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HOI-DIFF: TEXT-DRIVEN SYNTHESIS OF 3D HUMAN-
OBJECT INTERACTIONS USING DIFFUSION MODELS
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Figure 1: HOI-Diff generates realistic motions for 3D human-object interactions given a text
prompt and object geometry. Please see the sup. mat. for video results. Darker color indicates
later frames in the sequence. Best viewed in color.

ABSTRACT

We address the problem of generating realistic 3D human-object interactions (HOIs)
driven by textual prompts. To this end, we take a modular design and decompose
the complex task into simpler sub-tasks. We first develop a dual-branch diffusion
model (DBDM) to generate both human and object motions conditioned on the
input text, and encourage coherent motions by a cross-attention communication
module between the human and object motion generation branches. We also
develop an affordance prediction diffusion model (APDM) to predict the contacting
area between the human and object during the interactions driven by the textual
prompt. The APDM is independent of the results by the DBDM and thus can correct
potential errors by the latter. Moreover, it stochastically generates the contacting
points to diversify the generated motions. Finally, we incorporate the estimated
contacting points into the classifier-guidance to achieve accurate and close contact
between humans and objects. To train and evaluate our approach, we annotate
the BEHAVE dataset with text descriptions. Experimental results on BEHAVE
and OMOMO demonstrate that our approach produces realistic HOIs with various
interactions and different types of objects. Our code and data annotations will be
publicly available.

1 INTRODUCTION

Text-driven synthesis of 3D human-object interactions (HOIs) aims to generate motions for both the
human and object that form coherent and semantically meaningful interactions. It enables virtual
humans to naturally interact with objects, which has a wide range of applications in AR/VR, video
games, and filmmaking, etc.
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The generation of natural and physically plausible 3D HOIs involves humans interacting with dynamic
objects in various ways according to the text prompts, thereby posing several challenges. First, the
variability of object shapes makes it particularly challenging to generate semantically meaningful
contact between the human and object to avoid floating objects. Second, the generated HOIs should
be faithful to the input text prompts as there are many plausible interactions between human and the
same object (e.g, a person carries a chair, sits on a chair, pushes or pulls a chair). Text-driven 3D
HOI synthesis with a diverse set of interactions is not yet fully addressed. Third, the development
and evaluation of 3D HOI synthesis models requires a high-quality human motion dataset with
various HOIs and textual descriptions, but existing datasets lack either diverse HOIs (Guo et al., 2022;
Plappert et al., 2016; Li et al., 2023a) or detailed textual descriptions with interacting body parts and
action (Bhatnagar et al., 2022; Diller & Dai, 2024). It is important to note that CG-HOI (Diller &
Dai, 2024) has not made their code or annotations publicly available. In contrast, we will release
both our code and annotations.

Current methods cannot fully handle all the challenges. On one hand, recent methods (Kulkarni
et al., 2023; Jiang et al., 2022; Hassan et al., 2021; Starke et al., 2019; Zhang et al., 2022b; Wu
et al., 2022; Taheri et al., 2022; Pi et al., 2023) can synthesize realistic human motions for HOIs for
static objects only. They usually synthesize the motion in the last mile of interaction, i.e, the motion
between the given starting human pose and the final interaction pose, and overlook the movement of
the objects when the human is interacting with them. On the other hand, existing methods for motion
generation with dynamic objects do not adequately reflect real-world complexity. For instance, they
focus on grasping small objects (Ghosh et al., 2023), provide the object motion as conditioning (Li
et al., 2023b), predict deterministic interactions between the human and the same object without the
diversity (Xu et al., 2023; Razali & Demiris, 2023), consider only a small set of interactions (e.g.,
sit/lift (Kulkarni et al., 2023), sit/lie down (Hassan et al., 2021), sit (Jiang et al., 2022; Zhang et al.,
2022b; Pi et al., 2023), grasp (Wu et al., 2022; Taheri et al., 2022)), or investigate a single type of
object (e.g., chair (Jiang et al., 2022; Zhang et al., 2022b)).

In this paper, we introduce HOI-Diff for 3D HOIs synthesis involving humans interacting with
different types of objects in diverse ways, which are both physically plausible and semantically
faithful to the textual prompt, as shown in Figure 1. Our key insight is to decompose 3D HOIs
synthesis into three modules to reduce the complexity of this challenging task. (a) coarse 3D HOIs
generation that extends the human motion diffusion model (Tevet et al., 2023) to a dual-branch
diffusion model (DBDM) to generate both human and object motions conditioning on the input
text prompt. To encourage coherent motions, we develop a cross-attention communication module,
exchanging information between the human and object motion generation models; (b) affordance
prediction diffusion model (APDM) that estimates the contacting points between the human and
object during the interactions driven by the textual prompt. Our APDM does not rely on the results
of the DBDM and thus can recover from its potential errors. Moreover, it stochastically generates
the contacting points to diversity the generated motions; and (c) affordance-guided interaction
correction that incorporates the estimated contacting information and employs the classifier-guidance
to achieve accurate and close contact between humans and objects, significantly alleviating the cases
of floating objects. Compared with designing a monolithic model, HOI-Diff disentangles motion
generation for humans and objects and estimation of their contacting points, which are later integrated
to form coherent and diverse HOIs, reducing the complexity and burden for each of the three modules.

For both training and evaluation purposes, we annotate each video sequence in BEHAVE dataset (Bhat-
nagar et al., 2022) with text descriptions, which mitigates the issue of severe data scarcity for text-
driven 3D HOIs generation. In addition, we evaluate our approach on the OMOMO dataset (Li
et al., 2023b), which focuses on the manipulation of two hands. Extensive experiments validate the
effectiveness and design choices of our approach, particularly for dynamic objects, thereby enabling
a set of new applications in human motion generation.

2 RELATED WORK

Human Motion Generation with Diffusion Models. The denoising diffusion models have been
widely used 2D image generations (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2021)
and achieved impressive results. Recent work (Zhang et al., 2022a; Tevet et al., 2023; Chen et al.,
2023b; Karunratanakul et al., 2023a; Rempe et al., 2023; Ahn et al., 2023; Barquero et al., 2023; Chen
et al., 2023a; Dabral et al., 2023; Shafir et al., 2023; Sun & Chowdhary, 2023; Tian et al., 2023; Wei
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et al., 2023; Zhang et al., 2023a;b;c; Xie et al., 2023) apply the diffusion model in the task of human
motion generation. While these methods have successfully generated human motion, they usually
generate isolated motions in the free space without considering the objects the human is interacting
with. Our method is primarily focused on motion generation with human-object interactions.

