measured by the greater of the two KL divergences at that pair.

Putting all of this together, we observe that the following two KL divergences together give a lower
bound on the encoder’s Lipschitz constant:

L2 ≥ 1

||∆x||2
max

(
KL[e(z|x)||e(z|x+ ∆x)], KL[e(z|x+ ∆x)||e(z|x)]

)
(36)

Thus, taking the pointwise maximum across pairs of inputs in any dataset gives a valid estimate
of the maximum lower bound of the encoder’s Lipschitz constant. Equation (36) can be evaluated
directly on any pair of valid inputs (x, x+ ∆x). Equation (36) is the same as Equation (20) used in
Section 2.4.

Example: the von Mises-Fisher distribution. An exponential family distribution has the form:

h(z) exp(ηTT (z)−A(η)) (37)

where T (z) is the sufficient statistic, η is the canonical parameter, and A(η) is the cumulant. For the
von Mises-Fisher distribution, which has the form:

Cn(κ) exp(κµT z) (38)

we have h(z) = 1, T (z) = z and A(η) is the negative log of the normalizing constant Cn(κ).
Instead of a general parameter vector η, the standard von Mises-Fisher distribution uses a unit vector
µ = η/||η|| and a scale or concentration parameter κ = ||η||.

8This is easiest to see with Gaussian distributions whose means are parameterized by an identity map of x
and x + ∆x: the KL divergence is quadratic in difference of the means, which is ||∆x||.

23

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

200

400

600

nu
m

 o
f s

am
pl

es

brightness+
C-SimCLR, = 0.067
SimCLR, = 0.088

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

100

200

300

400

nu
m

 o
f s

am
pl

es

brightness-
C-SimCLR, = 0.121
SimCLR, = 0.147

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

200

400

nu
m

 o
f s

am
pl

es

contrast+
C-SimCLR, = 0.064
SimCLR, = 0.085

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

250

500

750

1000

nu
m

 o
f s

am
pl

es

contrast-
C-SimCLR, = 0.03
SimCLR, = 0.038

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

200

400

600

nu
m

 o
f s

am
pl

es

saturation+
C-SimCLR, = 0.056
SimCLR, = 0.073

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

200

400

nu
m

 o
f s

am
pl

es

saturation-
C-SimCLR, = 0.055
SimCLR, = 0.072

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

100

200

300

400

nu
m

 o
f s

am
pl

es

hue+
C-SimCLR, = 0.082
SimCLR, = 0.103

0.00 0.05 0.10 0.15 0.20 0.25 0.30
local estimate of Eq. (19)

0

100

200

300

400

nu
m

 o
f s

am
pl

es

hue-
C-SimCLR, = 0.075
SimCLR, = 0.099

Figure 3: Histograms of Equation (19) (also Equation (28) in this section) on 10,000 training images.
Each local estimate is Equation (28) with a (x, x+∆x) pair. Here x is the original image and x+∆x
is the augmented image. SimCLR is in orange. C-SimCLR is in blue. Higher y-axis values for lower
x-axis values are better. We also report the mean (µ) values. C-SimCLR consistently outperforms
SimCLR.

If e(z|x) is parameterized by a deterministic neural network for the von Mises-Fisher canonical
parameter denoted e(x), then we have:

e(z|x) = Cn(||e(x)||) exp(e(x)T z) (39)

and KL[e(z|x)||e(z|y)] (define y = x+ ∆x) is:

(e(x)− e(y))T z(x) + logCn(||e(x)||)− logCn(||e(y)||) (40)

where z(x) is the mean direction function of the distribution (e(x) = ||e(x)||z(x)). The symmetric
KL-divergence (KL[e(z|x)||e(z|y)] + KL[e(z|y)||e(z|x)]) is then:

(e(x)− e(y))T (z(x)− z(y)) (41)

which is closely related to the L2
2 norm of the vector e(x)− e(y).

Furthermore, we can choose κ = ||e(x)|| as a hyperparameter and just parameterize e(z|x)’s unit
length mean direction z(x). Apart from choosing different κ hyperparameters, this is exactly what
we do in the C-SimCLR setting described in Section 2.2.

