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ABSTRACT

The impact of communication on decision-making systems has been extensively
studied under the assumption of dedicated communication channels. We instead
consider communicating through actions, where the message is embedded into
the actions of an agent which interacts with the environment in a Markov decision
process (MDP) framework. We conceptualize the MDP environment as a finite-
state channel (FSC), where the actions of the agent serve as the channel input,
while the states of the MDP observed by another agent (i.e., receiver) serve as
the channel output. Here, we treat the environment as a communication channel
over which the agent communicates through its actions, while at the same time,
trying to maximize its reward. We first characterize the optimal information the-
oretic trade-off between the average reward and the rate of reliable communica-
tion in the infinite-horizon regime. Then, we propose a novel framework to de-
sign a joint control/coding policy, termed Act2Comm, which seamlessly embeds
messages into actions. From a communication perspective, Act2Comm functions
as a learning-based channel coding scheme for non-differentiable FSCs under
input-output constraints. From a control standpoint, Act2Comm learns an MDP
policy that incorporates communication capabilities, though at the cost of some
control performance. Overall, Act2Comm effectively balances the dual objectives
of control and communication in this environment. Experimental results validate
Act2Comm’s capability to enable reliable communication while maintaining a cer-
tain level of control performance.

1 INTRODUCTION

The role of communication in multi-agent systems has received significant attention as it allows
agents with a partial view of the system to better coordinate and cooperate by exchanging mes-
sages in parallel to actions taken in the environment (Foerster et al., 2016; Sukhbaatar et al., 2016).
However, these systems rely on dedicated channels for communication. On the other hand, explicit
communication channels may not always be available, or may be complemented with other implicit
forms of communication. Such examples are abundant in nature. Bacteria communicate through
chemical molecules, known as quorum sensing (Waters & Bassler, 2005), altering their environ-
ment and behavior to achieve population-wide coordination. Ants use pheromones to encode the
path to food for other ants (von Thienen et al., 2014). Non-verbal communication through gestures,
gaze, and even physical appearance, is also known to play an important role in human communica-
tion (Trenholm, 2020). In the artificial realm, autonomous robots may also need to rely on implicit
communications when explicit communication channels are not available. In medical nano-robots,
electromagnetic communication is not feasible due to size and energy limitations, but implicit com-
munication can be achieved through molecular communications (Weiss & Knight, 2001; Wang et al.,
2023). Even for more advanced robots, electromagnetic or other types of explicit communication
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channels may not be available in harsh or hostile environments; for example, for robots decom-
missioning nuclear storage facilities, or those operating in deep space, deep ocean, or subterranean
environments, e.g., tunnels and caves (Ebadi et al., 2024). Moreover, wireless signals are prone to
wiretapping due to their broadcast nature (Poor & Schaefer, 2017), and can be unreliable in adver-
sarial scenarios due to jamming (Pirayesh & Zeng, 2022; Martz et al., 2020), which are other factors
limiting explicit communications.

Motivated by these challenges, this paper explores implicit communication in a Markov Decision
Process (MDP)—communication through actions—which facilitates information transmission from
the MDP controller to other agents that can observe the MDP states. Effectively utilizing this internal
channel has the potential to reduce the dependence on dedicated communication channels. However,
such a communication capability comes with inherent trade-offs. As we will demonstrate, using this
channel for communication often leads to a degradation in MDP control performance. This raises
a fundamental challenge in balancing control and communication objectives, underscoring the need
for a cohesive design that integrates control and communication.

An MDP consists of a controller and an environment (Puterman, 2014). At each time step, the
environment is in some state s, and the controller selects an action a. Upon executing action a, the
environment stochastically transitions to a new state s′ and generates a reward. Controller’s objective
is to find an optimal policy for selecting an action at each time to maximize its accumulated reward
over a given time horizon. Consider that the controller wants to communicate with another agent
(i.e., the receiver) that can also observe the environment state.

In communication theory, a finite-state channel (FSC) (Gallager, 1968) is an input-output system
with states, where the output depends on both the input and the current state. Messages are encoded
into the input sequence, resulting in a corresponding output sequence. The receiver decodes the
message from this output sequence. From this perspective, the state transition of an MDP from s to
s′ upon taking action a can be viewed as an FSC from the controller to the receiver. We refer to this
internal channel within the MDP as an action-state channel. To communicate through the action-
state channel, we need an encoder that maps the message to a sequence of actions, and a decoder
that translates the resulting state sequence back into the original message. However, the objective of
this encoder differs from that of the controller: the encoder aims to maximize the transmission rate
and reliability of its message, while the controller seeks to maximize the accumulated reward. These
two objectives are generally inconsistent, and a trade-off between the two must be sought.

In this paper, we first investigate the trade-off between the capacity (i.e., the maximum achievable
transmission rate) of the action-state channel and the MDP reward in the infinite horizon regime.
We demonstrate that the capacity of this channel can be expressed in a simple form—as the condi-
tional mutual information between the input and output conditioned on the channel state. We also
show that the capacity-reward trade-off can be cast as a convex optimization problem, which can be
solved numerically. While the capacity-reward trade-off provides an upper bound on the practically
achievable rate under certain reward constraints, solving it does not yield a practical coding scheme.
We then propose a practical framework for the integrated control and communication task in the
finite block-length regime. The challenge in designing such a framework is twofold: (1) balancing
the control and communication performances; and (2) dealing with the non-differentiability of the
action-state channel. To tackle these issues, we propose Act2Comm, a transformer-based coding
scheme in which encoder and decoder are trained iteratively.

Contributions. The main contributions of this paper are summarized as follows: (1) We introduce a
novel paradigm of communicating through actions within an MDP environment, framing it as an in-
tegrated control and communication problem. (2) We derive the capacity of the action-state channel,
and characterize the capacity-reward trade-off as a convex optimization. (3) We propose Act2Comm,
a practical transformer-based coding scheme to learn a policy that optimizes communication perfor-
mance while maintaining a specified level of MDP reward. Act2Comm can be of independent interest
for designing practical channel coding schemes over other non-differentiable FSC scenarios.

2 RELATED WORK

Communication plays a significant role in MDPs, especially in multi-agent reinforcement learning
(RL), where agents exchange messages over dedicated or noisy links to achieve a common goal
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(Wang et al., 2020; Chen et al., 2024; Tung et al., 2021). This is known as emergent communications
(Boldt & Mortensen, 2024), but this framework relies on explicit communications over dedicated
channels. Implicit communication through actions is considered by Knepper et al. (2017) and Tian
et al. (2019). The latter also trains a policy, but it focuses on the multi-agent scenarios, and encour-
ages communication by appropriately changing the reward function. We do not explicitly specify
the communicated information, and instead, take a more fundamental approach by characterizing
the information theoretic limits of communication and designing a practical coding policy.

Sokota et al. (2022) explored a similar concept of communication via MDPs. In their study, the
receiver can observe the entire trajectory, including both the action and state sequences. This en-
ables the controller to encode (compress) messages into the action sequence, and the receiver can
subsequently decode the messages from the trajectory. Essentially, this is a source coding problem.
However, in most practical scenarios, while the MDP state is a physical signal observable by the
receiver, the controller’s actions are typically not directly observable by other agents. Therefore, in
our work, we assume the receiver can only observe the state sequence. This shifts the problem from
source coding to channel coding. Karabag et al. (2019) also examined a similar system, but their
focus was on developing policies that restrict the observer’s ability to infer transition probabilities.

FSC represents a general class of communication channels, and its study has been a long-standing
problem in information and coding theory. Blackwell et al. (1958) studied the capacity of indecom-
posable FSCs without feedback. Subsequent studies in the non-feedback setting include (Verdu &
Han, 1994) and (Goldsmith & Varaiya, 1996). The capacity of FSCs with feedback was examined
by Massey (1990) and Permuter et al. (2009). More recently, Shemuel et al. (2022) explored the
capacity of FSCs with feedback and state information at the encoder. However, these results express
capacity in multi-letter forms, relying on the entire input and output sequences as their lengths ap-
proach infinity. Although Sabag et al. (2017) provided a single-letter upper bound for the feedback
capacity of unifilar FSCs, exact single-letter expressions for FSC capacity are generally unknown.
The action-state channel studied in this paper is a special FSC with state and feedback at the encoder.
Utilizing the unique structure of this channel, we derive a single-letter expression for its capacity.

Machine learning has recently advanced traditional channel coding schemes by replacing linear
operations with trainable non-linear neural networks, including Turbo autoencoder (Jiang et al.,
2019), DeepPolar (Hebbar et al., 2024), KO codes (Makkuva et al., 2021), and other approaches
(Jiang et al., 2020; Kim et al., 2018). However, these are designed for Gaussian channels, which are
differentiable and allow joint training of the encoder and decoder. Our channel, in contrast, is non-
differentiable, presenting new challenges for the design of the encoder and decoder. Channel coding
for FSCs is a challenging task with limited results in the literature. Some existing work focuses only
on the design of the decoder (Aharoni et al., 2023). However, the main challenge in our problem lies
in designing the encoder to balance control and communication performance.