Scene- and Object-Aware Human Motion Generation. Recent works condition motion synthesis
on scene geometry (Huang et al., 2023; Zhao et al., 2023; Wang et al., 2022a;b). This facilitates the
understanding of human-scene interactions. However, the motion fidelity is compromised due to the
lack of paired full scene-motion data. Other approaches pKulkarni et al. (2023); Jiang et al. (2022);
Hassan et al. (2021); Starke et al. (2019); Zhang et al. (2022b); Pi et al. (2023) instead focus on the
interactions with the objects and can produce realistic motions. However, they focus on interacting
with static objects with limited interactions. OMOMO (Li et al., 2023b) can generate full-body motion
from the object motion. The object motion is needed as input in OMOMO, whereas our method
can jointly synthesize human motion and object motion. IMoS (Ghosh et al., 2023) synthesizes
the full-body human along with the 3D object motions from textual inputs, but it only focuses on
grasping small objects with hands. InterDiff (Xu et al., 2023) predicts whole-body interactions
with dynamic objects. Note that the interaction type is deterministic. Different from this, we tackle
the motion synthesis task, where the interaction with the same object can be controlled by the text
prompt. Recently, there has been a surge of interest in the text-driven synthesis of 3D human-object
interactions for dynamic objects, resulting in the development of concurrent works (Diller & Dai,
2024; Wang et al., 2023; Li et al., 2023a; Song et al., 2024; Xu et al., 2024). CG-HOI (Diller & Dai,
2024) and HOIAnimator (Song et al., 2024) uses SMPL parameters as the motion representation,
which may result in unsmooth motion due to the potential difficulty in optimization. Instead, we use
common skeletal joints similar to most text-to-motion methods, harnessing the power of pre-trained
human motion generation models. Chois Li et al. (2023a) relies on the initial state and object
waypoints to generate HOIs, which reduces motion diversity for both the human and the object.
InterFusion (Dai et al., 2024) and F-HOI (Yang et al., 2024) generate static 3D HOIs from text
description, lacking both human and object motions.

Affordance Estimation. The affordance estimation on 3D point cloud is studied in Ngyen et al.
(2023); Deng et al. (2021); Kokic et al. (2017); Iriondo et al. (2021); Mo et al. (2022); Kim &
Sukhatme (2014; 2015). Overall affordance learning is a very challenging task. Instead of predicting
the point-wise contact labels, we simplify it by directly regressing the contact points for human-object
interactions, making it more tractable without significantly compromising accuracy.

3 METHOD

The overview of our proposed approach are illustrated in Figure 2. We introduce a dual-branch Human-
Object Interaction Diffusion Model (DBDM), which can produce diverse yet consistent motions,
capturing the intricate interplay and mutual interactions between humans and objects (Sec. 3.2). To
ensure physically plausible contact between humans and objects, we propose a novel affordance
prediction diffusion model (APDM) (Sec. 3.3), whose output will be used as classifier guidance
(Sec. 3.4) to correct the interactions at each diffusion step of human/object motion generation.

3.1 BACKGROUND

Motion Representations. We denote a 3D HOI sequence as x = {xh,xo}. It consists of human
motion sequence xh ∈ RL×Dh

and object motion sequence xo ∈ RL×Do

, where L denotes the
length of the sequence. For xh, we adopt the redundant representation widely used in human motion
generation (Guo et al., 2022) with Dh = 263, which include pelvis velocity, local joint positions,
velocities and rotations of other joints in the pelvis space, and binary foot-ground contact labels. For
the object motion sequence xo, we assume the object geometry is given as an input, and thus we only
need to estimate its 6DoF poses in the generation, i.e, Do = 6. We represent each object instance as
a point cloud of 512 points p ∈ R512×3.

Diffusion Model for 3D HOI Generation. Given a prompt c = (d,p), consisting of a textual
description d and the object instance’s point cloud p, a diffusion model pθ(xt−1|xt, c)

1 learns
the reverse diffusion process to generate clean data from a Gaussian noise xT with T consecutive

1We use superscripts h and o to denote human and object sequence, respectively. Without a superscript, it
means the 3D HOI sequence, containing both xh and xo. Subscript is used for the diffusion denoising step.
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Figure 2: Overview of HOI-Diff for 3D HOIs generation using diffusion models. Our key insight
is to decompose the generation task into three modules: (a) coarse 3D HOI generation using a
dual-branch diffusion model (DBDM), (b) affordance prediction diffusion model (APDM) to estimate
the contacting points of humans and objects, and (c) affordance-guided interaction correction, which
incorporates the estimated contacting information and employs the classifier-guidance to achieve
accurate and close contact between humans and objects to form coherent HOIs.

denoising steps
pθ(xt−1|xt, c) := N (xt−1, µθ(xt, t, c), (1− αt)I), (1)

where t is the denoising step. Following Tevet et al. (2023), our diffusion model Mθ with parameters
θ predicts the final clean motion x0 = Mθ(xt, t, c). We sample xt−1 ∼ N (µt,Σt) and compute
the mean as in Nichol & Dhariwal (2021)

µt =

√
αt−1βt

1− αt
x0 +

√
1− βt(1− αt−1)

1− αt
xt, (2)

where αt =
∏t

s=1(1 − βs) and βt ∈ (0, 1) are the variance schedule. Σt =
1−αt−1

1−αt
βt (Ho et al.,

2020) is a variance scheduler of choice. Similar to xt, µt consists of µh
t and µo

t , corresponding to
human and object motion, respectively.

Simply adopting the diffusion model described in Eq.(1) would impose a huge burden on the model,
which requires joint generation of human and object motion and more critically, enforcement of their
intricate interactions to follow the input textual description. In this paper, we propose HOI-Diff for
3D HOIs generation, disentangling motion generation for humans and objects and estimation of their
contacting points. They are later integrated to form coherent and diverse HOIs, which reduces the
complexity and burden for each of the three modules, leading to better generation performance as
evidenced by our experiments.

3.2 COARSE 3D HOIS GENERATION

First, we introduce a dual-branch diffusion model (DBDM) to generate human and object motions
that are roughly coherent. As shown in Figure 3, it consists of two Transformer models (Vaswani
et al., 2017), human motion diffusion model (MDM) Mh and object MDM Mo, which work similar
to Tevet et al. (2023). Specifically, at the diffusion step t, they take the text description and noisy
motions xh

t and xo
t as input and predict clean human and object motions xh

0 and xo
0, respectively.

To enhance the learning of interactions of the human and object when generating their motion, we
introduce a Communication Module (CM ) designed for exchanging feature representations between
the human MDM Mh and the object MDM Mo. CM is a Transformer block that receives the
intermediate feature fh,fo from both Mh and Mo. It then processes these inputs to generate
refined updates based on the cross attention mechanism (Vaswani et al., 2017). The updated feature
representations f̃h and f̃o of the human and object are then conditioned on each other, which are
then fed into the subsequent layers of their respective branches to estimate clean human and object
motion xh

0 and xo
0, respectively. The CM is inserted at the 4th transformer layer for human MDM

and the last layer for object MDM, which was empirically found to work better.

Given the limited data availability for 3D HOI generation, during training, the human motion model
Mh finetunes a pretrained human MDM (Tevet et al., 2023). This fine-tuning is critical to ensure
the smoothness of the generated human motions. We ablate this design choice in Sec. 4.3. Object
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Figure 3: Illustration of DBDM architecture
for coarse 3D HOIs generation. It has two
branches designed for generating human and
object motions individually. A mutual cross-
attention is introduced to allow information ex-
change between two branches to generate coher-
ent motions. The human motion model Mh fine-
tunes a pretrained MDM (Tevet et al., 2023).

