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APPENDIX

A ANONYMOUS CODE

Our source code can be found https://anonymous.4open.science/r/BENO-3D53,
which is an anonymous link for reproducibility.

B DERIVATION OF THE GREEN’S FUNCTION METHOD.

We first review the definition of the Green’s function, which is G : ⌦⇥⌦ ! R, which is the solution
of the corresponding equation as follows:
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Since u and G are arbitrary, we can change the position to obtain that,
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Subtract Eq. 12 from Eq. 11, we have,
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Substitute Eq. 13 into Eq. 10, we can have that,
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Namely, we have that,
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When considering the Dirichlet boundary conditions, we can simplify the solution in the following
form:
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C NUMERICAL SOLUTION OF THE ELLIPTIC PDE

The strong solution to equation 1 can be expressed in terms of the Green’s function (see Section 3.1
and Appendix B for discussion). However, obtaining a closed form expression using the Green’s
function is typically not possible, except for some limited canonical domain shapes. In the present
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paper, we obtain the solution to equation 1 in arbitrary two dimensional domains ⌦ using the finite
volume method (Hirsch, 2007). This numerical approach relies on discretizing the domain ⌦ using
cells. The surfaces of these cells at the boundary, which are called cell interfaces, are used to specify
the given boundary condition. The solution of equation 1 is then numerically approximated over N
(e.g., for 32⇥32 cells, N = 1024) computational cells by solving,

Pû = f , (17)

where P 2 RN⇥N is an N ⇥ N matrix which denotes a second-order discretization of the r2

operator incorporating the boundary conditions, û 2 RN⇥1 is a vector of values at the cell centers,
and f 2 RN⇥1 is a vector with values f(·, ·) at cell centers used to discretize the domain ⌦. The matrix
P resulting from this approach is positive definite and diagonally dominant, making it convenient
to solve Equation 17 with a matrix-free iterative approach such as the Gauss-Seidel method (Saad,
2003).

D DETAILS OF DATASETS

In this paper, we have established a comprehensive dataset for solving elliptic PDEs to facilitate
various research endeavors. The elliptic PDEs solver is performed as follows. (1) A square domain
is set with Nc number of cells in both x and y directions (note N = N

2
c ). The number of corners

is set, however, the size of the corners is chosen randomly. (2) The source term f(x, y) is assigned
assuming a variety of basis functions, including sinusoidal, exponential, logarithmic, and polynomial
distributions. (3) The values of the boundary conditions g(x, y) are set using continuous periodic
functions with a uniformly distributed wavelength 2 [1, 5]. (4) The Gauss-Seidel method (Saad,
2003) is used to iteratively obtain the solution u(x, y). Each Poisson run generates two files: one
for the interior cells with discrete values of x, y, f , and u and the other for the boundary interfaces
with discrete values of x, y, and g. The simulations are performed on the Sherlock cluster at Stanford
University.

E MORE IMPLEMENTATION DETAILS

Our normalization process is performed using the z-score method (Patro & Sahu, 2015), where the
mean and standard deviation are calculated from the training set. This ensures that all features are
normalized based on the mean and variance of the training data. We also apply the CosineAnnealing-
WarmRestarts scheduler (Loshchilov & Hutter, 2016) during the training. Each experiment is trained
for 1000 epochs, and validation is performed after each epoch. For the final evaluation, we select the
model parameters from the epoch with the lowest validation loss. Consistency is maintained across
all experiments by utilizing the same random seed.

All our experiments are evaluated on relative L2 error, abbreviated as L2, and mean absolute error
(MAE), which are two commonly used metrics for evaluating the performance of models or algorithms.
The relative L2 error, also known as the normalized L2 error, measures the difference between the
predicted values and the ground truth values, normalized by the magnitude of the ground truth values.
It is typically calculated as the L2 norm of the difference between the predicted and ground truth
values, divided by the L2 norm of the ground truth values. On the other hand, MAE measures the
average absolute difference between the predicted values and the ground truth values. It is calculated
by taking the mean of the absolute differences between each predicted value and its corresponding
ground truth value.