Notations: For any sequence {xt : t ≥ 1}, xk
i denotes the sub-sequence {xi, xi+1, . . . , xk}, where

xk
1 is written as xk. |X | denotes the cardinality of the set X . A detailed notation table is provided in

Table 1.

3 PRELIMINARIES AND SYSTEM MODEL

Markov Decision Process (MDP). An MDP can be characterized by a tuple (S,X ,T , r, α),
where S is the state space, X is the action space, T is the transition kernel, r : S × X → R is
the bounded reward function, and α is the initial state distribution. At each time step t, taking ac-
tion xt in state st results in a reward r(st, xt) and a state transition from st to st+1, where st+1

is sampled from the distribution T (·|st, xt). We assume both S and X are finite sets. A stationary
deterministic policy is a mapping π : S → X that selects action xt based on state st at each time t.
The objective is to find an optimal policy that maximizes the long-term average reward, as follows:

P1: max
π

lim
N→∞

1

N
E

[
N∑
t=1

r(st, xt)|s1 ∼ α

]
. (1)

In this paper, we assume that the MDP is unichain; that is, any deterministic policy induces a Markov
chain consisting of a single recurrent class plus some transient states. As a result, the optimality of
P1 can be achieved through a stationary deterministic policy. The set of stationary deterministic
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Figure 1: From a standard finite-state channel to an action-state channel.

policies is denoted by ΠSD. It is worth noting that the set of admissible policies for an MDP is not
restricted to ΠSD. In general, a policy can be history-dependent, determining xt using all historical
states and actions up to time t. Let ΠS and ΠH denote the sets of stationary (possibly randomized)
and history-dependent policies, respectively. It is easy to see that ΠSD ⊂ ΠS ⊂ ΠH .

Finite-State Channel (FSC). As illustrated in Fig. 1, an FSC can be characterized by a tuple
(X ×S, PY,S+|X,S ,Y×S), where X is the input alphabet, Y is the output alphabet, S is the channel
state alphabet, and PY,S+|X,S is the channel law specifying the probability of the channel outputting
Y and transitioning to the new state S+, given that the channel input is X in state S. We consider a
time-invariant channel that exhibits the Markov property, which can be formally expressed as:

P (yt, st+1|xt, st,yt−1) = PY,S+|X,S(yt, st+1|xt, st), ∀t. (2)

To transmit a message m, an encoder generates a sequence of inputs xt as a codeword. When each
xt is input to the channel, the channel transitions to a new state st+1 and produces an output yt. The
decoder then collects the output sequence yt to reconstruct m. We suppose that the channel state is
available to the encoder but not to the decoder, and that the outputs are fed back to the encoder.

Let M denote the set of messages, with each message m uniformly sampled from M. The encoder
is defined as a sequence of mappings, E ≜ {E1, . . . , En}, where each mapping Et : M × St ×
X t−1 × Yt−1 → X generates the channel input at time t. In other words, the channel input at time
t, xt = Et(m, st,xt−1,yt−1), is a function of m and all the historical information available at the
transmitter up to time t. The decoder is defined as the mapping, D : Yn → M, which reconstructs
the message from all n channel outputs, m̂ = D(yn). The pair (E ,D) constitutes a code, where n
is called the code length. Suppose the message set is M = {1, 2, 3, . . . , 2k}, then each message can
be represented with k bits. The rate of the code (E ,D) is defined as RE,D = k/n.

The error probability P
(n)
e for (E ,D) is defined as P (n)

e = Pr(D(yn) ̸= m|m is sent). A rate R is
deemed achievable if there exists a code (E ,D) such that the error probability of the transmission
approaches zero as n → ∞. Consequently, the capacity of the FSC is defined as the supremum of all
achievable rates. In other words, channel capacity reveals the maximum rate available for error-free
transmission when the code length approaches infinity. In practice, however, constructing a code
with infinite code length is unfeasible. Hence practical channel coding aims to balance the trade-off
between R and P

(n)
e with a finite code length n. For instance, we design codes to maximize the rate

while ensuring that the probability of error remains below a certain threshold σ > 0:

P2: max
E,D

RE,D, subject to P
(n)
e ≤ σ. (3)

Integrated Control and Communication. We investigate a scenario in which the controller of
an MDP aims not only to optimize rewards but also to facilitate communication. Assuming that the
receiver can observe the state of the MDP, then the environment can be modeled as a specialized
FSC, enabling communication between the transmitter (i.e., the controller) and the receiver.

(a) Action-state channel model: This integrated FSC is referred to as the action-state channel,
where the state of the MDP aligns with the state of the FSC. The action and the subsequent state
are viewed as the channel input and output, respectively. Upon executing xt in state st, the MDP
environment returns a reward rt and transitions to a new state st+1. Here st+1 functions as both the
channel output and the new channel state, and st−1 represents not only the historical state sequence,
but also the historical feedback signal. The channel law of the action-state channel is given by:

P (st+1|xt, st) = PS+|X,S(st+1|xt, st) ≜ T (st+1|xt, st). (4)
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This type of channel is also referred to as a POST channel in the literature (Permuter et al., 2014).

(b) Controller & Encoder: Within this framework, the MDP controller and the FSC encoder rep-
resent the two aspects of the same entity, jointly responsible for selecting an action xt ∈ X at each
time step. However, their objectives differ: the controller aims to maximize the reward, while the
encoder seeks to maximize the message rate. Unlike the controller, which can focus on stationary
deterministic policies, the encoder must account for more complex policy forms. For any message
m, the encoder described in the previous part can be viewed as a history-dependent policy for the
MDP. Therefore, we consider the joint control and coding policy in its most general form. The pol-
icy E is represented as a sequence of mappings {Ei : 0 ≤ i ≤ n − 1}, where Ei is defined as
Ei : M×Si × X i−1 → X . Each message is transmitted via a sequence of n actions. For example,
if the controller begins to transmit a message m at time t, then xt+i = Ei(m, st+i

t ,xt+i−1
t ) for

0 ≤ i ≤ n − 1. We assume the controller always has a new message ready for transmission imme-
diately after completing the transmission of the previous message, and each message is uniformly
sampled from M. The long-term average reward of the MDP under policy E is denoted by GE .

(c) Decoder: The receiver observes the state sequence associated with a message and uses it to
decode the message. For example, the state sequence associated with the i-th message is sinin−n+1.
The decoder, represented as a mapping : D : Sn → M, decodes the message as: m̂ = D(sinin−n+1).

In this paper, we consider non-terminating MDPs over an infinite time horizon and investigate the
trade-off between control and communication performance. As discussed previously, if the code
length n → ∞, the communication performance can be characterized by the channel capacity (i.e.,
the maximum achievable rate). Here, we consider a practical setting with finite code length n, where
the performance of a code (E ,D) is characterized by its rate RE,D and the error probability P

(n)
e .

We study the trade-off through the following optimization problem with constants V and σ > 0,

P3: max
E,D

RE,D (5)

s.t. GE ≥ V and P (n)
e ≤ σ. (6)

4 THE CAPACITY-REWARD TRADE-OFF

In this section, we analyze the trade-off between the capacity of the action-state channel and the
MDP reward. While the results may not offer direct guidance for practical coding—since the capac-
ity is typically achievable only in the infinite-horizon regime (i.e., when the code length n → ∞)—
they delineate the fundamental performance limits of communication via actions in MDPs, thus
holding substantial theoretical importance. All proofs of this section are detailed in Appendix B.

In information theory, the capacity of an FSC is usually expressed in terms of conditional mutual
information (Shemuel et al., 2024). Let X,S+ and S denote the random variable associated with
the input, output (i.e., the next state), and the current state of the action-state channel, respectively.
Then the conditional mutual information of X and S+ given S is defined as (Cover, 1999):

I(X;S+|S) = Ep(x,s+,s)

[
log

p(s, s+|s)
p(x|s)p(s+|s)

]
. (7)

Let π(·|s) denote an input distribution of the channel given that the channel state is s ∈ S . For a
given channel, the joint distribution p(x, s+, s) is determined by the conditional input distribution
π. From the MDP perspective, π(x|s) represents the probability of selecting action x in state s; thus,
π can be viewed as a stationary randomized policy for the MDP. Let ρπ denote the equilibrium state
distribution of the MDP under policy π. We have the following result:

Theorem 1 The capacity of the action-state channel without reward constraint is given by

C = max
{π(x|s):x∈X ,s∈S}

I(X;S+|S)

where X,S, and S+ follow a joint distribution given by

p(x, s+, s) = ρπ(s)π(x|s)T (s+|s, x), x ∈ X , s, s+ ∈ S.
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As previously discussed, a general encoder for an FSC generates a channel input based on all the
historical state and feedback information. However, Theorem 1 reveals a surprising fact: the capacity
of the action-state channel can be achieved by encoding messages using a stationary randomized
policy for the MDP, without relying on historical information.

