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A PROOFS

Lemma 1. (Paulavicius & Zilinskas|(2006)) For L-Lipschitz function f : R? — R,

|f(x) = f(y) < Liz -y, (11)

where L = max {||V f(x)||, : ® € S} is Lipschitz constant. Thus, ||V f(x)||, < L.

Proof. Refer to PaulaviCius & Zilinskas (2006)) for the proof. O

Theorem 1. Let g : R — R? be a upper bounded attribution function, and n X B(0;r). Let
h be the smoothed version of g as defined in ([2). Then, for all & € {x + 68|||6]|> < €}, we have
cos (h(x),h(x)) > T, where

[ ()]

- (6)
Vi@ + M2V /VE

Here, M is the upper bound of g. Vs is the volume of the {2-ball B(0;r), and Vi; is the volume of
the union of the two sampling space centered at x and  minus their intersection.

Proof. As defined in Eqn. (2))
1
h@) = sl +m) = = [ gla+min (12
S Jn~B(0;r)

where Vs is the volume of the ¢,-ball with radius . Similarly, let £ = x + §, where § € R%is a
vector and ||d||2 < €. Then, we have

. 1 .
h(z) = */ g(x +mn)dn (13)
Vs n~B(0;r)

We note that when np ~ B(0;7), € + n ~ B(x;r) and & + n ~ B(&;r). We then rewrite h(x) and
h(&) as follows:

1 1
h(x) = — g(x)dx + —/ g(x)dx (14)
Vs JanB@)\B@:r) Vs JanB(@r)nB(@:r)
R1 R2
and
. 1 1
h(z) = —/ g(x)dz + —/ g(x)dz (15)
Vs z~B(z;r)NB(x;r) Vs x~B(x;r)\B(xz;r)
R2 RB
Hence,
h(z) = h(z) — R1 + Rs (16)

Denote av = Rs— Ry, where v is a unit vector in the same direction of Rs— R; and a = ||R3— R1||2
is a scalar with the same magnitude of R3 — R;. Then, we have

cos(hi@). h(@)) = h(x)" h(x) + av
(h@). h(®)) = G, (||h<m>+av|2> an

14



Under review as a conference paper at ICLR 2025

Note that the attribution g(z) is upper bounded by M, specifically, ||g(x)||2 < M, for some constant
M. Thus, we can derive that

a=|Rs — Ri||2 (18)

1
=l (/ g(w)dw—/ g(fﬂ)dw> (19)
Vs x~B(z;r)\B(x;r) x~B(x;r)\B(&;r) 9
1
< = / g(x)dz| + / g(x)dx (20)
Vs \|[/e~B@m)\B@n) o |[Je~B@in\B@n) )
1
<o ( / lo@ll,do+ | ||g<w>||2da:> e
S \Ja~B(@;r)\B(x;r) @~ B(w;m) \B(Z;r)
1
< ( / Mdax + / Mda:) (22)
Vs \Ja~B@m\B@:n o~ B(@i)\B(@r)
VB(@;r)\B(@;r)UB(&:1)\B(z;r) Vi
=M IN\B@NUB@ErN\B(@ir) _ pp U 23
X Vs Vs (23)
Thus, the lower bound of cos(h(x), h(Z)) can be found by solving the optimization problem
) h(x)" ( h(zx) + av )
min
v [P(@)[| \ [|h(z) + av|
s.t. |v|| =1 (24)
Vu
< M_—
o< My

Since h(x) and h (&) form a spherical cone, we can decompose v by v = cos fv|| 4 sin v, where

v and v, are two orthogonal unit vectors such that " (z)v, = 0 and v = h(x)/||h(x)||. Then,
the optimization problem can be rewritten as

. 1 [ h(x)+ a(cos v +sin v, ) 55
) |h(x) + a(cos fv) + sin v )| 25)
. + [ Ih(x)||v) + a(cos Ov + asinfv)
26
—mme <HWKmth—%a&DSGv|%—aﬁnGvL)H (20)

i (| ()| —l—acos@)vﬂ—vu —|—asin91:ﬁrm_ on
\/(||h(ac)H + acos 9)21)['0“ + (asinf)?v] v,
|h(z)|| + acosb
V ([h(2)]] + acos )2 + (asinf)?
Since f‘z‘(ai) ;Tl known for a given sample, the optimization problem can be written as follows by
taking ||h(x)|| = ¢

(28)

. c+acosf
min
V(c+acosf)? + (asinf)? (29)
Vu
.t <M—
st. a< Vs
We now consider the Lagrange function of the optimization problem:
0 Vi
L(x,0,)) = cracosl  Na-MY) (30)
V/(c+acosf)? + (asinf)? Vs
Taking the derivative of £ with respect to a and 6 and setting them to zero, we have
0 1
%0 T2<Tcost9T(ccost9+2a)x(c+acost9)>)\O 31

2|| - || in the following content denotes the £2-norm unless otherwise specified.
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and

0

B . 15 . 2. _
%£, T2 ( asinf - T + T (c asinf + ca S1n9c059)> =0 32)

where T' = \/(c + acos 0)2 + (asin 0)2. Solving the above equations, we have
cosd =0 or a=0 (33)

where a = 0 reaches the maximum and cos # = 0 is the minimum. Therefore, the lower bound of
cos(h(x), h(&)) is

c e
JErarge  VIR@F T OV /vs)?