Figure 4: Illustration of APDM architecture for
affordance estimation. Affordance information
of human contact labels, object contact positions,
and binary object states are represented together
as a noise variable, which is fed into the Trans-
former encoder to generate clean estimation. The
object point cloud and textual prompt are taken
as conditional input.

MDM is trained from scratch. We modify the input and output linear layers to take in the object
motion which has a different dimension from the human motion. More details of DBDM are in
Appendix A.1.
3.3 AFFORDANCE ESTIMATION

Due to the complexity of the interactions between a human and object, DBDM alone usually fails
to produce physically plausible results, leading to floating objects or penetrations. To improve the
generation of intricate interactions, the problem that needs to be solved is to identify where the
contacting areas are between the human and object. InterDiff (Xu et al., 2023) defines the contacting
area based on the distance measurement between the surface of human and object. This approach,
however, heavily relies on the quality of the generated human and object motions and cannot recover
from errors in the coarse 3D HOI results. In addition, the contact area is diverse even with the same
object and interaction type, e.g, “sit” can happen on either side of a table. To this end, we introduce an
Affordance Prediction Diffusion Model (APDM) for affordance estimation. As illustrated in Figure 4,
the input includes a text description d and the object point cloud p. Our APDM doesn’t rely on
the results of the DBDM and thus can recover from the potential errors in DBDM. In addition, it
stochastically generates the contacting points to ensure the diversity of the generated motions.

Affordance estimation in 3D point clouds itself is a notably challenging problem (Ngyen et al., 2023;
Deng et al., 2021; Kokic et al., 2017; Iriondo et al., 2021; Mo et al., 2022; Kim & Sukhatme, 2014;
2015), especially in the context of 3D HOI generation involving textual prompt. In this paper, we
consider eight primary body joints – the pelvis, neck, feet, shoulders, and hands
– as the interacting parts in HOI scenarios. It can effectively model common interactions such as
grasping an object with both hands, sitting actions involving the pelvis and back, or lifting with a
single hand. We use binary contact labels to determine which joints are in contact with the object.
Subsequently, we predict eight corresponding contact points on the object surface, identified as the
points closest to the selected body joints. Note that the binary contact label estimation for different
body joints are independent, allowing us to handle complex HOIs.

Specifically, at each diffusion time step n of APDM2, the noisy data consists of human contact labels
representing the contact status for the eight primary body joints, denoted as yh

n ∈ {0, 1}8, and the

2We note that APDM and DBDM work independently. We thus use two symbols to denote the different
diffusion time steps to avoid confusion.
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eight corresponding contact points on the object surface, denoted as yo
n ∈ R8×3. The model is

designed to predict both contact probabilities and contact positions. Subsequently, dynamic selection
of contacting body joints is performed by considering predicted probabilities over a specific threshold
τ (set to be 0.6). The corresponding contact points on the object are then determined based on the
selected joints. APDM works similar to the diffusion denoising process described in Eq.(1). Besides,
we utilize a large language model (ChatGPT) to determine whether the object state ys

0 ∈ {0, 1}
should be set to static (ys

0 = 1) based on the textual description, which can help us better process
static objects when synthesizing 3D HOIs, as discussed in the following section. All the clean
affordance data is grouped as y0 = (yh

0 ,y
o
0,y

s
0). More implementation details are in Appendix A.2.

3.4 AFFORDANCE-GUIDED INTERACTION CORRECTION

With the estimated affordance, we can better align human and object motions to form coherent
interactions. To this end, we propose to use the classifier guidance (Dhariwal & Nichol, 2021) to
achieve accurate and close contact between humans and objects, significantly alleviating the cases of
floating objects.

Specifically, in a nutshell, we define an analytic function G(µh
t ,µ

o
t ,y0) that assesses how closely the

generated human joints and object’s 6DoF pose align with a desired objective. In our case, it enforces
the contact positions of human and object to be close to each other and their motions are smooth
temporally. Based on the gradient of G(µh

t ,µ
o
t ,y0), we can perturb the generated human and object

motion at each diffusion step t as in Xie et al. (2023); Karunratanakul et al. (2023b),

µh
t = µh

t − τ1Σt∇µh
t
G(µh

t ,µ
o
t ,y0), (3)

µo
t = µo

t − τ2Σt∇µo
t
G(µh

t ,µ
o
t ,y0). (4)

Here τ1 and τ2 are different strengths to control the guidance for human and object motion, respec-
tively. Due to the sparseness of object motion features, we assign a larger value to τ2 compared
to τ1. This applies greater strength to perturb object motion, facilitating feasible corrections for
contacting joints. During the denoising stage, to eliminate diffusion models’ bias that can suppress the
guidance signal, we iteratively perturb K times in the last denoising step. The details are illustrated
in Algorithm 1 of Appendix.

How can we define the objective function G(µh
t ,µ

o
t ,y0)? We consider three terms here. First, in the

generated 3D HOIs, the human and object should be close to each other on the contacting points. We
therefore minimize the distance between human contact joints and object contact points

Gcon =
∑

i∈{1,2,...,8}

∥∥R(
µh

t (i)
)
− V

(
µo

t ,y
o
t (i)

)∥∥2 , (5)

where µh
t (i) and yo

t (i) denote the i-th available contacting joint indexed by yh
0 and i-th object contact

point, respectively. R(·) converts the human joint’s local positions to global absolute locations, and
V (·) obtains the object’s contact point sequence from the predicted mean of object pose µo

t .

Second, the generated motion of dynamic objects typically follows human movement. However,
we observe that when the human interacts with a static object, such as sitting on a chair, the object
appears slightly moved. To address this, we immobilize the object’s movement in the generated
samples if the state is static (ys

0 = 1), ensuring that proper contact is established between the human
and the static object. The objective is defined as

Gsta = ys
0 ·

L∑
l=1

∥µo
t (l)− µ̄o

t∥2 , (6)

where µo
t (l) denotes the object’s 6DoF pose in the l-th frame. µ̄o

t = 1
L

∑
l µ

o
t (l), which is the

average of predicted means of the object’s pose.

Third, we define a smoothness term Gsmo(µ) for the object motion to mitigate motion jittering during
contact. Due to the space limit, we explain it in Appendix A.3.

Finally, we combine all these goal functions to as the final objective

G = Gcon + αGsta + βGsmo, (7)

where α = 500 and β = 100 are weights for balance.
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4 EXPERIMENTS

4.1 SETUP

Dataset. Since the data designed for studying text-driven 3D HOIs generation is severely scarce, we
manually label interaction types, interacting subjects, and contact body parts on top of the BEHAVE
dataset (Bhatnagar et al., 2022). We then use GPT-3.5 (OpenAI, 2023) to rephrase and generate three
text descriptions for each HOI sequence, increasing the diversity of the data. Specifically, BEHAVE
encompasses the interactions of 8 subjects with 20 different objects. It provides the human SMPL-H
representation (Loper et al., 2015), the object mesh, as well as its 6DoF pose information in each
HOI sequence. To ensure consistency in our approach, we follow the processing method used in
HumanML3D (Guo et al., 2022) to extract representations for 22 body joints. All the models are
trained to generate L = 196 frames in our experiments. In the end, we have 1451 3D HOI sequences
along with textual descriptions to train and evaluate our proposed approach. We follow the official
train/test split on BEHAVE. We provide more details of the dataset, our annotation process, and
annotated textual examples in Appendix I.