Theorem 1 presents the capacity of the action-state channel without considering the MDP reward.
If we want to maintain a certain level of long-term average reward for the MDP, the capacity may
generally decrease. Next, we characterize the trade-off between channel capacity and MDP reward.

Given a stationary policy π for the MDP, define wπ(s, x) = ρπ(s)π(x|s). Here, wπ(s, x) represents
the long-term proportion of time that the MDP is in state s and takes action x. In the literature, wπ

is referred to as the occupation measure of policy π (Altman, 2021). Let W denote the set of all
occupation measures, then W is the set of w ∈ R|S|×|X| satisfying the following equations:∑

x∈X
w(s, x)−

∑
s′∈S

∑
x′∈X

w(s′, x′)T (s|s′, x′) = 0, ∀s ∈ S, (8)∑
s∈S

∑
x∈X

w(s, x) = 1, w(s, x) ≥ 0, ∀s ∈ S, x ∈ X . (9)

Clearly, W is a polytope. It is well-known that there is a one-to-one mapping between W and ΠS .
In particular, π(x|s) = wπ(s, x)/

∑
x′ wπ(s, x

′) for any s ∈ S, x ∈ X . Using this relationship, the
problem of computing the capacity with reward constraint V (i.e., ensuring the long-term average
reward is not less than V ) reduces to a convex optimization, as stated in the following theorem:

Theorem 2 The capacity of the action-state channel with reward constraint V is the optimal value
of the following convex optimization problem:

max
w∈W

I(w,T )

s.t.
∑
s∈S

∑
x∈X

w(s, x)r(s, x) ≥ V

where I(w,T ) is a concave function of w ∈ W defined as

I(w,T ) ≜
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ w(s, x′′)∑

x′ T (s′|s, x′)w(s, x′)
.

Denote by C(V ) the capacity of the action-state channel with reward constraint V .

Lemma 1 C(V ) is a concave function.

Since the capacity is an upper bound for the rate of any practical coding scheme, Lemma 1 implies
that the achievable region of rate-reward pairs forms a convex set.

The convex optimization problem in Theorem 2 can be efficiently solved using the gradient ascent
algorithm if the gradient of the objective function has a closed-form expression (Bertsekas, 2016).
Next, we derive the gradient of I(w,T ) with respect to w. Define

l(w,wn,T ) ≜
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ wn(s, x

′′)∑
x′ T (s′|s, x′)wn(s, x′)

, w, wn ∈ W.

Lemma 2 For any wn ∈ W , l(w,wn,T ) is a tangent line of I(w,T ) at point wn. That is,

(i) l(wn, wn,T ) = I(wn,T ).

(ii) l(w,wn,T ) ≥ I(w,T ) for all w.

It follows immediately from Lemma 2 that

∇Iwn(s, x) ≜
∂I(w,T )

∂w(s, x)

∣∣∣∣
w=wn

=
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ wn(s, x

′′)∑
x′ T (s′|s, x′)wn(s, x′)

, (10)

for any wn ∈ W , s ∈ S , and x ∈ X . The gradient ∂I/∂w = [∇Iw(s, x)]s,x then can be used in the
gradient ascent method to solve the optimization problem in Theorem 2.
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Figure 2: (Left) Workflow diagram of the Act2Comm scheme, with the dashed line indicating the
gradient flow. (Right) Illustration of the iterative training strategy, incorporating a critic network.

5 ACT2COMM: A PRACTICAL CODING SCHEME

This section presents Act2Comm, a learning-based practical coding scheme that balances both con-
trol and communication objectives. This framework assumes a pre-determined control policy π that
satisfies the reward constraint Gπ ≥ V , referred to as the target policy. Such a target policy can be
easily derived using traditional MDP or RL algorithms. Alternatively, solving the problem in The-
orem 2 yields a policy π that precisely satisfies Gπ = V . Act2Comm aims to learn a coding policy
that: (1) closely mimics the stochastic behavior of the target policy; (2) minimizes the probability of
decoding errors for a given coding rate and a finite code length. That is, Act2Comm takes a policy
achieving the desired reward, and embeds messages into it with the desired reliability. For ease of
reference, we denote the element of matrix X at the i-th row and j-th column as X[i, j]. The sets of
states and actions are indexed as S = {0, 1, . . . , |S| − 1} and X = {0, 1, . . . , |X | − 1}.

Channel transform. Let U ≜ X |S|. Each u ∈ U is referred to as a decision rule as the i-th
element of u can be viewed as an action prescribed for state i. A deterministic control policy can be
defined as a sequence {ut : t ≥ 1}, where ut ∈ U is the decision rule at time t. To facilitate block
coding, we first convert the action-state channel into an extended action-state (EAS) channel (Fig.
6 in Appendix) using Shannon’s method (Shannon, 1958). We conceptually separate the encoder
and controller, considering the controller as part of the EAS channel. Channel state is assumed to
be available at the controller, but not the encoder. At each time t, the encoder selects a decision
rule ut from U . Then the controller uses ut and the state st to determine an action xt = ut(st).
Consequently, the EAS channel has input alphabet U , output alphabet S, and channel law:

PS+|S,U (st+1|st, ut) = PS+|S,X(st+1|st, ut(st)) ≜ T (st+1|st, ut(st)). (11)

The EAS channel and the action-state channel are equivalent. We will focus on the former to develop
our coding scheme. This approach allows us to map a data block to a sequence of decision rules
without knowing the future states. Actions for subsequent time steps can then be determined using
these decision rules when the states are revealed. In the rest of this section, we detail the Act2Comm
framework, which consists of five components.

1) Overall workflow. As depicted in Fig. 2, given a k-bit message m ∈ {0, 1}k, the Act2Comm
first encodes m into a belief map Z ∈ R|S|× k

R . This Z is subsequently mapped into a codeword
U ∈ X |S|× k

R by a quantizer. At each time step t, the controller selects an action xt = U [st, t] for
state st, and the channel transitions into a new state according to the channel law PS+|S,X . After k

R

time steps, the receiver decodes the message based on the accumulated observations s ∈ S k
R .

2) Block-attention feedback coding. One of the principal innovations of Act2Comm is the block-
attention coding mechanism, which reduces the coding complexity and enhances the performance.

(a) Message block: Formally, we partition message m into l blocks as m = [b1; b2; . . . ; bl], where
each block bi ∈ {0, 1}µ contains µ = k/l bits. This allows us to encode m with l coding rounds,
with each round consisting of µ/R time steps. For each coding round τ (1 ≤ τ ≤ l), the input
message block is defined as B(τ) ≜ [2b1 − 1; . . . ; 2bτ − 1] ∈ Rτ×µ.
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(b) Feedback block: Although Theorem 1 shows that the capacity-achieving code with infinite
blocklength can be history-independent, feedback has demonstrated benefits in simplifying the cod-
ing process for better performance in the practical finite blocklength regime (Kostina et al., 2017;
Kim et al., 2020). Hence, for each time step t within the τ -th coding round, we introduce the feed-
back vector as c(τ)t ≜ [s

(τ)
t , x

(τ)
t , s

(τ)
t+1] ∈ R1×3, which encapsulates the current state, the selected

action, and the subsequent state. The feedback matrix for the τ -th round can then be given by
Cτ = [c

(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×3. Consequently, for each coding round τ , we concatenate prior

feedback matrices to construct a feedback block: C(τ) ≜ [C1; . . . ;Cτ ] ∈ Rτ× µ
R×3.

3) Transceiver design.

(a) Encoder: At each coding round τ , a transformer-based encoder is utilized to generate a belief
matrix Z(τ) ∈ Rτ×µ|S|

R using B(τ) and C(τ). The detailed architecture is provided in Fig. 8b,
with each component illustrated in Appendix C. The τ -th row vector of Z(τ), denoted as z(τ) ≜

Z(τ)[τ, :] ∈ R
µ|S|
R , represents the belief vector derived from the τ -th coding round. After completing

all l coding rounds, the selected belief vectors are combined to form the final belief map Z =

[z(1); . . . ; z(l)] ∈ R
k
µ×µ|S|

R , which is subsequently reshaped into Z ∈ R|S|× k
R . Each element of

this reshaped belief map Z[st, t] indicates the action belief at time step t given state st.