F DETAILS OF BASELINES

Our proposed BENO is compared with a range of competing baselines as follows:

• GKN (Li et al., 2020b) develops an approximation method for mapping in infinite-dimensional
spaces by combining non-linear activation functions with a set of integral operators. The integration
of kernels is achieved through message passing on graph networks. For fair comparison, we
re-implement it by adding the boundary nodes to the graph. To better distinguish between nodes
belonging to the interior and those belonging to the boundary, we have also added an additional
column of one-hot encoding to the nodes for differentiation.
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• FNO (Li et al., 2020a) introduces a novel approach that directly learns the mapping from functional
parametric dependencies to the solution. The method implements a series of layers computing
global convolution operators with the fast Fourier transform (FFT) followed by mixing weights in
the frequency domain and inverse Fourier transform, enabling an architecture that is both expressive
and computationally efficient. For fair comparison, we re-implement it by fixing the value of
out-domain nodes with a large number, and then implement the global operation.

• GNN-PDE (Lötzsch et al., 2022) represents the pioneering effort in training neural networks
on simulated data generated by a finite element solver, encompassing various boundary shapes.
It evaluates the generalization capability of the trained operator across previously unobserved
scenarios by designing a versatile solution operator using spectral graph convolutions. For fair
comparison, we re-implement it by adding the boundary nodes to the graph. To better distinguish
between nodes belonging to the interior and those belonging to the boundary, we have also added
an additional column of one-hot encoding to the nodes for differentiation.

• MP-PDE (Brandstetter et al., 2022) presents a groundbreaking solver that utilizes neural message
passing for all its components. This approach replaces traditionally heuristic-designed elements in
the computation graph with neural function approximators that are optimized through backpropaga-
tion. For fair comparison, we re-implement it by adding the boundary nodes to the graph. To better
distinguish between nodes belonging to the interior and those belonging to the boundary, we have
also added an additional column of one-hot encoding to the nodes for differentiation.

G DIFFERENCES WITH OTHER NEURAL OPERATORS

In this section, we compare our method, BENO, with existing approaches in terms of several key
aspects according to Table 1.

• PDE-agnostic prediction on new initial conditions: GKN, FNO, GNN-PDE, MP-PDE, and BENO
are all capable of predicting new initial conditions.

• Train/Test space grid independence: GKN, GNN-PDE, and BENO exhibit independence between
the training and testing spaces, while FNO and MP-PDE lack this independence.

• Evaluation at unobserved spatial locations: GKN, FNO, and BENO are capable of evaluating the
PDE at locations that are not observed during training, while GNN-PDE and MP-PDE do not
possess this capability.

• Free-form spatial domain for boundary shape: Only GNN-PDE and BENO are capable of dealing
with arbitrary boundary shapes, while GKN and MP-PDE are limited in this aspect.

• Inhomogeneous boundary condition value: Only our method, BENO, has the ability to handle
inhomogeneous boundary conditions, while GKN, FNO, GNN-PDE, and MP-PDE are unable to
handle them.

In summary, compared to the existing methods, our method, BENO, possesses several distinct
advantages. It can predict new initial conditions regardless of the specific PDE, maintains grid
independence between training and testing spaces, allows evaluation at unobserved spatial locations,
handles free-form spatial domains for boundary shapes, and accommodates inhomogeneous boundary
condition values. These capabilities make BENO a versatile and powerful approach for solving
time-independent elliptic PDEs.

H ALGORITHM

The whole learning algorithm of BENO is summarized in Algorithm 1.

I MORE EXPERIMENTAL RESULTS

I.1 SENSITIVITY ANALYSIS

In this section, we discuss the process of determining the optimal values for the number of MLP
layers (M ) and the number of Transformer layers (L) using grid search, a systematic approach for
hyper-parameter tuning.
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Algorithm 1 Learning Algorithm of the proposed BENO
Input: The forcing term f , the inhomogeneous boundary condition g on @⌦ .
Output: The solution prediction û of the elliptic PDEs.