In addition, we evaluate our approach on OMOMO dataset (Li et al., 2023b). OMOMO focuses on
full-body manipulation with hands. It consists of human-object interaction motion for 15 objects
in daily life, with a total duration of approximately 10 hours. It provides text descriptions for each
interaction motion. We utilize their object split strategy for both training and evaluation, ensuring the
objects between the training and testing sets are different. Additionally, we preprocess human and
object motion, similar to our way for the BEHAVE dataset. More details are in Appendix J.
Evaluation metrics. We first assess different models for human motion generation using standard
metrics as introduced by (Guo et al., 2022), namely Fréchet Inception Distance (FID), R-Precision,
and Diversity. FID quantifies the discrepancy between the distributions of actual and generated
motions via a pretrained motion encoder. R-Precision gauges the relevance between generated
motions and their corresponding text prompts. Diversity evaluates the range of variation in the
generated motions. Additionally, we compute the Foot Skating Ratio to measure the proportion of
frames exhibiting foot skid over a threshold (2.5 cm) during ground contact (foot height < 5 cm).

To evaluate the effectiveness of HOIs generation, we report the Contact Distance metric, which
quantitatively measures the proximity between the ground-truth human contact joints and the object
contact points. Ideally, we should develop similar metrics, e.g, FID, to evaluate the stochastic HOI
generation. However, due to the limited data available in BEHAVE (Bhatnagar et al., 2022), training
a motion encoder would produce biased evaluation results. To mitigate this issue, we resort to user
studies to quantify the effectiveness of different models. Details will be introduced later.

4.2 COMPARISONS WITH EXISTING METHODS

Baselines. Our work introduces a novel 3D HOIs generation task not addressed by existing text-
to-motion methods, which focus exclusively on human motion generation without accounting for
human-object interactions. To compare with existing works, we mainly focus on evaluating human
motion generation. We then design different variants of our models for comparing 3D HOIs gen-
eration. Specifically, we adopt the prominent text-to-motion methods MDM (Tevet et al., 2023)
and PriorMDM* (Shafir et al., 2023) with the following settings. (a) MDM†: In this setup, we
finetune the original MDM model (Tevet et al., 2023) on the BEHAVE dataset (Bhatnagar et al.,
2022) without object motion. (b) MDM*: This variant involves adapting the input and output layers’
dimensions of the MDM model (Tevet et al., 2023) to accommodate the input of 3D HOI sequences.
This adjustment allows for the simultaneous learning of both human and object motions within a
singular, integrated model. (c) PriorMDM* (Shafir et al., 2023): We adapt the ComMDM architecture
proposed in Shafir et al. (2023), originally designed for two-person motion generation, to suit our
needs for HOIs synthesis by modifying one of its two branches for object motion generation. (d)
InterDiff (Xu et al., 2023): While InterDiff is not designed for text-driven synthesis of 3D HOI, we
added text conditioning to InterDiff as the baseline. More details are in Appendix C.

Quantitative Results. Table 1-left reports the quantitative results on BEHAVE dataset (Bhatnagar
et al., 2022). Compared with the baseline methods, our full method achieves the best performance.
Specifically, it achieves state-of-the-art results in both FID, R-precision, and Diversity, underscoring
its ability to generate high-quality human motions in the context of coherently interacting with objects.
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BEHAVE OMOMO
Method FID

↓
R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Pene
↓

Foot Skate
Ratio ↓

FID
↓

R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Pene
↓

Foot Skate
Ratio ↓

Real 0.04 0.86 12.48 - - - 0.57 0.63 9.98 - - -
MDM† 6.77 0.34 10.81 - - - 12.28 0.23 5.56 - - -
MDM* 4.25 0.38 11.23 0.448 0.52 0.190 10.37 0.21 6.04 0.768 0.41 0.191
PriorMDM* 4.54 0.30 10.03 0.416 0.57 0.270 9.87 0.25 6.34 0.523 0.38 0.344
InterDiff 8.58 0.26 10.75 0.506 0.42 0.218 14.27 0.17 5.69 0.906 0.32 0.239
Chois - - - - - - 9.69 0.24 7.33 0.432 0.37 0.165
Ours 1.62 0.46 12.02 0.347 0.51 0.182 8.76 0.31 8.13 0.326 0.39 0.141

Table 1: Quantitative results on the BEHAVE and OMOMO dataset. We compare our method
with baselines adapted from existing models. MDM†: fine-tune the original MDM (Tevet et al.,
2023) on the BEHAVE dataset without object motion. MDM*: adapting the input and output layers’
dimensions of the MDM to accommodate both human and object motions. PriorMDM*: We adapt
the ComMDM architecture proposed in Shafir et al. (2023). InterDiff: We add a CLIP encoder in Xu
et al. (2023) to support our task. The right arrow→ means closer to real data is better. Chois Li et al.
(2023a): We remove Initial States & Object waypoints to make a fair comparison.

Figure 5: Qualitative comparisons of our approach and baselines on BEHAVE dataset. The
bottom row, showcasing our method, demonstrates the generation of realistic 3D HOIs with plausible
contacts, particularly evident in columns 2 and 4. This contrasts with the baselines, which fail to
achieve a similar level of realism and contact plausibility in the interactions. As an additional visual
aid, the mesh color gradually darkens over time to represent progression. (Best viewed in color.)

The best Contact Distance also suggests that our approach can generate physically plausible HOIs,
capturing the intricate interplay interactions between humans and objects.

Table 1-right presents the quantitative results on the OMOMO dataset. We used the train/test split
of the OMOMO dataset to evaluate the model’s inference capacity on unseen objects, including the
small table, white chair, suitcase, and tripod. Our method consistently outperforms other baselines
by a considerable margin across all metrics. Notably, due to the distinctiveness of objects in the
training and testing sets, the results indicate the effectiveness of our approach in generalizing to
unseen objects, proving superior performance compared to other models.

User Study. The user study requires pairwise comparisons of our method with other baselines on
generated interaction quality. The results in Fig. 6 indicate a strong preference for our method: it is
favored over the baselines in 89.6% (Ours vs. MDM*), 73.8% (Ours vs. PriorMDM*) and 95.3%
(Ours vs. Interdiff). We provide more details in Appendix G
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BEHAVE OMOMO
Variants FID