(b) Quantizer: Act2Comm employs a quantizer to generate the codeword U ∈ X |S|× k
R as:

U = Q(|X | · Sigmoid(Z)), (12)
where Q : R|S|× k

R → X |S|× k
R is the quantization operation that maps the coding result to the

nearest action index in the action space X , and each element of resultant codeword, xt = U [st, t],
represents the selected action for state st at time step t.

(c) Decoder: Given the state observations s ≜ [s1; . . . ; s k
R
] ∈ S k

R , a transformer-based decoder is

utilized to output logits M̂ ∈ R
k
µ×2µ for all blocks. After applying the softmax function, each block

is predicted and subsequently transformed into the reconstructed bitstream m̂.

4) Joint optimization of control and communication. To model the trade-off between control
and communication, we utilize a weighted loss function to train the encoder: Lall = Lcom+λLcont.
The communication loss Lcom is defined as the cross-entropy between the predictions from a critic
network and their corresponding ground-truth, which quantifies the message decoding accuracy. To
ensure control performance, we aim to make the coding policy behave closely to the target policy.
Therefore, Lcont measures the “distance” between the coding policy and the target policy.

Let π denote the target policy, with π(x|s) representing the probability of taking action x in state
s. Let fU (x|s) denote the frequency of selecting x in state s across all decision rules in U . We
then use the mean square error (MSE) between π and fU to measure the control loss for its stabil-
ity in experiments. However, fU is non-differentiable during the backpropagation as it is discrete.
To address this issue, we estimate fU (x|s) using Z in equation 12. Let e denote the all-one row
vector, and define ΓZ(T , s, x) ≜ Sigmoid(γ(|X |Sigmoid(Z[s, :]) − xe)). When γ > 0 is suffi-
ciently large, ΓZ(T , s, x) is a (kR)-dim vector with elements close to either 0 or 1. Additionally,
ΓZ(T , s, x)e⊤ approximates the number of elements in U [s, :] that are not less than x. We refer to
γ as the temperature parameter and estimate fU (x|s) for x > 0 as follows:

fU (x|s) ≈ f̂U (x|s) ≜
1

kR

[
ΓZ(T , s, x− 1)e⊤ − ΓZ(T , s, x)e⊤

]
. (13)

For x = 0, we have fU (0|s) ≈ f̂U (0|s) ≜ 1−ΓZ(T , s, 0)e⊤/kR. As a result, we define the control
loss as Lcont = MSE(π, f̂).

5) Iterative training strategy. Given the non-differentiable nature of the EAS channel and quan-
tizer, jointly updating the encoder and decoder is infeasible. To address this, we introduce a critic
network and employ an iterative updating strategy to train Act2Comm effectively, with the corre-
sponding algorithm and architectures detailed in Appendix C.2.

(a) Critic network. As shown in Fig. 2, a critic network is introduced to estimate the gradient during
gradient backpropagation for the encoder optimization, which views the EAS channel and decoder

8
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Figure 3: Control-communication trade-off of Act2Comm in “Lucky Wheel”.

as an unknown environment. Before each update of the encoder, a critic network is trained over sin
inner steps to predict the logits for the neighbor belief maps of a given Z. For each inner step k,
the network is trained to predict the corresponding logits M̂k as M̂ck based on the neighbor belief
maps sampled from Zk = Z + Wk, where Wk ∈ R|S|× k

R ∼ N (0, σ2
w) is the Gaussian noise

term for neighboring sampling during the k-th inner step. The MSE loss, denoted as Lcn, is utilized
between M̂ck and M̂k to train the critic network. With this design, we aim to obtain a precise critic
network to estimate gradients from neighbors of Z in a given environment, thereby helping update
the encoder. Note that this extra training cost is incurred only during the offline training process, this
critic network will be removed during the inference phase, as detailed in Appendices C.3-C.4..

(b) Iterative updating strategy. As outlined in Fig. 2, at each update step i, we first train a critic
network ϕi

sin
using sin inner steps to learn to estimate the gradient around the samples. Next, the

encoder is updated to θi+1 using the frozen decoder parameters ξi and the learned gradient estima-
tion. Subsequently, the decoder is directly optimized with the loss function to obtain new parameters
ξi+1, while keeping the encoder frozen at θi+1. This process iteratively alternates between encoder
and decoder updates, freezing one while optimizing the other at each step.

6 EXPERIMENTAL RESULTS

We evaluate Act2Comm across three distinct MDP environments, as detailed in Appendix D, with
communication performance measured by the bit error rate (BER). Due to page limitations, the
results of the third environment, “Erratic robot”, are provided in the Appendix D.4.

Experiment 1: Lucky Wheel. In this game, the agent keeps spinning a wheel to accumulate rewards
by choosing either clockwise or counterclockwise direction. It is modeled as an MDP with 3 states
and 2 actions, the details of the environment and experimental setting are provided in Appendix D.

We examine the trade-off among the three performance metrics in Fig. 3. We set the optimal reward-
maximizing policy as the target policy, and consider different code rates. By adjusting λ, we can
control how closely the coding policy approximates the target policy. The shaded regions in figures
(a)-(c) represent achievable regions of Act2Comm with various λ. When λ is large, regardless of the
coding rate, Act2Comm learns a policy that mirrors the target policy. In this case, all messages are
mapped to the same sequence of decision rules since the target policy is stationary and deterministic.
As a result, the BER is 0.5, indicating zero communication capability.

Next, we consider different target BERs, resulting in a trade-off between the code rate and reward.
As shown in Fig. 3b, achieving a pre-determined BER with a higher coding rate results in a reduced
reward. When targeting a lower BER, the reward decreases rapidly with the coding rate. Fig. 3c il-
lustrates Act2Comm’s ability to balance BER and coding rate when ensuring a specified reward. Our
results reveal that reducing the reward constraint leads to more reliable communication at the same
rate. In summary, these findings demonstrate that Act2Comm can communicate messages through
its actions at acceptable reliability while satisfying specific reward criteria.

Experiment 2: Catch the Ball. We next evaluate Act2Comm in “Catch the Ball”, which is an MDP
with 27 states and 3 actions. This MDP includes a parameter p that influences its transition matrix

9
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Figure 5: Control-communication trade-off of Act2Comm in “Catch the Ball” with p = 0.2.

(see Appendix D for details). When p = 0, the action-state channel is perfect as each action can be
reliably inferred from the resulting state transition, but it becomes noisy for p > 0.

We first consider p = 0, where no coding is needed since there is no noise. The challenge is to main-
tain a certain reward while communicating. Act2Comm performs excellently in this environment. As
shown in Fig. 4a, with a minor reduction in reward from 1.66 to 1.5, Act2Comm communicates at a
rate of 0.2 with no error. If we relax BER to 10−4, same rate can be achieved with a reward of 1.6.
The trade-off between reward and rate is shown in Fig. 4b. This experiment highlights our model’s
capacity to enable efficient communication capabilities with minimal impact on performance. We
also applied Act2Comm to this game with p = 0.2, in which the action-state channel is noisy and
the coding process becomes more complex. As detailed in Fig. 5, we can observe a reduction in the
coding rates for the same level of reliability due to the stochasticity in the environment.

7 CONCLUSION

We introduced a novel framework of communication through actions, a form of implicit communi-
cation from the controller of an MDP to a receiver that can observe the states. By treating the MDP
environment as a communication channel, messages can be encoded into the action sequence and
decoded from the state sequence. Aiming to optimize communication performance while ensuring a
certain MDP reward, we formulated an integrated control and communication problem. We derived
the capacity of the action-state channel and demonstrated that the trade-off between channel capacity
and reward can be characterized as a convex optimization problem. We then proposed Act2Comm, a
transformer-based framework for designing joint control and communication policies. Through ex-
periments, we demonstrated Act2Comm’s capability to communicate reliably through actions while
maintaining a certain level of MDP reward.

The proposed Act2Comm framework can be used as a plug-in component in various MDP and RL
applications, enabling information transmission by learning a joint control and coding policy that
closely mimics the target policy. More importantly, our study demonstrates the potential of commu-
nication through actions in multi-agent systems. While this form of implicit communication leads to
some loss in control performance, it may potentially improve the overall control performance by en-
hancing coordination when applied to multi-agent systems where explicit communication channels
are not available. This presents an interesting and challenging direction for future research.
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APPENDIX

A NOTATION AND DEFINITIONS

To bridge the RL and FSC areas, we list and explain the notations used in this paper. Note that
lowercase and uppercase bold letters represent vectors and matrices, respectively.