Specifically, in Section 2.2, minimizing the residual information term I(X;Z|Y) correspond to mini-
mizing KL[e(z|x)||b(z|y)] instead of KL[e(z|x)||e(z|y)], where b and e have the same mean direction
parameterization but different κ hyperparameters, say κe and κb. We can show that the two KLs
are actually consistent as learning objectives. With κe, κb as hyperparameters, KL[e(z|x)||e(z|y)]
(Equation (40)) can be written as

κe(z(x)− z(y))T z(x) + logCn(κe)− logCn(κe), (42)

and KL[e(z|x)||b(z|y)] can be written as

(κez(x)− κbz(y))T z(x) + logCn(κe)− logCn(κb) (43)

= (κe − κb) + κb(z(x)− z(y))T z(x) + logCn(κe)− logCn(κb). (44)

It is not difficult to see that the two KLs are only different in scale and by a constant, and thus are
consistent as learning objectives. As we claimed in Section 2.4 (after Equation (22)), the use of
different constant hyperparameters κe and κb in the encoders of x and y only changes the minimum
achievable KL divergences. We can reach the same conclusion for the residual information in another
direction I(Y ;Z|X). Thus, whether or not κe and κb are the same, we are still minimizing the
Lipschitz constant of our encoder function at each observed (x, y) pair when we minimize the residual
information terms in the bidirectional CEB objective (Equation (12)).

Estimating the local Lipschitz constant. We can evaluate Equation (19) (also Equation (28) on
any (x, x+ ∆x) pairs to estimate how smooth our model is at that point, and to compare the relative
smoothness of different models. Here, we consider (x, x+ ∆x) pairs where x is taken either from

24

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

1000

2000

3000

nu
m

 o
f s

am
pl

es

brightness+
C-SimCLR, = 0.089
SimCLR, = 0.114

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

500

1000

1500

nu
m

 o
f s

am
pl

es

brightness-
C-SimCLR, = 0.162
SimCLR, = 0.188

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

500

1000

1500

2000

nu
m

 o
f s

am
pl

es

contrast+
C-SimCLR, = 0.081
SimCLR, = 0.102

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

2000

4000

nu
m

 o
f s

am
pl

es

contrast-
C-SimCLR, = 0.036
SimCLR, = 0.045

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

1000

2000

nu
m

 o
f s

am
pl

es

saturation+
C-SimCLR, = 0.069
SimCLR, = 0.086

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

1000

2000

nu
m

 o
f s

am
pl

es

saturation-
C-SimCLR, = 0.071
SimCLR, = 0.087

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

500

1000

1500

nu
m

 o
f s

am
pl

es

hue+
C-SimCLR, = 0.103
SimCLR, = 0.126

0.0 0.1 0.2 0.3
local estimate of Eq. (19)

0

500

1000

1500

nu
m

 o
f s

am
pl

es

hue-
C-SimCLR, = 0.098
SimCLR, = 0.123

Figure 4: The same as Figure 3, but on 50,000 validation images.

the training or the validation set (using only a center crop in both cases), and x+ ∆x is generated by
either increasing or decreasing exactly one of: brightness, contrast, saturation, or hue. The absolute
changes are the maximum adjustment strength in our image defined in Table 6 (e.g. for increasing
brightness, we increase by 0.4). In Figures 3 and 4, we compare the histograms of Equation (19) on
the SimCLR ResNet-50 model and the corresponding C-SimCLR ResNet-50 model. On both datasets
and all eight augmentations, the C-SimCLR models have substantially more mass in the lower values
of the local Lipschitz estimates for those image pairs, and have lower mean values computed over
the dataset. Additionally, the mean C-SimCLR results on the validation set are almost all lower or
equal to the mean SimCLR results on the training set, so the smoothness improvements from adding
compression to SimCLR appear to be substantial. The only exceptions are for ‘brightness+’ (SimCLR
training mean: 0.088, C-SimCLR validation mean: 0.089) and ‘brightness-’ (SimCLR training mean:
0.147, C-SimCLR validation mean: 0.162).

H Pseudocode

Listings 1 and 2 show Tensorflow pseudocode for C-SimCLR and C-BYOL respectively.

25

tfd = tensorflow_probability.distributions

def simclr_ceb_loss(x,
y,
f_enc,
kappa_e=1024.0,
kappa_b=10.0,
beta=1.0):

"""Compute a Contrastive version of CEB loss for C-SimCLR model.

In practice, we follow SimCLR to apply this loss in a bidirectional manner as
loss = simclr_ceb_loss(x, y) + simclr_ceb_loss(y, x).
We use the same notation as the main paper.