↓
R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Foot Skate
Ratio ↓

FID
↓

R-precision
(Top-3) ↑

Diversity
→

Contact
Distance ↓

Foot Skate
Ratio ↓

Real 0.04 0.86 12.48 - - 0.57 0.63 9.98 - -
w/o Interaction Correction

Ours w/o CM 3.11 0.36 10.54 0.524 0.265 11.57 0.27 7.92 0.588 0.231
Ours w/o pretrain 2.98 0.39 11.21 0.402 0.158 10.38 0.29 7.82 0.412 0.167
Oursglobal 15.37 0.28 10.85 0.375 0.274 20.22 0.21 8.02 0.366 0.348
Ours 2.10 0.38 11.26 0.415 0.205 9.12 0.29 7.97 0.397 0.193

w/ Interaction Correction
Ours w/o Mo & CM 3.93 0.32 11.43 0.365 0.310 11.03 0.28 7.98 0.536 0.331
Ours joint 4.37 0.31 11.25 0.421 0.342 11.52 0.27 7.92 0.547 0.325
Ours w/o Gcon 2.02 0.37 11.97 0.417 0.196 9.23 0.28 8.03 0.332 0.144
Ours w/o Gsta 1.81 0.39 11.54 0.367 0.181 9.11 0.30 8.10 0.340 0.142
Ours w/o Gsmo 1.83 0.41 11.67 0.370 0.182 8.98 0.29 8.06 0.345 0.142
Ours (Full) 1.62 0.46 12.02 0.347 0.182 8.76 0.31 8.14 0.326 0.141

Table 2: Ablation studies of our model’s variants on the BEHAVE and OMOMO datasets.
The right arrow → means closer to real data is better. w/o CM: we remove the Communication
Module (CM) in the DBDM model. w/o pretrain: we train human MDM from scratch on BEAHVE
dataset. global: we adopt the global human pose representation proposed by Liang et al. (2024) for
both the pretraining of human MDM and the finetuning of DBDM. w/o Mo & CM: We exclusively
finetune the human MDM, while randomly initializing the object motion. Interaction correction is
then applied to optimize contact between the human and object. joint: We train a single diffusion
model that jointly generate human motion, object motion, and affordance. w/o Gcon/Gsta/Gsmo:
without contacting/static/smoothness goal function in interaction correction.

Qualitative Results. We showcase qualitative comparisons, rendered with SMPL (Loper et al., 2015)
shapes, between our approach and the baseline methods in Figure 5. It is observed that the generated
HOI motion by other baselines lacks smoothness and realism, where the object may float in the air
(e.g, the toolbox in Figure 5 (b)). Furthermore, these baseline methods struggle to accurately capture
the spatial relationships between humans and objects (e.g, the chair in Figure 5 (e)). In stark contrast,
our approach excels in creating visually appealing and realistic HOIs. Notably, it adeptly reflects the
intricate details outlined in text descriptions, capturing both the nature of the interactive actions and
the specific body parts involved (e.g, raising the trash bin with the right hand in Figure 5 (a)). For the
same object, our method can generate diverse HOIs using different body parts and contact points, as
shown in Figure 15 in Appendix.

4.3 ABLATION STUDIES

We conduct extensive ablation studies in Table 2 and Figure 7 to validate the effectiveness of different
components. We summarize key findings below.

Object MDM is helpful. In Table 2, we compare Ours w/o Mo & CM and ours (Full) to demonstrate
the importance of the Object MDM. In Ours w/o Mo & CM, we exclusively finetune the human
MDM, while randomly initializing the object motion. The Communication Module (CM) is also
ignored due to the removed object MDM. Interaction correction is then applied to optimize contact
between the human and object. The interaction correction with random initial object motion produces
worse results, demonstrating the importance of initial object motion from Object MDM.

DBDM with Communication Module (CM ) is critical. In Table 2, we compare Ours w/o CM
and ours to demonstrate the effectiveness of the Communication Module. When eliminating CM ,
the results drop substantially across all metrics, with a particularly significant decrease in Contact
Distance. The visual results (w/o CM ) in Table 7 further validate this point.

Leveraging the pre-trained Human motion prior can generate better human motions. We aim
to utilize the strong motion prior from the pre-trained human motion model to enhance the realism of
the generated motion. Table 2 (Ours w/o pretrain) reports the results of training human MDM from
scratch, without resuming the weights from the pre-trained MDM (Tevet et al., 2023). Comparing
Ours w/o pretrain and Ours demonstrates the effectiveness of leveraging the pre-trained MDM.

Interaction Correction makes better HOIs generation. In Table 2, we compare our full method
(Ours (full)) to a variant without interaction correction (Ours) to demonstrate the effectiveness of
interaction correction. The model with interaction correction consistently outperforms the variant
across all control accuracy metrics. As shown qualitatively in Figure 7, our full method produces more
realistic HOIs with better contact compared to the model without interaction correction. Furthermore,
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Figure 6: Perceptual User Study. Most partici-
pants prefer our method over the baselines.

Figure 7: Visual results of different variants of
our model in ablation studies.

all sub-functions in Interaction Correction contribute to the realistic HOI generation, as demonstrated
in Ours w/o Gcon, w/o Gsta, w/o Gsmo of Table 2.

Why Human MDM and Object MDM are needed separately? We can ablate this by comparing
Table 1 (MDM*) and Table 2 (Ours (w/o Interaction Correction). In MDM* we jointly learn
both human and object motion with a diffusion model. Our superior results demonstrate that
separately modeling human motion and object motion with a communication module can achieve
better results. A key advantage is that the human motion diffusion model (MDM) can fine-tune
a pre-trained MDM (Tevet et al., 2023), leveraging the extensive prior knowledge from the large-
scale HumanML3D dataset. In contrast, jointly predicting human and object motion with a single
transformer requires training from scratch (due to the change of the model architecture) on the much
smaller BEHAVE dataset, which results in poorer human motion results.

AP (%) ↑ L2 Dist ↓
Ours joint 53.67 0.384
Ours APDM 78.54 0.272

Table 3: APDM evaluation. The reported metrics
include Average Precision (AP) for predicted hu-
man contact probabilities and L2 Distance (Dist)
error for predicted object contact points.

Why not jointly generate motion and affor-
dance with one unified model? We attempt
to generate human motion, object motion, and
affordance jointly within the same model, as in-
dicated in the Table 2 (Oursjoint). Our joint pre-
diction concatenates affordance data with mo-
tion data along the channel dimension and ad-
justs the input and output dimensions of MDM
to generate motions and affordance simultane-
ously. Comparing Table 2 Oursjoint and Ours
(full) demonstrates that our modular design sig-
nificantly improves human motion quality, as evidenced by metrics such as FID, R-Precision, and
Foot Skate Ratio, as well as the interaction quality measured by Contact Distance. Table 3 further
validates that our modular design achieves more accurate affordance estimation, measured by AP and
L2 Distance. The improvement is attributed to the fact that affordance learning is highly dependent
on the geometry of 3D data and text semantics, rather than human and object motions. Therefore,
disentangling these elements enhances their respective performances.

5 CONCLUSION

In summary, we presented a novel approach HOI-Diff to generate realistic 3D HOIs driven by textual
prompts. By employing a modular design, we effectively decompose the complex task of HOI
synthesis into simpler sub-tasks, enhancing the coherence and realism of the generated motions.
Our HOI-Diff model successfully generates coarse dynamic human and object motions, while the
affordance prediction diffusion model adds precision in predicting contact areas. The integration of
estimated affordance data into classifier-guidance further ensures accurate human-object interactions.
The promising experimental results on our annotated BEHAVE dataset demonstrate the efficacy of
our approach in producing diverse and realistic HOIs.
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A ADDITIONAL DETAILS OF METHODOLOGY

In Sec. 3 of our main paper, we presented the foundational design of each key component in our
HOI-Diff pipeline. Here, we delve into an elaborate explanation of model architecture, learning
objectives and additional details associated with each crucial component.