Table 1: Notation table

In general
xk
i , xk Sequence {xi, xi+1, . . . , xk}, sequence {x1, . . . , xk}

|X | Cardinality of set X
MDP: (S,X ,T , r, α)
st, xt MDP state and action at t
r, α Reward function and initial state distribution
S, X State and action space for MDP
T , π Transition kernel and control policy
FSC: (X × S, PY,S+|X,S ,Y × S)
xt, yt, st Channel input, output, and state at t
X , Y , S Channel input, output, and state alphabets
S+, S Future and current state (random variables)
E , D Encoder and decoder
k, n Message bit length and the code length
RE,D = k/n Rate of code (E ,D)
Action-state channel: P (st+1|xt, st)
st, xt State and action at t
S, X State alphabet, action alphabet
S+, S Future and current state (random variables)
E , D, T , GE Encoder, decoder, transition kernel, average reward
k, n, R Message bit length, code length, and rate
sinin−n+1 The state sequence associated with the i-th message
EAS channel for Act2Comm: P (st+1|ut, st)
st, xt, ut; π State, action and decision rule at t; Target policy
S+, S Future and current state (random variables)
U , X , S Alphabets of decision rule, actions, and states
T , GE transition kernel and average reward
E(·), D(·), C(·) Encoder, decoder, and critic network.
θ, ξ, ϕ Parameters of encoder, decoder, critic network
Z, U Encoded belief map and codeword
B(τ), C(τ) Message and feedback block at coding round τ
X(τ) Control policy at coding round τ

M̂ Decoded logits
Q(·) Quantizer
Lall Weighted loss function to update the encoder
Lcom, Lcont Communication loss term and Control loss term
Lcn MSE loss for critic network
fU (x|s) Frequency of selecting action x in state s across U
γ Estimation temperature for control policy
f̂U (x|s) Estimation of fU (x|s)
Zk, Wk Sampled neighbors of Z and its Gaussian term
M̂k The corresponding logits from the frozen decoder
M̂ck Predicted logits from the critic network (the k-th step)
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Figure 6: The action-state channel and the equivalent extended action-state channel.

B TECHNICAL PROOFS

This section presents the proofs of Section 4.

B.1 PROOF OF THEOREM 1

The proof of Theorem 1 relies on converting the action-state channel to an equivalent channel. This
equivalence is also stated in Section 5, as it is crucial for the design of Act2Comm. To enhance
readability, we present the equivalence here as well.

Let U ≜ X |S|, where each u ∈ U is referred to as a decision rule because the i-th element of u, de-
noted by u(i), can be viewed as an action for state i. A control policy is thus a collection of decision
rules spanning the entire time horizon. To facilitate the capacity analysis, we convert the action-
state channel into an extended action-state (EAS) channel, as depicted in Fig. 6, using Shannon’s
method (Shannon, 1958). In particular, we conceptually separate the encoder and controller, consid-
ering the controller as an integral component of the EAS channel. We then assume that the channel
state is available at the controller but not the encoder. At each time t, the encoder selects a decision
rule ut from U . Then the controller uses ut and the state st to determine an action xt = ut(st).
Consequently, the EAS channel has an input alphabet U , output alphabet S , and channel law:

PS+|S,U (st+1|st, ut) = PS+|S,X(st+1|st, ut(st)) = T (st+1|st, ut(st)).

The EAS channel and the action-state channel are equivalent, and we will examine the EAS channel
instead of the action-state channel to derive the capacity.

Assume that the initial state of the action-state channel is fixed to be s1. Then it is well-known that
the capacity of the EAS channel is (Gallager, 1968)

C(s1) = max
{p(ui|ui−1)}i≥1

lim
N→∞

1

N
I(UN ;SN+1

2 |s1), (14)

where I(UN ;SN+1
2 |s1) is the mutual information given by

I(UN ;SN+1
2 |s1) =

∑
uN∈UN

∑
sN+1
2 ∈SN

p(uN )P (sN+1
2 |uN , s1) log

P (sN+1
2 |uN , s1)∑

zN∈UN p(zN )P (sN+1
2 |zN , s1)

.

For two random variables S and X , let H(X|S) denote the conditional entropy (Cover, 1999) of X
given S. Then we have

lim
N→∞

1

N
I(UN ;SN+1

2 |s1) = lim
N→∞

1

N

N∑
i=1

[
H(Si+1|Si

2, s1)−H(Si+1|Si
2, U

N , s1)
]

(a)
= lim

N→∞

1

N

N∑
i=1

[
H(Si+1|Si

2, s1)−H(Si+1|Si
2, U

N , Xi, s1)
]

= lim
N→∞

1

N

N∑
i=1

[H(Si+1|Si, s1)−H(Si+1|Si, Xi, s1)]

= lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1)
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where (a) holds because Xi is determined by Si and Ui. It follows that

C = max
{p(ui|ui−1)}i≥1

lim
N→∞

1

N
I(UN ;SN+1

2 |s1)

(a)
= max

{p(xi|si,xi−1)}i≥1

lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1)

(b)
= max

{p(xi|si)}i≥1

lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1) (15)

In equation 15, (a) follows from the equivalence between the action-state channel and the EAS
channel. We next prove (b). Let η denote a history-dependent encoder and {ηi(xi|si, xi−1)}i≥1

denote the associated input distribution. Furthermore, let P η
i (s, x) denote the probability that Si = s

and Xi = s conditioned on the encoder η. Note that η can be viewed as a history-dependent policy
for the MDP. Then according to MDP theory, for any history-dependent policy η, there exists a
Markov policy η′ such that η and η′ share the same joint probability distribution of states and actions.
In particular, denote by η′i(xi|si) the probability of selecting action xi given that the state is si at
time i. Then η′ can be seen as a Markov encoder with input distribution {η′i(xi|si)}i≥1. By letting

η′i(xi|si) = ηi(xi|si) ≜
∑

si−1,xi−1

ηi(xi|si, xi−1)P (si−1, xi−1|s1),

we have

P η
i (s, x|s1) = P η′

i (s, x|s1), ∀i ≥ 1, s ∈ S, x ∈ X
We omit the proof here. The interested readers are referred to Theorem 5.5.1 of (Puterman, 2014) for
the formal statement and proof. Consequently, we can verify that for any history-dependent encoder
η, there exists a Markov encoder η′ such that they result in the same I(Xi;Si+1|Si, s1) for all i:

Iη(Xi;Si+1|Si, s1) =
∑
si∈S

∑
xi∈X

P η
i (si, xi|s1)

∑
si+1∈S

T (si+1|si, xi) log
T (si+1|si, xi)∑

x′
i
T (si+1|si, x′

i)ηi(x
′
i|si)

=
∑
si∈S

∑
xi∈X

P η′

i (si, xi|s1)
∑

si+1∈S
T (si+1|si, xi) log

T (si+1|si, xi)∑
x′
i
T (si+1|si, x′

i)η
′
i(x

′
i|si)

We thus conclude that restricting on Markov encoders does not result in any loss of capacity.

Next, we show that, as far as finding a capacity-achieving encoder is concerned, it is enough to
consider stationary encoders. To see this, we reformulate equation 15 as a dynamic programming
(DP) defined as follows:

• state at time i: si ∈ S
• action at time i given state si: qi(si) ∈ ∆(X ) with qi(xi|si) = P (xi|si) being the i-th element
• transition law: P (si+1|si, xi) =

∑
xi∈X qi(xi|si)T (si+1|si, xi)

• reward function:

r(si, qi(si)) =
∑
xi∈X

qi(xi|si)
∑

si+1∈S
T (si+1|si, xi) log

T (si+1|si, xi)∑
x′
i
T (si+1|si, x′

i)qi(x
′
i|si)

.

Then the capacity expression given in equation 15 can be written as

C = max
{qi}i≥1

lim
N→∞

1

N

N∑
i=1

∑
si∈S

P (si)r(si, qi(si)). (16)

We can think of equation 16 as a problem of maximizing the long-term average reward of the above
DP over the set of Markov deterministic policies. Essentially, the DP is an MDP with finite state
space, compact action space, and bounded reward function. We can easily verify the following:

1. The reward function is a continuous function of action di.
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2. The transition law depends continuously on the action di.

3. Any stationary policy yields a Markov chain with one ergodic class and a possibly empty set of
transient states (by our assumption).

Then, according to MDP theory (see, e.g., (Fainberg, 1976) and (Hernández-Lerma & Lasserre,
2012)), the maximum of equation 16 can be attained by a stationary deterministic policy. Therefore,
problem equation 16 is equivalent to

C = max
{π(·|s)∈∆(X ):s∈S}

lim
N→∞

1

N

N∑
i=1

I(Xi;Si+1|Si, s1). (17)

Note that each {π(·|s) ∈ ∆(X ) : s ∈ S} corresponds to a stationary policy for the original MDP.
Under the assumption that the MDP is unichain, any stationary policy yields a Markov chain with
equilibrium state distribution ρπ(s). Therefore, the following probability converges to a probability
that is independent of s1:

lim
i→∞

P (Xi = x, Si = s, Si+1 = s′|s1) = ρπ(s)π(x|s)T (s′|s, x).