(34)

cos(h(x), h(z)) >

O

Corollary 1. Let g : R® — R? be a bounded attribution function, and 1 K B(x;r). Let h be the
smoothed version of g as defined in (Z2)).

(i) Given a predefined threshold T € [0, 1], then for all ||6]|2 < €, we have cos(h(x), h(x +8)) >

T, where
4 (d+1 1
=2 1 -1 [ —=, = ). 8
€ T\/ VA ( 9 72) ()

(ii) Given a predefined threshold T € [0,1] and the maximum perturbation size ¢ > 0, the

smoothed attribution satisfies cos(h(z),h(2)) > T for all & € {x + d8|||0]|2 < €} when

r > R, where
1
€ 1 {d+1 1))\ 2
=—(1-I}' | —, = .
wes (- (553)) ©
I7%(a,b) is the inverse of the regularized incomplete beta function, and Z is defined as

_ @) (1
Z—l—-jM4(T2—1> (10)

Proof. Corollary 1 can be obtained by fixing 7" and taking r as unknown, and fixing 7" and taking e
as unknown, respectively. We can first derive that

I d+1 1 ) [h(x)]l2 [ 1
. N2\ —(/——, = | =1l — —F7"1\ =
(2rh—h2)/r 2 9 IM T2

Using the inverse of the regularized incomplete beta function, i.e., z = I, ' (a,b), and h = r — ¢/2,
we have

1=z (35)

1 (d+11 €
1 _— = = — 2 2 = _—
I; ( 5 2> (2rh —h*)/r* =1 12 (36)
The results in Corollary can then be solved accordingly. O

B IMPLEMENTATION DETAILS

In the experiments, we implemented the /5 attribution attack adapted from |Ghorbani et al. (2019).
The attack uses top-k intersection version as the loss function. Following previous works, we choose
k = 100 for MNIST and £ = 1000 for CIFAR-10. The number of iterations in PGD-like attack is
200, and the step size is 0.1. As mentioned in the main content, we do not implement the attack on
ImageNet since the attribution attacks are not scalable to large size images. In the following parts of
this section, we provide more details of evaluations in the experiments.
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B.1 ATTRIBUTION METHODS

We used saliency maps (SM) and integrated gradients (IG) in the evaluation sections. These two
methods are defined as follows:
e Sali . — 9f(=)
Saliency maps: SM(x) = =5~

* Integrated gradients: IG(x) = (x — @) x fl @ talz—a]) 4

a=0 ox Q.

The SmoothSM and SmoothlG are the smoothed versions of SM and IG, respectively.

B.2 EVALUATION METRICS

Given original attribution g(x) and perturbed attribution (), we use top-k intersection, Kendall’s
rank correlation (Ghorbani et al.,[2019) and cosine similarity (Wang & Kong},2022) to evaluate their
differences.

* Top-k intersection measures the proportion of k largest features that overlap between g(x)
and g(&).

» Kendall’s rank correlation measures the proportion of pairs of features that have the same
. - d d
order in g(z) and g(2): gy it Djitt Ho(e)i>a(@),} Ho(@)i>9(),)-

* Cosine similarity measures the cosine of the angle between g(x) and g(&): m%.

B.3 BASELINE METHODS

We compare with the following adversarial and attributional robust models:

IG-NORM (Chen et al., 2019)
CE(f(x),y) + A max [IG(x, @) (37)
zEB ()

TRADES (Zhang et al.} 2019)
CE(f(2),y) + SKL(f(z)[| f(2)) (38)

IGR (Wang & Kong, 2022)
CE(f(2),y) + BKL(f ()| f(Z)) + A (1 — cos(IG(z),1G())) (39)

Here CE denotes the cross-entropy loss and KL denotes the Kullback-Leibler divergence.