A.1 DUAL-BRANCH DIFFUSION MODEL (DBDM)

The Communication Module (CM) in DBDM is based on the cross attention mechanism. Formally,

f̃h = MLP(Attn(fhWQ,f
oWK ,foWV )), (8)

f̃o = MLP(Attn(foWQ,f
hWK ,fhWV )), (9)

where MLP(·) denotes fully-connected layers, Attn(·) is the attention block (Vaswani et al., 2017),
and WQ,WK ,WV are learned projection matrices for query, key, and value, respectively.

The training objective of this full model is based on reconstruction loss

Lhoi = Et∼[1,T ]∥Mθ(xt, t, c)− x0∥22, (10)

where x0 is the ground truth of the HOI sequence.

A.2 AFFORDANCE PREDICTION DIFFUSION MODEL (APDM).

Model architecture. The affordance prediction diffusion model comprises eight Transformer layers
for the encoder with a PointNet++ (Qi et al., 2017) to encode the object’s point clouds. The training
objective of this diffusion model is also based on reconstruction loss

Laff = Et∼[1,T ]∥Aθ(yt, t,p,d)− y0∥22, (11)

where y0 is the ground-truth affordance data. p and d denote object point cloud and text description
(prompt), respectively. Aθ represents the affordance prediction diffusion model.

Inferring object state with GPT-3.5-turbo in APDM. To infer the state of an object, we directly
leverage the strong prior knowledge of large language models to derive the result. Specifically, we
utilize the GPT-3.5-turbo (OpenAI, 2023) API by inputting specific instructions, allowing it to infer
the result directly based on the input HOI text description. The prompt template for instruction is
shown in Figure 8.

A.3 AFFORDANCE-GUIDED INTERACTION CORRECTION.

During the inference stage, it’s found that the predicted object contact positions may occasionally be
inaccurately positioned, residing either inside or outside the object. To rectify this, we implement
post-processing steps that replace these predicted contact points, denoted as yo

0 , with their nearest
neighbors from the object’s point clouds. This adjustment aims to enhance the accuracy of the
updated contact points, aligning them more closely with their actual positions on the object’s surface.
However, employing these updated contact points directly for contact constraints, particularly in the
absence of detailed human shape information, introduces a new challenge. It can potentially lead
to penetration issues within the contact area while reconstructing the human mesh in the final stage.
To mitigate contact penetration, we adopt a method that recalculates points at a specified distance
outward, perpendicular to the normal, originating from the object’s contact points. This process
can formulated as: ỹ0o = ŷo

0 + vin ∗ d, where i ∈ {1, 2} indicates the ith object contact points, vin
denotes the normal vector at that point and d = 0.05 is a contact distance threshold.

As for smoothness term, we formulate it as

Gsmo =

L−1∑
l=1

∥xo
0(l + 1)− xo

0(l)∥
2
, (12)

where xo
0(l) is the predicted 6DoF pose of the object in the l-th frame.
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Figure 8: Prompt template for inferring object state.

Algorithm 1 Affordance-guided Interaction Correction
Require: Input c = (d,p) consisting of a textual description d and object point cloud p, HOI-Diff model Mθ, objective

function G(µh
t ,µ

o
t ,y0), and estimated affordance y0 = (yh

0 ,y
o
0,y

s
0).

1: xh
T ,x

o
T ← sample from N (0, I)

2: K = 1
3: for all t from T to 1 do
4: xh

0 ,x
o
0 ←Mθ(x

h
t ,x

o
t , t, c) # Get µh

t ,µ
o
t according to Eq.(2) with Σt

5: if t = 1 then
6: K = 100
7: end if
8: for all k from K to 1 do # Separately perturb
9: µh

t ← µh
t − τ1Σt∇µh

t
G(µh

t ,µ
o
t ,y0), µo

t ← µo
t − τ2Σt∇µo

t
G(µh

t ,µ
o
t ,y0)

10: end for
11: xh

t−1 ∼ N (µh
t ,Σt), xo

t−1 ∼ N (µo
t ,Σt)

12: end for
13: return xh

0 ,x
o
0

B IMPLEMENTATION DETAILS

Both our DBDM and APDM are built on the Transformer (Vaswani et al., 2017) architecture. Similar
to MDM (Tevet et al., 2023), we employ the CLIP model to encode text prompts, adhering to
a classifier-free generation process. Our models are trained using PyTorch (Paszke et al., 2019)
on 1 NVIDIA A5000 GPU. We set control strength of guidance as τ1 = 1, τ2 = 100, and Σt =
min(Σt, 0.01). Both the DBDM and APDM are trained on the same data for 20k steps.

Both the DBDM and APDM architectures of HOI-Diff are based on Transformers with 4 attention
heads, a latent dimension of 512, a dropout of 0.1, a feed-forward size of 1024, and the GeLU
activation (Hendrycks & Gimpel, 2016). The number of learned parameters for each model is stated
in Table 4.

Our training setting involves 20k iterations for the DBDM and 10k iterations for the APDM model.
These iterations utilize a batch size of 32 and employ the AdamW optimizer (Loshchilov & Hutter,
2017) with a learning rate set at 10−4. We use T=1000 and N=500 diffusion steps in DBDM and
APDM, respectively.
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C ADDITIONAL DETAILS OF BASELINES

• MDMfinetuned: We finetune MDM (Tevet et al., 2023) on BEHAVE dataset without
considering the object motion.

• MDM*: We extend the original feature dimensions of the input and output processing in
MDM (Tevet et al., 2023) from Dh to Dh +Do, enabling support for HOIs sequences. The
model is trained from scratch on BEHAVE dataset (Bhatnagar et al., 2022).

• PriorMDM*: The proposed approach for dual-person motion generation employs paired
fixed MDMs (Tevet et al., 2023) per individual to ensure uniformity within generated human
motion distributions. This design leverages a singular ComMDM to coordinate between the
two branches of fixed MDM instances, streamlining training and maintaining consistency
across generated motions. Given that both branches are based on MDM that pretrained on
human motion datasets, direct utilization of them for human-object interactions in our task
is infeasible. We maintain one branch dedicated to humans, leveraging pre-trained weights,
while adapting the input and output processing of another branch specifically for generating
object motion. Following this, we fine-tune the human MDM branch while initiating the
learning of object motion from scratch within the object branch. Eventually, we integrate
ComMDM to facilitate communication and coordination between these distinct branches
handling human and object interactions.

• InterDiff: InterDiff (Xu et al., 2023) is originally designed for a prediction task rather than
text-driven HOIs generation. To tailor it to our task, we replace its Transformer encoder
with a CLIP encoder and modify its feature dimensions of the input and output layers.

• Chois: Chois (Li et al., 2023a) is a work closely related to ours. For a fair comparison, we
remove the initial states of the human and object, exclude object waypoints as conditions,
and adopt the same motion representation as input.

To ensure fair comparisons, all the above baselines as well as our own models are all trained on
BEHAVE and OMOMO datasets for 20k steps.