As a result, I(Xi;Si+1|Si, s1) also converges to a value that is independent of s1. The desired result
follows immediately.

B.2 PROOF OF THEOREM 2

We first show that the capacity of the action-state channel without reward constraint can be written
as:

C = max
w∈W

I(w,T ). (18)

To see this, using Theorem 1 and the formula π(x|s) = wπ(s, x)/
∑

x′ wπ(s, x
′) yields

I(X;S′|S) =
∑
s∈S

∑
x∈X

ρπ(s)π(x|s)
∑
s′∈S

T (s′|s, x) log T (s′|s, x)∑
x′ T (s′|s, x′)q(x′|s)

=
∑
s∈S

∑
x∈X

wπ(s, x)
∑
s′∈S

T (s′|s, x) log
T (s′|s, x)

∑
x′′ wq(s, x

′′)∑
x′ T (s′|s, x′)wq(s, x′)

.

Then the equivalence between equation 18 and the capacity expression given in Theorem 1 follows
immediately from the one-to-one mapping between W and ΠS .

It is well-known that the long-term average reward of a policy can be expressed as a linear function
of its occupation measure:

Gπ = lim
N→∞

1

N
Eπ

[
N∑
t=1

r(st, xt)|s1 ∼ α

]
=
∑
s∈S

∑
x∈X

wπ(s, x)r(s, x). (19)

Since the reward constraint is linear, to show that the optimization problem is a convex optimization,
it suffices to prove that I(w,T ) is a concave function. For any λ ∈ [0, 1] and λ̄ = 1 − λ, let
w = λw1 + λ̄w2, where w1, w2 ∈ W . Then we have∑

x∈X
w(s, x)T (s′|s, x) log

∑
x′ T (s′|s, x′)w(s, x′)

T (s′|s, x)
∑

x′′ w(s, x′′)

=
∑
x∈X

w(s, x)T (s′|s, x) log
∑

x′ T (s′|s, x′)w(s, x′)∑
x′′ w(s, x′′)

−
∑
x∈X

w(s, x)T (s′|s, x) logT (s′|s, x).

(20)
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The second term of equation 20 is clearly linear w.r.t. w. For the first term, an application of log-sum
inequality gives (∑

x∈X
w(s, x)T (s′|s, x)

)
log

∑
x′ T (s′|s, x′)w(s, x′)∑

x′′ w(s, x′′)

≤λ

(∑
x∈X

w1(s, x)T (s′|s, x)

)
log

∑
x′ T (s′|s, x′)w1(s, x

′)∑
x′′ w1(s, x′′)

+ λ̄

(∑
x∈X

w2(s, x)T (s′|s, x)

)
log

∑
x′ T (s′|s, x′)w2(s, x

′)∑
x′′ w2(s, x′′)

. (21)

Combining equation 20 and equation 21 yields∑
x∈X

w(s, x)T (s′|s, x) log
T (s′|s, x)

∑
x′′ w(s, x′′)∑

x′ T (s′|s, x′)w(s, x′)

≥λ
∑
x∈X

w1(s, x)T (s′|s, x) log
T (s′|s, x)

∑
x′′ w1(s, x

′′)∑
x′ T (s′|s, x′)w1(s, x′)

+ λ̄
∑
x∈X

w2(s, x)T (s′|s, x) log
T (s′|s, x)

∑
x′′ w2(s, x

′′)∑
x′ T (s′|s, x′)w2(s, x′)

. (22)

Summing both sides of the above inequality over s and s′ yields

I(w,T ) = I(λw1 + λ̄w2,T ) ≥ λI(w1,T ) + λ̄I(w2,T ).

We thus conclude that I(w,T ) is a concave function of w. This completes the proof.

B.3 PROOF OF LEMMA 1

Define

WV =

{
w ∈ W :

∑
s∈S

∑
x∈X

w(s, x)r(s, x) ≥ V

}
.

For any achievable V1 and V2, let

wi = arg max
w∈WVi

I(w,T ), i = 1, 2.

Then C(Vi) = I(wi,T ), i = 1, 2. For any θ ∈ [0, 1], let θ̄ = 1 − θ. Let V = θV1 + θ̄V2 and
w3 = θw1 + θ̄w2. Then clearly w3 ∈ WV . We thus have

C(V ) = max
w∈WV

I(w,T ) ≥ I(w3,T ) ≥ θI(w1,T ) + θ̄I(w2,T ) = θC(V1) + θ̄C(V2).

We thus conclude that C(V ) is concave.

B.4 PROOF OF LEMMA 2

Since I(w,T ) is concave w.r.t. w and l(w,wn,T ) is linear w.r.t. w, to show that l(w,wn,T ) is a
tangent line of I(w,T ) at point wn, it is enough to prove that statements (i) and (ii) hold. Statement
(i) holds trivially by the definitions of the two functions.

For statement (ii), consider

l(w,wn,T )− I(w,T )

=
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

T (s′|s, x) log
∑

x′′ wn(s, x
′′)∑

x′ T (s′|s, x′)wn(s, x′)

∑
x′ T (s′|s, x′)w(s, x′)∑

x′′ w(s, x′′)
.

Define

Pw(s
′|s) =

∑
x′ T (s′|s, x′)w(s, x′)∑

x′′ w(s, x′′)
, Pwn

(s′|s) =
∑

x′ T (s′|s, x′)wn(s, x
′)∑

x′′ wn(s, x′′)
.
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Note that
∑

s′ Pw(s
′|s) = 1. Hence it is indeed a conditional probability. Then

l(w,wn,T )− I(w,T ) =
∑
s∈S

∑
s′∈S

(∑
x∈X

w(s, x)T (s′|s, x)

)
log

Pw(s
′|s)

Pwn(s
′|s)

=
∑
s∈S

∑
x∈X

w(s, x)
∑
s′∈S

Pw(s
′|s) log Pw(s

′|s)
Pwn(s

′|s)

≥ 0,

where the inequality follows from the non-negativity of relative entropy. Therefore, l(w,wn,T ) is a
tangent line of I(w,T ) at point wn.

C SYSTEM EXPLANATION AND ALGORITHM DETAILS

In this Appendix, we first clarify the relationship between the theoretical results in Section 4 and the
algorithm in Section 5, as this distinction may be unclear to those unfamiliar with information and
coding theory. Following this clarification, we provide additional details about the components of
Act2Comm.

The concave optimization problem in Theorem 2 characterizes the capacity-reward tradeoff of the
action-state channel. It provides an upper bound for practically achievable coding rates under a
certain reward constraint. Solving the concave optimization yields the capacity and the optimal state-
action distribution ω, which can be translated to a stationary policy for the MDP via the following
formula:

π(a|s) = ω(s, a)∑
a′ ω(s, a′)

.

Note that this policy π can not be directly used as the coding policy for communication, as the
coding policy needs to generate actions based on both the state and the message. Therefore, in
Section 5, we propose Act2Comm to learn a coding policy that mimics the behavior of policy π from
the perspective of MDP control, with the input of message and feedback block.

For practical channel coding in the finite block-length regime, historical feedback has proven ben-
eficial based on prior experience with conventional channel coding. To effectively map messages
and feedback to actions, the transformer architecture with an attention mechanism is naturally well-
suited, forming the backbone for both the encoder and decoder components.

The components of communication via actions in MDPs using the proposed Act2Comm are summa-
rized in Table. 2. In particular,

• The encoder encodes a belief matrix Z(τ) ∈ Rτ×µ|S|
R using message block B(τ) and feed-

back block C(τ) at each coding round τ . After completing all l coding rounds, a final belief
map Z ∈ R

k
µ×µ|S|

R is constructed. Note that instead of directly outputting actions at each
time step, our encoder generates a continuous belief map, which is subsequently quantized
into decision rules. This approach not only enhances performance but also simplifies the
training of the critic network.

• A quantizer then generates the codeword U ∈ X |S|× k
R , where each element of the resultant

codeword, xt = U [st, t], represents the selected action for state st at time step t.

• Given the action and state, EAS channel then returns the next state.

• The decoder collects all states and then performs the decoding process, which outputs logits
M̂ ∈ R

k
µ×2µ for the message.

• Since the gradient cannot propagate through the EAS and quantizer to the encoder, a critic
network is introduced to link the belief map Z to the decoded logits M̂ . Specifically, the
critic network is trained to predict M̂k from Zk, producing M̂ck at each inner optimiza-
tion step k within the total sin steps. Thanks to the introduction of the critic network, the
gradient can propagate through it, from logits to the belief map. As shown in the table,
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Table 2: Functionality of Each System Component

Model components Function Input Output
Encoder Coding the belief matrix B(τ), C(τ) Z

Quantizer Generate decision rules Z U
EAS channel Generate state from actions U → xt st+1

Decoder Decoding the message s M̂ → m̂

Critic Network Estimate decoding logits Zk M̂ck

it effectively “links” the encoder’s output to the decoder’s output, thereby “skipping” the
quantizer, EAS channel and decoder, which are treated as the unknown environment during
the training phase.