Args:
x: An augmented image view. The expected shape is [B, H, W, C].
y: An augmented image view. The expected shape is [B, H, W, C].
f_enc: An image encoder (Conv + Projection in Fig. 1).
kappa_e: A float. Concentration parameter of distribution e.
kappa_b: A float. Concentration parameter of distribution b.
beta: CEB beta for controlling compression strength (Equation 1).

Returns:
A tensor `loss`. The loss is per-sample.

"""
Obtain unit-length mean direction vectors with expected shape [B, r_dim].
r_x = tf.math.l2_normalize(f_enc(x), -1)
r_y = tf.math.l2_normalize(f_enc(y), -1)

batch_size = tf.shape(r_x)[0]
labels_idx = tf.range(batch_size)
Labels are pseudo-labels which mark corresponding positives in a batch
labels = tf.one_hot(labels_idx, batch_size)
mi_upper_bound = tf.math.log(tf.cast(batch_size, tf.float32))

e_zx = tfd.VonMisesFisher(r_x, kappa_e)
b_zy = tfd.VonMisesFisher(r_y, kappa_b)
z = e_zx.sample()
log_e_zx = e_zx.log_prob(z)
log_b_zy = b_zy.log_prob(z)
i_xzy = log_e_zx - log_b_zy # residual information I(X;Z|Y)
logits_ab = b_zy.log_prob(z[:, None, :]) # broadcast

The following categorical corresponds to c(y|z) and d(x|z) in Equation 12:
cat_dist_ab = tfd.Categorical(logits=logits_ab)
h_yz = -cat_dist_ab.log_prob(labels_idx)
i_yz = mi_upper_bound - h_yz
loss = beta * i_xzy - i_yz

return loss

Listing 1: Tensorflow pseudocode of C-SimCLR.

26

tfd = tensorflow_probability.distributions

def byol_ceb_loss(x,
x_prime,
f_enc,
f_enc_target,
q_net,
l_net,
m_net,
kappa_e=16384.0,
kappa_b=10.0,
beta=1.0,
byol_loss_weight=2.0):

"""Compute loss for C-BYOL model.

The notation corresponds to Section 2.3 and Figure 2 of the paper.
This code presents an updated version of C-BYOL as described in the
general response.

In practice, we follow BYOL to apply this loss in a bidirectional manner as
loss = byol_ceb_loss(x, x_prime, ...) + byol_ceb_loss(x_prime, x, ...).
We use the same notation as the main paper.

Args:
x: An augmented image view. The expected shape is [B, H, W, C].
x_prime: An augmented image view. The expected shape is [B, H, W, C].
f_enc: An image encoder (Conv + Projection in Fig. 2).
f_enc_target: The target image encoder. A slow moving-average of f_enc.
q_net: The BYOL predictor, which is a two-layer MLP.
l_net: A transformation function. We choose a linear layer in this work.
m_net: A transformation function. We choose a two-layer MLP in this work.
kappa_e: A float. Concentration parameter of distribution e.
kappa_b: A float. Concentration parameter of distribution b.
beta: CEB beta for controlling compression strength (Equation 1).
byol_loss_weight: BYOL loss weight. byol_loss_weight = kappa_d/2.

Returns:
A tensor `loss`. The loss is per-sample.

"""
r = f_enc(x)
mu_e = tf.math.l2_normalize(q_net(r), -1)
e_zx = tfd.VonMisesFisher(mu_e, kappa_e)
z = e_zx.sample()
y_pred = tf.math.l2_normalize(l_net(z), -1)

r_t = tf.math.l2_normalize(f_enc_target(x), -1)
y = tf.stop_gradient(r_t)
mu_b = tf.math.l2_normalize(m_net(y), -1)
b_zy = tfd.VonMisesFisher(mu_b, kappa_b)

r_t_prime = tf.math.l2_normalize(f_enc_target(x_prime), -1)
y_prime = tf.stop_gradient(r_t_prime)

byol_loss corresponds to -log d(y|z) as described in Section 2.3
byol_loss = tf.reduce_sum(tf.math.square(y_pred - y_prime), axis=-1)

log_e_zx = e_zx.log_prob(z)
log_b_zy = b_zy.log_prob(z)
i_xzy = log_e_zx - log_b_zy

loss = byol_loss_weight * byol_loss + beta * i_xzy

return loss

Listing 2: Tensorflow pseudocode of C-BYOL.

27