D ADDITIONAL DETAILS OF EVALUATION METRICS

For detailed information regarding metrics employed in human motion generation, including FID,
R-Precision, and Diversity, we refer readers to Tevet et al. (2023); Guo et al. (2022) for comprehensive
understanding.

Contact Distance. Expanding on the concept of Contact Distance, we utilize the chamfer distance
metric to quantify the closeness between human body joints and the object surface. This computation
leverages ground-truth affordance data that includes human contact labels and object contact points,

ContactDistance =
1

L

L∑
l

CD(x̂h
l , p̂l), (13)

where x̂h
l represents two human contact joints at the l-th frame, indexed according to ground-truth

contact labels. Additionally, p̂l denotes two object contact points derived from the object motion xo
l

at frame l, also indexed based on ground-truth information. CD denotes the chamfer distance.

Penetration Score. We followed the Li et al. (2023a) to compute the penetration score (Pene), each

vertex of the body (Vi) is queried against the precomputed Signed Distance Field (SDF) of the object.
This process yields a corresponding distance value for each vertex. The penetration score is then
formalized as:

Pene =
1

n

n∑
i=1

|min(di, 0)|, (14)

measured in centimeters (cm).
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Figure 9: Effect of different total numbers of perturbations in the whole denoising process. (a)
Perturb one time in each denoising step (in total T = 1000). (b) Perturb one time in first T − 1
denoising steps, and repeatedly perturb 10 times in the final denoising step. (c) Perturb one time in
first T − 1 denoising steps, and repeatedly perturb 100 times in the final denoising step.

Model DBDM APDM
Parameters (·106) 8.82 38.92

Table 4: Model Parameters. The number of
learned parameters of our two core architectures.

Method MDM* PriorMDM* Ours (Full)
Time (s) 32.3 38.6 118.0

Component APDM DBDM Interaction Correction
Time (s) 24.2 46.4 47.4

Table 5: Inference Time (on NVIDIA A5000
GPU). We report the inference time for baselines,
our full method, and its key components.

E INFERENCE TIME

In Table 5, we provide the inference times for both baselines and our full method, including its
key components. All measurements were conducted using an NVIDIA A5000 GPU. Training an
additional model for affordance information and using classifier guidance for interaction correction
do contribute to increased inference costs. However, despite the longer inference time, our complete
method notably enhances the accuracy of 3D HOIs generation.

Params (M) FID ↓ R-precision (Top-3) ↑
MDM∗ 49.85 6.98 0.36
Ours (Full) 47.74 1.62 0.46

Table 6: With comparable model size, the performance results of MDM∗ and Ours (Full).

F ADDITIONAL ABLATION STUDIES

Different perturbing times in classifier guidance. As discussed in Sec. 3.4, in the later stage of
classifier guidance, diffusion models tend to strongly attenuate the introduced signals. Therefore, we

4



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 10: Effect of different control strengths for classifier guidance. (a) We use equal strengths
of τ1 = 1, τ2 = 1 to perturb the predicted mean of human motion and object motion, respectively.
(b) We use different strengths of τ1 = 1, τ2 = 100 for the perturbation. We can see that different
strengths work better.

iteratively perturb the predicted mean of motion for K times at the final denoising step. In Figure 9,
we present the ablation results, illustrating the impact of different numbers of perturbations. Notably,
we observe that employing 100 perturbations leads to re-convergence and yields the desired results.

Different guidance strength. As detailed in Sec. 3.4, we employ distinct control strengths for
classifier guidance, considering the varying feature densities in predicted human and object motion.
Rather than employing equal control strengths, we opt to assign a higher control strength to object
motion, allowing it to closely align with human contact joints, as illustrated in Figure 10.

Different model with comparable model size. Although our method involves a slightly larger
number of model parameters, our model is specifically designed for HOI generation. As seen in the
Table 6, if we attempt to scale MDM* to the same model size, its performance remains subpar.

G USER STUDY

For each method, we select 15 prompts from the BEHAVE dataset and 10 prompts from the OMOMO
dataset, covering various interaction types and object items. We sample twice with each prompt to
gather a total of 50 results. 40 participants are asked to choose their most preferred generation results
from these samples. This user study requires pairwise comparisons of our method with other baseline
on generated interaction quality, as shown in Figure 11.

H ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative results showcasing the model’s performance evaluated
on the OMOMO dataset, and the effectiveness of APDM.

Qualitative results on OMOMO dataset. We present additional qualitative results on the OMOMO
dataset, rendered with SMPL (Loper et al., 2015) shapes, as shown in Figure 12. It is evident that
our method can generalizes effectively to unseen objects and produce realistic 3D human-object
interactions.

Qualitative results of APDM. To verify the accuracy of estimated contact points on object surface,
we provide additional visual results in Figure 14. It can be seen that our method can predict realistic
and practical contact points based on text descriptions. With APDM, we even can generate different
interactions with the same object based on the input description, as shown in the Figure 15.
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Figure 11: An example question for our text-to-hoi user study.

Figure 12: Additional qualitative evaluation on OMOMO dataset. Given object geometry and text
description, our method can generate high-quality human-object interactions even for the unseen
objects (tripod, smalltable, suitcase).

Generalization capability. To verify the model’s generalization capability, except of unseen object

test on OMOMO dataset, we also downloaded several objects from Sketchfab3, adjusted them to a
reasonable scale, and used them as inputs. As shown in Figure 13, our model successfully establishes
reasonable HOI contact with these previously unseen objects.

I ANNOTATION FOR BEHAVE DATASET

Text Annotating Process. Initially, we manually annotate the interaction types and the specific
human body parts involved, delineating actions like “lift” associated with the “left hand” or “hold”
involving “two hands”. Subsequently, to generate complete sentences, we leverage the capabilities of
GPT-3.5 to assist in formulating the entirety of the description.

Examples of Annotated Textual Descriptions. In Table 7, we showcase a selection of our annotated
textual descriptions for the BEHAVE dataset (Bhatnagar et al., 2022).

Analysis of Annotated Textual Descriptions. All text descriptions encompass 36 distinct interaction
verbs associated with 20 different objects. Figure 16 illustrates the frequency of each verb, indicating
their respective occurrences.

Affordance Data. Our affordance data includes 8-dimensional human contact labels and object
contact points. We employ chamfer distance to measure the distance between all human body joints
and object surface points. Following a predefined distance threshold γ = 0.12, we identify the 8

3https://sketchfab.com/
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Figure 13: Additional qualitative evaluation on unseen objects.

Object Textual Descriptions

backpack
A person is carrying the backpack in front.
The person is raising a backpack with his

right hand.
The person at the front presently has control

over the backpack.

chairwood A person is using the chairwood for sitting.

(wooden chair) The person is propelling the chairwood on the
ground.

Someone is hoisting a chairwood by his left
hand.

tablesquare

A person is lifting the tablesquare, utilizing
his left hand.

(square table) Someone is clutching onto a tablesquare from
the front.

An individual is moving the tablesquare back
and forth.

boxlong

A person is gripping the boxlong from the
front.

(long box) A person is raising the boxlong using his left
hand.