C.1 QUANTIZER

The quantizer Q : R|S|× k
R → X |S|× k

R is designed to convert real-valued coding results
|X | · Sigmoid(Z) into integers corresponding to actions within the channel input alphabet set
X = {0, 1, . . . , |X | − 1}. For example, if there exist 5 actions and 1 state, then each element of
the coding result |X | · Sigmoid(Z) ∈ (0, 5) will be rounded down into the nearest action index. If
|X | · Sigmoid(Z) = [1.5, 0.8, 2.1, 3.2, 4.8], it will be rounded down to [1, 0, 2, 3, 4] as the channel
input via the quantizer Q.

Here, we adopt hard rounding, despite the availability of advanced quantization methods such as soft
rounding or noise injection during training. The chosen approach is intentionally straightforward,
and a critic network effectively mitigates the non-differentiability introduced by hard rounding.

C.2 CRITIC NETWORK AND ITERATIVE TRAINING

As shown in Fig. 7, a critic network is introduced to facilitate gradient backpropagation for encoder
optimization, treating the quantizer, channel, and decoder as an unknown environment. Before up-
dating the encoder and decoder, the Critic network is trained over sin steps to capture knowledge of
the environment, with the encoder and decoder frozen during this phase. Subsequently, the encoder
is updated with the assistance of the Critic network, aiming to jointly optimize for control and com-
munication, while keeping the decoder frozen. Following this, the optimized encoder is frozen, and
the decoder is updated based on the newly optimized encoder. With the updated decoder, the Critic
network is retrained to adapt to the updated environment, preparing it to support the next round of
encoder updates.

This process iteratively alternates between freezing one component while optimizing the other. From
the experiment, we observe that the training process is more stable when the encoder is updated once
for every two updates of the decoder. The effectiveness of this approach is visualized in a Fig. 11
and Table 5. The detailed training algorithm is presented in the Algorithm. 7

C.3 TRAINING AND INFERENCE ALGORITHM

To enhance readers’ understanding of the training and inference process, we provide the pseudocode
and illustration figures for (see Fig. 7) Act2Comm, detailing both the training and inference phases,
as shown in Algorithms 1 and 2. Furthermore, Fig. 11 visualizes the training process by tracking
the loss values throughout the iterative updates. For additional details about the training, the training
logs and source code are also available on the project page of this paper.

To be more specific for the training phase, we train the encoder first and then train the decoder.
The critic network, with control loss, is applied to the encoder. The decoder only considers the
communication loss. After training, the critic network is removed, as shown in Fig. 7 (c). Only the
encoder and decoder are deployed for communication and control, as shown in Fig. 8b.

20



Published as a conference paper at ICLR 2025

Encoder Quantizer Decoder

Gradient flow

 
 

Extended 
action-state channel

CriticNet

Unknown environment

Forward flow

CriticNet updates

Encoder updates

Decoder updates

CriticNet

Unknown environment

Decoder

updates
Encoder

Unknown environment

Decoder

Unknown environment

Decoder
Encoder

Encoder

CriticNet

updates updates

CriticNet

(a). Gradient flow of the Act2Comm

(b). Iterative training strategy

optimize 
communication

balance

communication
control

Encoder
 

Quantizer
 

Extended 
action-state channel

 

Transmitter

   

 
Decoder

Receiver

Se
qu

en
ce

pa
rt

iti
on 

Se
qu

en
ce

m
er

gi
ng

(c). Model workflow when inference

 

 

 

Figure 7: Illustration of the iterative training process: (a) Gradient flow in the proposed method,
where blue arrows indicate the gradient flow, and red arrows represent the forward process. (b)
Diagram of the update steps, where the red block represents the component being updated, the
blue block represents the frozen component, and the grey block indicates an unused component. (c)
Inference phase for the well-trained Act2Comm model, where the critic network is removed.

Table 3: Number of parameters, FLOPs, and coding times for the Act2Comm scheme (K = 12,
µ = 3, R = 1/3, sin = 20) with varying state numbers and action numbers, where the increased
value are colored with orange and red.

Action and state number Encoder Decoder
(|A|, |S|) with |A| ↑ (5, 16) (20, 16) (40, 16) (5, 16) (20, 16) (40, 16)

Parameters (k) 32.244 32.244 32.244 50.536 50.536 50.536
FLOPs (millions) 0.3164 0.3164 0.3164 0.1989 0.1989 0.1989
Coding Time (ms) 6.691 6.691 6.691 2.613 2.613 2.613

(|A|, |S|) with |S| ↑ (5, 16) (5, 64) (5, 256) (5, 16) (5, 64) (5, 256)
Parameters (k) 32.244 46.51 103.52 50.536 50.536 50.536

FLOPs (millions) 0.3164 0.4546 1.007 0.1989 0.1989 0.1989
Coding Time (ms) 6.691 6.69 7.04 2.613 2.613 2.613

C.4 COMPLEXITY ANALYSIS

To analyze the complexity of the proposed method, we consider an input size of 12 bits, 4 blocks,
and a rate of R = 1/3. The experimental results, presented in Table 4, were obtained using a single
GPU-A5000 with 10, 000 runs for the ”Erratic Robot” environment.

From the table, we observe that during the training process, the main computational complexity
arises from the critic network, as it needs to run around 20 iterations for each encoder update. Note
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Algorithm 1 Training strategy of the Act2Comm scheme
Input: The initial MDP state: s0, Inner optimization step: sin,
Learning rates of encoder, decoder, and critic network: β, α, α, with α = 5β,
Target policy: π, balanced parameter λ.
Output: Parameters of the encoder and decoder: θ, ξ.

1: for the i-th step within the total training steps do
2: m = [b1; b2; . . . ; bl] ∈ {0, 1}l×µ, // Randomly sample and divide the message
3: C(1) ∈ 01×

µ
R×3, // Initialize the feedback block

4: for each coding round τ (1 ≤ τ ≤ l) do
5: B(τ) = [2b1 − 1; . . . ; 2bτ − 1] ∈ Rτ×µ, // Construct the message block
6: C(τ) = [C1; . . . ;Cτ ] ∈ Rτ× µ

R×3, // Update the feedback block
7: Z(τ) = Eθ(B(τ),C(τ)) ∈ Rτ×µ|S|

R ,
z(τ) = Z(τ)[τ, :] ∈ R

µ|S|
R → R|S|× µ

R , // Encoding the belief map
8: U(τ) = Q(|X |Sigmoid(z(τ))) ∈ X |S|× µ

R , // Quantization for decision rules
9: for t = 1 : 1 : µ

R do
10: st+1 = T (st+1|st,U(τ)[st, t]), // Go through the EAS channel for µ

R time steps
11: c

(τ)
t = [s

(τ)
t , x

(τ)
t , s

(τ)
t+1] ∈ R1×3, // Update the feedback vector

12: end for
13: Cτ = [c

(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×3, // Update the feedback matrix

14: end for
15: Z = [z(1); . . . ; z(l)] ∈ R

k
µ×µ|S|

R , s = [s1; . . . ; s k
R
] ∈ S k

R → S
k
µ× µ

R ,

16: M̂ = D(s) ∈ R
k
µ×2µ , // Collect codewords, states, and decode the logits

17: // Train the Critic network
18: if i%2 == 0 then
19: for k = 1 : 1 : sin do
20: Zk = Z +Wk, with Wk ∈ R

k
µ×µ|S|

R ∼ N (0, σ2
w) // Neighboring sampling

21: Uk = Q(|X |Sigmoid(Zk)) ∈ X |S|× k
R ,

22: for t = 1 : 1 : k
R do

23: st+1 = T (st+1|st,U(k)[st, t]), // Go through the EAS channel
24: end for
25: ŝ(k) = [s1; . . . ; s k

R
] ∈ S k

R → S
k
µ× µ

R , // Collect the observed states

26: M̂k = D(ŝ(k)) ∈ R
k
µ×2µ , // Decode the logits with a frozen decoder

27: M̂ck = C(Zk) ∈ R
k
µ×2µ // Predict the logits with critic network

28: Lcn = MSE(M̂ck,M̂k) // Compute the critic loss with MSE
29: ϕk+1 = ϕk − β∇ϕLcn // Update the Critic network.
30: end for
31: // Train the Encoder with a frozen Decoder
32: Lcont = MSE(π, f̂) // Control loss term for the estimated f̂

33: Lcom = cross-entropy(m,M̂ck) // Communication loss term
34: θ = θ − α∇θ(Lcom + λLcont) // Update the encoder
35: end if
36: // Train the Decoder with a frozen Encoder
37: for each coding round and corresponding time step do
38: z(τ) = Eθ(B(τ),C(τ))[τ, :] → U (τ), // Re-encode and re-quantize the decision rules
39: st+1 = T (st+1|st,U(τ)[st, t]), // Re-go through the EAS channel for all time steps
40: end for
41: s = [s1; . . . ; s k

R
], M̂ = D(s) // Decode the observed states from a forzen encoder

42: Lcom = cross-entropy(m,M̂) // Communication loss term
43: ξ = ξ − β∇ξLcom // Update the decoder
44: end for
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Algorithm 2 Inference of the Act2Comm scheme
Input and output for the encoding:
Input: Initial state: s0, k-bits message m, coding rate R, well-trained encoder: θ∗;
Output: Codeword (decision rules) Z ∈ R|S|× k

R .