1: Construct the graph G = {(V, E)} following Section 3.2;
2: Initialize the parameters in our model;

# Training procedure
3: while not convergence do
4: for each training input do
5: Set the boundary value of one branch to zero following Eq. 16;
6: Set the source term of interior in the other branch to zero;
7: Feed the node/edge attributes to encoder following Section 3.3.1.;
8: Feed the boundary to the Transformer for boundary features B;
9: Add B to the message passing processor following Eq. 8;

10: Feed output features into a decoder to get the predictions û;
11: Calculate the loss using MSE;
12: Update the parameters in BENO using back propagation;
13: end for
14: end while

Grid search involves defining a parameter grid consisting of different combinations of M and L

values. We specified M in the range of [2, 3, 4] and L in the range of [1, 2, 3] to explore a diverse
set of configurations. We build multiple models, each with a different combination of M and L

values, and train them on 4-Corners training dataset. The models are then evaluated using appropriate
evaluation metrics on a separate validation set. The evaluation results allowed us to compare the
performance of models across different parameter combinations.

After evaluating the models, we select the combination of M and L that yield the best performance
according to our chosen evaluation metric. This combination became our final choice for M and
L, representing the optimal configuration for our model. To ensure the reliability of our chosen
parameters, we validate them on an independent validation set. This step confirmed that the model’s
performance remained consistent and reliable.

The grid search process provided a systematic and effective approach to determine the optimal values
for M = 3 and L = 1, allowing us to fine-tune our model and achieve improved performance.

I.2 MORE EXPERIMENTAL RESULTS

We have successfully validated our method’s performance on the 4-Corners and mixed corners
datasets during training and testing on other shape datasets, yielding favorable results. In this section,
we will further supplement the evaluation by training on the No Corner dataset and testing on other
shape datasets. Since the No Corner dataset does not include any corner scenarios, the remaining
datasets present completely unseen scenarios for it, thereby providing a stronger test of the model’s
generalization performance.

Table 7 summarizes the results of training on 900 No-Corner samples and tested on all datasets.
We can infer similar conclusions to those in the experimental section above. Our BENO performs
well in learning on No-Corner cases, yielding more accurate solutions. Additionally, our method
demonstrates stronger generalization ability, as it can obtain good solutions even in cases where
corners of any shape have not been encountered.

I.3 CONVERGENCE ANALYSIS

We draw the training curve of the train L2 norm and test L2 norm of three models trained on the
4-Corners dataset with inhomogeneous boundary value in Figure 5. It is obviously that although
two baselines also contains the boundary information, they fail to learn the elliptic PDEs with non-
decreasing convergence curves. However, our proposed BENO is capable of successfully learning
complex boundary conditions with the use of the CosineAnnealingWarmRestarts scheduler, converges
to a satisfactory result.
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Table 7: Performances of our proposed BENO and the compared baselines, which are trained on 900
No-Corner samples and tested on 5 datasets under relative L2 Norm and MAE separately. The unit of
the MAE metric is 1⇥ 10�3.

Train on No-Corner dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0147±
0.1128

3.3790±
0.8922

1.0179±
0.1212

3.5419±
0.8643

1.0047±
0.1166

3.4530±
0.9514

1.0072±
0.1098

3.2295±
0.8520

1.0028±
0.1060

3.6899±
0.8987

FNO 0.9714±
0.0128

3.3210±
0.6546

0.9745±
0.0175

3.3187±
0.6639

0.9733±
0.0137

3.3319±
0.6298

0.9789±
0.0210

3.3511±
0.6109

0.9755±
0.0121

3.3427±
0.6981

GNN-PDE 0.9988±
0.0051

3.1182±
0.8543

0.9997±
0.0054

3.2748±
0.8902

0.9994±
0.0054

3.3475±
0.8533

1.0002±
0.0056

3.1447±
0.8559

0.9998±
0.0056

3.7518±
1.0314

MP-PDE 1.0029±
0.0808

3.1005±
0.8158

1.0049±
0.0891

3.2488±
0.7941

0.9986±
0.0822

3.2902±
0.8651

0.9855±
0.0769

3.0356±
0.8133

0.9917±
0.07670

3.6648±
0.8949

BENO (ours) 0.6870±
0.2038

1.8830±
0.6083

0.6036±
0.1940

1.7293±
0.5844

0.5760±
0.1998

1.6703±
0.6605

0.6192±
0.2259

1.6749±
0.5773

0.4093±
0.1873

1.2505±
0.5752

Figure 5: Visualization of the convergence curve of our BENO and two baselines.