C ADDITIONAL EXPERIMENTS

C.1 TEST ON MONTE CARLO ESTIMATION

Note that the bound given by Theorem I]is deterministic. In this section, we provide a probabilistic
bound for the attribution robustness. Specifically, we want to find the value of ¢ such that Pr(T <
t) = 1 — «, where T is defined in Eqn. (@) and « is the significance level. Recall that T is defined
as follows:

(1) [2

T=—— (40)

Vih(@)l3+c

where ¢ = M2V /VZ. If we denote that Q = ||h(z)]|2, then we have

Pr(T <t)=Pr (\/% < t) = Pr <Q2 < f_tQtQ) (41)
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Table 4: Evaluation of center smoothing on attributions

e | 01 | 02| 03 | 04 | 05
SmoothSM | 1.207 | 1.729 | 1.843 | 1.907 | 1.998

Note that we used Monte Carlo Integration to calculate the integral in h(x), which estimates h(x)
by sampling 7 from B, i.e.,

| X
@) =+ Z; g(x+m), i~ B, (42)
Note that i,(z) is an unbiased estimator of h(x), i.e. E[h(x)] = h(z). The estimator almost surely
converges to h(x) as N — oo, i.e. limy_o h(x) = h(x) almost surely. By the Central Limit
Theorem, the estimator A (x) has the following asymptotic distribution,

h(z) < N (h(z),D), (43)

which the covariance matrix D = diag(c? /N ) can be estimated by the empirical variances of g(x +
;). Thus, the quadratic form Q2 = ||h(z)||3 can be seen as generalized chi-square distributed. We

can derive the cumulative distribution function of Monte Carlo estimator T;¢ at ¢ as the cumulative
ct?

distribution function of the generalized chi-square distribution at gl ie.,
P (T < t) F ct® (44)
T =
MC S -2 )

where F' is the cumulative distribution function of the generalized chi-square distribution con-
structed from the quadratic form of Gaussian random variable with mean h(x) and covariance D
(Davies| [1980; Das & Geisler, 2021)). In this work, we use the R package CompQuadForm (Duch-
esne & De Micheaux, 2010) to compute the cumulative distribution function. For any fixed image
sample x, we can validate to — ¢; is close to 0 when Pr(t; < Thc < t3) = 1 — « by solving the
following equation. For small o = 0.01 and the number of samples N = 100, 000, we found that
the values of t5 —t; are at scale of 10~% in MNIST and CIFAR-10, and 103 in ImageNet calculated
by choosing 10, 000 samples from each dataset. This validates the error from Monte Carlo integral
is minute and that the probabilistic bound is close to the deterministic bound.

42 2
F<(% )1aﬂ and F(Ct1 )aﬂ. (45)

1—t2 1—¢2

C.2 ADDITIONAL VISUALIZATION OF THE UNIFORMLY SMOOTHED ATTRIBUTIONS

In Figure[T](left), we have shown that the uniformly smoothed attributions have a comparable quality
as the original attributions. Here more examples are provided in Figure [3]to illustrate the quality of
the uniformly smoothed attributions.

C.3 EVALUATION OF CENTER SMOOTHING (KUMAR & GOLDSTEIN, |2021)) ON
ATTRIBUTIONS

To compare the performance with center smoothing (Kumar & Goldstein, 2021), we also imple-
mented the same method to evaluate the certification of attributions. Specifically, we compute the
bound for SmoothSM on IG-NORM using MNIST, and follow the same setting by choosing A = 1
and ¢; = 0.1,0.2,---,0.5. Directly using the cosine similarity on the method is not applicable
since cosine similarity does not satisfy the triangle inequality. Following the relaxation method in
Sec.4 of Kumar & Goldstein (2021), a multiplier v = 2 is added. Besides, we use 1 — cos 6 to reflect
the distance metric instead of the similarity metric. The results are shown in the Table |4} It can be
observed that the upper bound for 1 — cos 6 is greater than 1 for all the choices of €, which is trivially
valid for the trigonometric function since we only consider cosé € [0,1]. Thus, the upper bound
provided in the aforementioned work can be too loose on our setting.
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(a) Original image (b) IG (c) Gaussian smoothed (d) Uniformly smoothed

Figure 3: Additional visualization of the attribution maps of the (a) original image, (b) IG, (c)
Gaussian smoothed IG, and (d) uniformly smoothed IG.

C.4 EVALUATION OF ALTERNATIVE FORMULATIONS

In Section we introduced two alternative formulations of the proposed method that can be ap-
plied in specific scenarios. In this section, we provide additional information to report the experi-
ments on these two formulations.

In Tables |3 to [/} which correspond to MNIST, CIFAR-10 and ImageNet, respectively, we report
the computed values of the maximum allowable perturbation size. Under the size constraint, no
examples can be found by the attacks against uniformly smoothed IG of a certain radius such that
the cosine similarity between clean and perturbed attributions exceeds the given threshold (1" = 0.8
and T' = 0.9). The results are consistent with our theory. For larger radius smoothing, the maximum
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Table 5: Maximum allowable perturbation size for different threshold (7" = 0.8 and 7' = 0.9) under
various choices of /5 smoothing radii r evaluated on MNIST.