Someone hoists the boxlong with his left
hand.

toolbox
Someone is grasping the toolbox upfront.
The person has a firm hold on the toolbox

with his right hand.
A person is gripping the toolbox with his left

hand.

yogaball

A person is shifting a yogaball back and forth
on the floor using his hands.

The person is occupying a yogaball.
A person is employing an yogaball to engage

in an upper body game.

Table 7: Examples of our annotated textual descriptions for the BEHAVE dataset rephrased by
GPT-3.5 (OpenAI, 2023).

contact points on the object surface corresponding to the 8 primary human body joints. Subsequently,
we derive the human contact labels by encoding the indexes of contact joints into an 8-dimensional
vector represented by binary values.

J ADDITIONAL DETAILS OF OMOMO DATASET

The OMOMO dataset comprises data captured for a total of 15 objects. Adhering to their official
split strategy depicted in Li et al. (2023b)(Figure 5), we allocate 10 objects for training and 5 objects
for testing. This split allows us to further evaluate the model’s generalization ability to new objects.
Notably, the OMOMO dataset itself provides text annotation, and we use GPT-3.5 to add subjects
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Figure 14: Visual results of estimated contact points. Our APDM, trained on the BEHAVE dataset,
can accurately estimating contact positions for objects based on textual descriptions. Furthermore, it
showcases the capability to generalize to unseen objects in the OMOMO dataset, as demonstrated in
the last row.

to it and embellish it appropriately. For affordance data, we preprocess it the same way we handle
BEHAVE.
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Figure 15: Leveraging the power of the APDM module, our method can generate diverse HOIs for
the same object using different contacting body parts and contact points.

Figure 16: Analysis of word frequency We count the occurrences of each interaction verb from all
text descriptions to illustrate their respective frequencies.

K COMMON QUESTIONS

Why use Skeletal Pose Representation rather than SMPL parameters? Most state-of-the-
art text-to-motion methods adopt the skeletal pose representation proposed by Guo et al. (2022),
demonstrating excellent performance and stability. While some works (Azadi et al., 2023) argue
that SMPL parameters (Loper et al., 2015) contains shape and global information, it does not
generate as smooth motions as skeletal-based approaches. Consequently, we adopt the skeletal pose
representation and aim to leverage strong pose priors from the pretrained text-to-motion model (Tevet
et al., 2023) to ensure the authenticity of generated human motion.

Can we handle multi-phase interactions between humans and objects? Due to the lack of
fine-grained textural descriptions in the current 3D HOI dataset, we primarily consider only one
interaction phase. However, we have found that an LLM can still reason well for multiple phases
given a template such as: You will be given a sentence that describes an interaction between a person
and an object across multiple phases. Your task is to divide the interaction into phases based on the
state of the object and determine the state for each phase. If the object is being moved by the person
during a phase, output the number 0. If the object remains stationary during a phase, output the
number 1.

For example, given the text description: The box is on the ground. A person is picking up the box and
holding it forward, then putting the box towards the table. The box is on the table" The result from
GPT-3.5-turbo: "Phase 1: The box is on the ground - State: 1 (stationary); Phase 2: The person is
picking up the box and holding it forward - State: 0 (moved); Phase 3: The person is putting the box

9
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towards the table - State: 0 (moved); Phase 4: The box is on the table - State: 1 (stationary). We will
address the generation of multiple phases of 3D HOI in future work.

Can we generate hand motion with articulated fingers? The BEHAVE and OMOMO datasets
do not capture and provide raw hand parameters, despite utilizing SMPLH and SMPLX models to
fit human body meshes for rendering. Consequently, in this paper, we focus solely on whole-body
human motion, excluding articulated hand and finger movements.

Why do we use large language models (LLMs) to predict object state based on the input
description? We aim to leverage LLMs for inferring object states, and our results demonstrate that
they perform efficiently and effectively. As shown in the Table 8, we evaluated the performance of
object state prediction with GPT-3.5-turbo (OpenAI, 2023) and obtained an average precision of
95.6% on the validation set, with an average response time of 0.518 seconds. The results suggest that
GPT-3.5-turbo is sufficiently accurate without adding significant overhead. We also evaluated the
prediction performance using other LLMs, including Gemini-1.5-Pro-Exp-0801 (Reid et al., 2024)
(99.4%, 0.259s), Gemma-2-27B (Team et al., 2024) (98.6%, 0.522s), and LLaMA-2-13B (Touvron
et al., 2023) (94.4%, 0.521s), the latter two being publicly available.

Acc (%) ↑ Time (s) ↓
GPT-3.5 95.6 0.518
Gemini-1.5-Pro-Exp-0801 99.4 0.259
Gemma-2-27B 98.6 0.522
LLaMA-2-13B 99.4 0.259
APDM + MLP 79.5 2.420

Table 8: LLMs’ inference accuracy (Acc) and av-
erage inference time (Time) on object state predic-
tion.

To further validate the effectiveness of the LLM
module, we modified the APDM module by
adding an MLP head to predict the object status.
The newly added MLP takes in the features con-
sisting of object geometry information and CLIP
embeddings. We used an MSE loss. We got aver-
age precision 79.5% and average time 2.42s for
this design on the validation set, which is signif-
icantly worse than the results of GPT-3.5-turbo
(95.6%, 0.518s), Gemma-2-27b (98.6%, 0.522s),
Gemini-1.5-Pro-Exp-0801 (99.4%, 0.259s) and
LLaMA-2-13B (4.4%, 0.521s).

In future work, we believe the LLM can play a more important role in 3D HOI, e.g. providing
high-level instruction for more complex human-object interactions, and our initial use of the LLM
offers insights into its potential applications and how it can be effectively utilized.

L SUPPLEMENTARY VIDEO

Beyond the qualitative results presented in the main paper, our supplementary materials offer compre-
hensive demos that provide an in-depth visualization of our task, further showcasing the effectiveness
of our approach.

In these demonstrations, we highlight the better performance of our method, HOI-Diff, in producing
diverse and realistic 3D HOIs while maintaining adherence to physical validity. Notably, the visual-
izations show that HOI-Diff consistently generates smooth, vivid interactions, accurately capturing
human-object contacts.

Additionally, we present the visual ablation results and emphasize the significance and effectiveness
of our affordance-guided interaction correction, underscoring its substantial impact on improving the
overall performance and quality of the generated 3D HOIs.

M LIMITATIONS

The existing datasets for 3D HOIs are limited in terms of action and motion diversity, posing a
challenge for synthesizing long-term interactions in our task. Furthermore, the effectiveness of our
model’s interaction correction component is contingent on the precision of affordance estimation.
Despite simplifying this task, achieving accurate affordance estimation remains a significant challenge,
impacting the overall performance of our model. A promising direction for future research involves
integrating a sophisticated affordance model pre-trained on an extensive 3D object dataset, along
with text prompts. Such an advancement could significantly enhance the realism and accuracy of
human-object contact in our model, leading to more natural and precise HOIs synthesis.
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N SOCIAL IMPACTS

On the positive side, it may offers the research community valuable insights into understanding
human behaviors. On the negative side, it remains uncertain whether individuals can be identified
solely based on their poses and movements. However, compared to traditional input images of people,
this method poses a lower risk of invading personal privacy.
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