J LIMITATIONS & BROADER IMPACTS

Limitations. Although this paper primarily focuses on Dirichlet boundary conditions, it is essential
to acknowledge that there are other types of boundary treatments, including Neumann and Robin
boundary conditions. While the framework presented in this study may not directly address these
alternative boundary conditions, it still retains its usefulness. Future research should explore the
extension of the developed framework to incorporate these different boundary treatments, allowing
for a more comprehensive and versatile solution for a broader range of practical problems.

Broader Impact. The development of a fast, efficient, and accurate neural network for solving
PDEs holds significant potential for numerous physics and engineering disciplines. The impact of
such advancements cannot be understated. By providing a more streamlined and computationally
efficient approach, this research can revolutionize fields such as computational fluid dynamics, solid
mechanics, electromagnetics, and many others. The ability to solve PDEs more efficiently opens up
new possibilities for modeling and simulating complex physical systems, leading to improved designs,
optimizations, and decision-making processes. The resulting advancements can have far-reaching
implications, including the development of more efficient and sustainable technologies, enhanced
understanding of natural phenomena, and improved safety and reliability in engineering applications.
It is crucial to continue exploring and refining these neural network-based approaches to maximize
their potential impact across a wide range of scientific and engineering disciplines.
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MP-PDE Ours Ground truth MP-PDE Ours

Figure 6: Visualization of prediction and prediction error on 64 ⇥ 64 grid resolution.

MP-PDE Ours Ground truth MP-PDE Ours

Figure 7: Visualization of prediction and prediction error on data with zero boundary value.

K MORE VISUALIZATION ANALYSIS

In this section, we visualize the experimental results on a broader range of experiments. Figure 6
presents the comparison of solution prediction on 64 ⇥ 64 grid resolution. Figure 7 presents the
comparison of solution prediction on data with zero boundary value. Figure 8 presents the qualitative
results of training on the 4-Corners dataset and testing on data with various other shapes.
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MP-PDE
Output Predictions

Ground TruthOurs MP-PDE Ours
Prediction Error

Figure 8: Visualization of prediction and prediction error from 3/2/1/No-Corner dataset, and each has
two samples. We render the solution u of the baseline MP-PDE, our BENO and the ground truth in
⌦.
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Table 8: Performances of our proposed BENO and the compared baselines under Neumann boundary
condition, which are trained on 900 4-corners samples and tested on 5 datasets under relative L2
norm and MAE separately. The unit of the MAE metric is 1⇥ 10�3. Bold fonts indicate the best.

Train on 4-Corners dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0118±
0.1031

3.7105±
1.0699

1.0046±
0.1284

3.6013±
1.2937

1.0301±
0.1417

3.3880±
1.0127

1.0025±
0.1326

3.3675±
0.9112

0.9827±
0.1270

3.5691±
1.2194

FNO 1.0547±
0.1643

4.0316±
0.8953

1.0587±
0.1761

4.0219±
0.8210

1.0519±
0.1822

4.0308±
0.8369

1.0533±
0.1782

4.0276±
0.8554

1.0549±
0.1842

4.0417±
0.8063

GNN-PDE 1.0105±
0.0898

2.3685±
0.6933

0.9907±
0.1054

2.5474±
0.8863

1.0132±
0.1208

2.7348±
0.8461

0.9821±
0.1225

2.9824±
0.8106

0.9711±
0.1071

3.4930±
1.1110

MP-PDE 1.0070±
0.0813

2.3595±
0.6941

0.9895±
0.0973

2.5480±
0.8955

1.0134±
0.1120

2.7345±
0.8393

0.9782±
0.1240

2.9679±
0.7958

0.9670±
0.1164

3.4807±
1.1143

BENO (ours) 0.3568±
0.0988

0.8311±
0.2864

0.4201±
0.1170

1.0814±
0.3938

0.5020±
0.1648

1.3918±
0.5454

0.5074±
0.1422

1.5676±
0.4815

0.5221±
0.1474

1.8649±
0.5472

Table 9: Performances of our proposed BENO and the compared baselines under Neumann boundary
condition, which are trained on 900 mixed samples (180 samples each from 5 datasets) and tested
on 5 datasets under relative L2 norm and MAE separately. The unit of the MAE metric is 1⇥ 10�3.
Bold fonts indicate the best.