T =0.9 | ¢ radius (r) 0.5 1.0 1.5 2.0 25 3.0 3.5

Standard 0.0389 0.0951 0.1550 0.2164 0.2783 0.3404 0.4029
IG-NORM  0.0394 0.0957 0.1557 0.2170 0.2790 0.3420 0.4067
IGR 0.0390 0.0952 0.1552 0.2174 0.2818 0.3477 0.4163

{5 radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Standard 0.0447 0.1051 0.1691 0.2345 0.3004 0.3664 0.4329
IG-NORM  0.0448 0.1052 0.1692 0.2354 0.3037 0.3733 0.4456
IGR 0.0452 0.1057 0.1697 0.2350 0.3010 0.3680 0.4365

N
I
o
o

Table 6: Maximum allowable perturbation size for different threshold (7" = 0.8 and 7" = 0.9) under
various choices of {5 smoothing radii r evaluated on CIFAR-10.

T =0.9 | ¢ radius (r) 0.5 1.0 1.5 2.0 25 3.0 3.5

Standard 0.0086 0.0469 0.0885 0.1322 0.1773 0.2222 0.2683
IG-NORM  0.0323 0.0705 0.1104 0.1510 0.1923 0.2337 0.2749
IGR 0.0167 0.0545 0.1032 0.1586 0.2150 0.2588 0.2805

o radius (r) 0.5 1.0 1.5 2.0 2.5 3.0 35

Standard 0.0128 0.0522 0.0951 0.1402 0.1866 0.2330 0.2868
IG-NORM  0.0343 0.0742 0.1157 0.1580 0.2009 0.2439 0.2867
IGR 0.0237 0.0693 0.1258 0.1861 0.2546 0.3090 0.3559

N
|
o
o0

Table 7: Maximum allowable perturbation size for different threshold (" = 0.8 and 7' = 0.9) under
various choices of /5 smoothing radii r evaluated on ImageNet.

4o radius (1) 0.5 1.0 1.5 2.0 2.5 3.0 35
T=09 0.0046 0.0100 0.0152 0.0295 0.0494 0.0628 0.0768
T=038 0.0058 0.0127 0.0196 0.0369 0.0618 0.0820 0.1040

Table 8: Empirical cosine similarity between original and perturbed smoothed attributions under
various choices of /2 smoothing radius r, and the perturbation size computed in Table|5|(I" = 0.8).

T 0.5 1.0 1.5 2.0 2.5 3.0 35

Standard 0.8636 0.8522 0.8347 0.8127 0.8477 0.8603 0.8310
IG-NORM 0.8308 0.8181 0.8504 0.8728 0.8502 0.8193 0.8199
IGR 0.8231 0.8800 0.8720 0.8603 0.8362 0.8135 0.8567

Table 9: Minimum smoothing radius requires to achieve the threshold (I' = 0.8 and T' = 0.9) under
various choices of ¢o perturbation size €. IG-NORM and IGR are omitted since they are not scalable
to ImageNet.

MNIST | CIFAR-10 | ImageNet

perturbation size (€) 0.5 1.0 \ 0.5 1.0 \ 0.5 1.0

T =0.9 Standard 5.1902 5.8752 | 59752 7.9504 | 74.6272 149.2544
IG-NORM 5.1189 5.7699 | 5.6860 7.3720 / /
IGR 5.0265 5.6623 | 5.2895 6.5790 / /

T =0.8 Standard 3.8927 4.4064 | 577082 7.4164 | 48.2095 96.4190
IG-NORM 3.8392 4.3274 | 54875 6.9750 / /
IGR 3.7699 4.2468 | 5.0287 6.0573 / /
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allowable perturbation size is also larger. When the threshold requirement is stricter, the maximum
allowable perturbation size is smaller, which suggests weaker attacks are allowed. The method is
also scalable to ImageNet, which takes around 15 seconds to compute for each sample. Moreover,
we also applied attribution attacks using the same radius and maximum perturbation size ¢, computed
using Eqn. (8). Similar to the experiments in Section [5] we performed 20 attacks on each sample.
We found that out of the total 200,000 attacked samples, the cosine similarities between clean and
perturbed attributions were higher than the given threshold, suggesting that the computed bound is
valid (see Table 3).

We also evaluate the third formulation that the minimum radius of smoothing required such that,
within the given perturbation sizes, the cosine similarity between original and perturbed smoothed
attributions is larger than the given threshold. In Table[9] the computed minimum radius of smooth-
ing is reported. Similarly, we observe that the minimum radius of smoothing is larger when the
threshold requirement is stricter, and when the attack is stronger. This is also consistent with our
theory. We also notice that the radius for ImageNet is extremely large, which indicates that ImageNet
is difficult to defend under such strict threshold requirements.
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