Train on 4-Corners dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

GKN 1.0578±
0.1859

3.8992±
1.2048

1.0399±
0.2116

3.6554±
1.2172

1.0975±
0.1912

3.5980±
0.9631

1.0649±
0.3096

3.6030±
0.9310

1.0373±
0.2210

3.7000±
1.0831

FNO 1.0426±
0.0917

3.5817±
0.8212

1.0408±
0.0925

3.6187±
0.8338

1.0548±
0.1239

3.6338±
0.8042

1.0592±
0.1065

3.6531±
0.8448

1.0575±
0.1019

3.6498±
0.8239

GNN-PDE 0.9999±
0.0008

2.3648±
0.7703

1.0000±
0.0010

2.6404±
0.9250

0.9999±
0.0010

2.7425±
0.9808

1.0000±
0.0010

3.1458±
0.9672

1.0001±
0.0010

3.7167±
1.3370

MP-PDE 1.0245±
0.1048

2.3973±
0.7015

0.9989±
0.1277

2.5510±
0.8717

1.0277±
0.1399

2.7722±
0.8091

0.9940±
0.1543

2.9998±
0.7781

0.9731±
0.1414

3.4930±
1.0867

BENO (ours) 0.4237±
0.1237

1.0114±
0.4165

0.3970±
0.1277

1.0378±
0.4221

0.3931±
0.1347

1.0881±
0.3993

0.3387±
0.1279

1.0520±
0.4253

0.3344±
0.1171

1.2261±
0.4467

L EXPERIMENTS ON NEUMANN BOUNDARY

In this section, we consider to solve the Poisson equation with Neumann boundary conditions using
our proposed BENO. In the context of Neumann boundary conditions, the equation takes the form:

r2
u(x, y) = f(x, y), 8(x, y) 2 ⌦,

@u(x, y)

@n
= g(x, y), 8(x, y) 2 @⌦,

(18)

where f represents the source term, n typically represents the unit normal vector perpendicular
to the boundary surface, and g specifies the prescribed rate of change normal to the boundary
@⌦. The challenge in solving Poisson’s equation with Neumann boundary conditions lies in the
proper treatment of the boundary derivative term, which requires sophisticated numerical schemes to
approximate accurately.

Specifically, the model is trained exclusively on a dataset consisting of 900 4-corners samples. The
robustness and generalizability of our approach were then evaluated on 5 different test datasets, which
represent various boundary configurations encountered in practical applications. Each dataset is
constructed to challenge the model with different boundary complexities.

The results are shown in Table 8 and Table 9. Our proposed BENO still demonstrates superior
performance across all test datasets in comparison to the baselines, including GNN-PDE, and MP-
PDE models. Particularly, BENO achieves the lowest MAE and relative L2 norm scores in the
majority of the scenarios. In Table 8, when tested on the 4-Corners dataset, BENO exhibites an
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Branch1
Output

Branch2
Output

Figure 9: Visualization of the output from 2 GNN branches.

Table 10: Performances of our proposed BENO and the compared baselines on Darcy flow, which
are trained on 900 4-corners samples and tested on 5 datasets under relative L2 norm and MAE
separately. The unit of the MAE metric is 1⇥ 10�3. Bold fonts indicate the best.

Train on 4-Corners dataset

Test set 4-Corners 3-Corners 2-Corners 1-Corner No-Corner

Metric L2 MAE L2 MAE L2 MAE L2 MAE L2 MAE

MP-PDE 0.5802±
0.1840

0.3269±
0.2085

0.5332±
0.1742

0.4652±
0.2999

0.6197±
0.1709

0.6307±
0.3282

0.6906±
0.1432

0.8469±
0.4087

0.7406±
0.1271

1.0906±
0.3949

BENO (ours) 0.2431±
0.0895

0.1664±
0.0773

0.2542±
0.1252

0.2150±
0.1270

0.2672±
0.1497

0.2585±
0.1313

0.2466±
0.1405

0.3091±
0.2350

0.2366±
0.1104

0.3591±
0.2116

L2 norm of 0.1091 and an MAE of 0.2599, outperforming all other methods and showcasing the
effectiveness of our approach under strict 4-corners conditions.

When trained on mixed boundary conditions in Table 9, BENO still maintains the highest accuracy,
yielding an relative L2 norm of 0.1023 and an MAE of 0.2373 on the 4-Corners test set, confirming
its robustness to varied training conditions. Notably, the improvement is significant in the more
challenging No-Corner test set, where BENO’s MAE is 0.1517, a remarkable enhancement over the
baseline methods. The bolded figures in the tables highlight the instances where BENO outperforms
all other models, underscoring the impact of our boundary-embedded techniques.

The consistency of BENO’s performance under different boundary conditions underscores its po-
tential for applications in computational physics where such scenarios are prevalent. Besides, the
experimental outcomes affirm the efficacy of BENO in handling complex boundary problems in the
context of PDEs. It is also worth noting that the BENO model not only improves the prediction
accuracy but also exhibits a significant reduction in error across different test cases, which is critical
for high-stakes applications such as numerical simulation in engineering and physical sciences.

M EXPERIMENTS ON DARCY FLOW

In this section, we consider the solution of the Darcy flow using our proposed BENO approach. The
2-d Darcy flow is a second-order linear elliptic equation of the form

r · ((x, y)ru(x, y)) = f(x, y), 8(x, y) 2 ⌦,

@u(x, y) = g(x, y), 8(x, y) 2 @⌦,
(19)

where the coefficients  is generated by taking a linear combination of smooth basis function in the
solution domain. The coefficients of the linear combination of these basis functions is taken from
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uniform distribution of random numbers. Dirichlet boundary condition is imposed along the boundary
@⌦ using the function g which is sufficiently smooth. The objective of BENO is to map from the
coefficient  to solution u of the PDE in Equation 19.

The model was exclusively trained on a dataset comprised of 900 samples, each featuring 4-corner
configurations. To assess the robustness and adaptability of our method, we conduct evaluations on
five distinct test datasets. These datasets are deliberately chosen to represent a variety of boundary
conditions commonly encountered in real-world applications, with each one designed to present the
model with different levels of boundary complexity. The outcomes of these evaluations are detailed
in Table 10. Our proposed BENO model consistently outperforms the best baseline across all test
datasets. Notably, BENO achieves the lowest Mean MAE and relative L2 norm in the majority of
these scenarios. This performance underscores the effectiveness of our approach, particularly under
the stringent conditions of 4-corner boundaries.

N VISUALIZATION OF TWO BRANCHES

In this section, the visualized outputs of two distinct branches offer a deeper insight into our model’s
functionality. Branch1, with the boundary input set to zero, is posited to approximate the impact
emanating from the interior, while Branch2, nullifying the interior inputs, is conjectured to capture the
boundary’s influence on the interior. The observations from Figure 9 lend credence to our hypothesis,
indicating a discernible delineation of roles between the two branches.

Extending this analysis, we further postulate that the interplay between Branch1 and Branch2 is critical
for accurately modeling the PDE solution landscape. The synergy of these branches, as evidenced in
our results, showcases a composite model that effectively balances the intricate boundary-interior
dynamics. This balance is crucial in situations where boundary conditions significantly dictate the
behavior of the system, further emphasizing the robustness and adaptability of our model. The
innovative dual-branch strategy presents a promising avenue for enhancing the interpretability and
precision of PDE solutions in complex domains.

O HYPER-PARAMETER LIST

Table 11: Hyper-parameters Configuration
Hyper-parameter Name Hyper-parameter Value
Boundary Dimension 128
Node Dimension 128
Edge Dimension 128
Epochs 1000
Learning Rate 5e-05
MLP Layers in Eq. 7 3
Nearest Node Number K 8
Message Passing Steps T 5
Transformer Layers 1
Number of Attention Head 2
Number of iterations for the first restart 16
Scheduler CosineAnnealingWarmRestarts
Activation Function Sigmoid Linear Unit (SiLU)
GPU Device Nvidia A100 GPU
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