Input and output for the decoding:
Input: Observed states s ∈ S k

R , well-trained decoder ξ∗;
Output: Predicted message: m̂.

1: Encoding phase:
2: C(1) ∈ 01×

µ
R×3, // Initialize the feedback block

3: for each coding round τ (1 ≤ τ ≤ l) do
4: B(τ) = [2b1 − 1; . . . ; 2bτ − 1] ∈ Rτ×µ, // Construct the message block
5: C(τ) = [C1; . . . ;Cτ ] ∈ Rτ× µ

R×3, // Update the feedback block
6: Z(τ) = Eθ(B(τ),C(τ)) ∈ Rτ×µ|S|

R ,
z(τ) = Z(τ)[τ, :] ∈ R

µ|S|
R → R|S|× µ

R , // Encoding the belief map
7: U(τ) = Q(|X |Sigmoid(Z)) ∈ X |S|× µ

R , // Quantization for decision rules
8: for t = 1 : 1 : µ

R do
9: x

(τ)
t = U (τ)[st, t])

s
(τ)
t+1 = T (s

(τ)
t+1|s

(τ)
t , x

(τ)
t ), // Go through the EAS channel for µ

R time steps

10: c
(τ)
t = [s

(τ)
t , x

(τ)
t , s

(τ)
t+1] ∈ R1×3, // Update the feedback vector

11: end for
12: Cτ = [c

(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×3, // Update the feedback matrix

13: end for
14: Z = [z(1); . . . ; z(l)] ∈ R

k
µ×µ|S|

R → R|S|× k
R , // Collect the final codeword

15: Decoding phase:
16: s = [s1; . . . ; s k

R
] ∈ S k

R → S
k
µ× µ

R , // Collect the observed states

17: M̂ = D(s) ∈ R
k
µ×2µ , // Decode the logits

18: m̂ = argmax(Softmax(M̂), dim = −1) // Decode each block labels

Table 4: Number of parameters, FLOPs, and coding times for the Act2Comm scheme (K = 12,
µ = 3, R = 1/3, sin = 20) with varying critic network training steps sin for both training and
inference phases. Note that the backpropagation computational complexity is approximately 2–3
times that of the forward computation.

Training Phase (forward)

Model components Encoder Decoder CrititNet CriticNet CriticNet
sin = 5 sin = 10 sin = 20

Parameters (k) 32.244 50.536 7.568 7.568 7.568
FLOPs (millions) 0.3164 0.1989 0.1454 0.2909 0.5818

Inference Phase
Model components Encoder Decoder Critic network

Parameters (k) 32.244 50.536 ✗
FLOPs (millions) 0.3164 0.1989 ✗
Coding Time (ms) 6.691 2.613 ✗

that the back-propagation FLOPs can be estimated by multiplying the forward FLOPs with a factor
(typically 2–3x). During inference, the critic network is removed. We observe that the encoding
process can be completed within 10 ms, while the decoding process is even faster, taking less than 3
ms for the message.
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We also analyze the complexity of our approach concerning increasing state and action spaces.
Specifically, based on the design of Act2Comm, the number of actions does not impact the scaling
performance of the model, in terms of the computational complexity. A larger action space primarily
contributes to more diversity in decision rules, without increasing the computational complexity of
the approach. For increased state spaces, the complexity grows only in the encoder component. This
occurs because the computational complexity of the encoder increases as the output matrix size
expands with the number of states.

However, environments with more complex action or state spaces may lead to a more challeng-
ing learning process, potentially affecting performance. To validate our method in such scenarios,
we introduced a new environment, the “Erratic Robot,” which features a five-action space. Results
demonstrate that our method remains effective, even in this more complex setting.

C.5 VECTOR REPRESENTATION OF STATES AND ACTIONS

This paper focuses on MDPs with finite state and action spaces, which allows us to represent states
and actions as scalar integers by indexing them. This means that even when states and actions are
vectors, they can be mapped to scalars. We adopt this approach in the proposed Act2Comm for ease
of presentation. However, it is worth noting that using vector representations for states and actions
can be beneficial in some MDPs. This can be implemented with minor adjustments to the feedback
structure for the encoder and the input structure for the decoder.

Specifically, with vector representations, the feedback vector is defined as: c
(τ)
t ≜

[s
(τ)
t ,x

(τ)
t , s

(τ)
t+1] ∈ R1×(2ns+nx), where ns and nx are the dimensionalities of state and action.

Here, s(τ)t ∈ S1×ns and s
(τ)
t+1 ∈ S1×ns are the vector representations of states, rather than their

scalar counterparts (i.e., indices); similarly, x(τ)
t ∈ X 1×nx is the vector representation of the ac-

tion. Accordingly, the feedback matrix is defined as Cτ = [c
(τ)
1 ; . . . ; c

(τ)
µ
R

] ∈ R
µ
R×(2ns+nx), and

the feedback block can be constructed as C(τ) ≜ [C1; . . . ;Cτ ] ∈ Rτ× µ
R×(2ns+nx). Consequently,

state observations s ≜ [s1; . . . ; s k
R
] ∈ S k

R×ns are fed into the decoder to produce logits.

To evaluate the effectiveness of Act2Comm with vector representations, we applied this variant
to the “Catch the Ball” scenario with R = 1/3 (cf. Fig. 4a). In this environment, the state is
represented as a vector [sa, sb], where sa ∈ {0, 1, 2} indicates the position of the board, and
sb ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} indicates the position of the ball. The performance of Act2Comm with
vector representations in this experiment is very similar to that achieved with scalar state represen-
tations, as shown in Fig. 4. Notably, we observe that the vector representation offers advantages
such as more stable and faster convergence during training. This is illustrated in Fig. 8a, where the
loss value decreases and converges more quickly during training compared to the scalar state repre-
sentation counterpart. An intuitive explanation for this result is that the vector state representation
captures more detailed features of the environment, which may potentially facilitate learning.

D EXPERIMENTAL DETAILS

D.1 EXPERIMENT SETUP

For the Act2Comm scheme, we train the model with a batch size of 4096, a learning rate of 0.001, and
an Adam-based lookahead optimizer (Zhang et al., 2019). The inner-training for the critic network
consists of sin = 20 steps, with a noise variance of σ2

w = 0.1. Each block has a length of µ = 3,
and temperature parameter is as γ = 10, γ = 50, γ = 100, γ = 200. The performance presented is
averaged over 20, 000 execution times. To investigate the trade-offs, we train the Act2Comm model
with λ ∈ [0.01, 20].

The detailed architecture of the Act2Comm scheme is provided in Fig. 8b. At the transmitter, a
transformer-based encoder is utilized to generate the z(τ) from B(τ) and C(τ) for each coding
round. Specifically, C(τ) and B(τ) are firstly processed through multilayer perceptron (MLP) lay-
ers, then concatenated for linear projection and positional encoding operations, resulting in F0 ∈
Rτ×d, where d is the hidden layer dimension. After Lt transformer layers, the resultant FLt ∈ Rτ×d
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Figure 8: (a). Training process comparison for scalar state and vector state representations, where
λ = 20, γ = 50 and R = 1/3. (b). The architecture of the Act2Comm.
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(a) Lucky wheel. (b) Catch the Ball. (c) Erratic robot.

Figure 9: Illustrations of experimental MDP environments

is further transformed by a fully-connected layer into Z(τ). The decoding process begins with re-
shaping S into S

k
µ× µ

R . This reshaped S is then processed symmetrically through fully-connected
layers, positional encoding, and Lr transformer layers, yielding the feature DLr ∈ R

k
µ×d. Subse-

quently, DLr is input into a fully-connected layer to generate the logits M̂ ∈ Rl×2µ for each block.
After a softmax function, we predict the label of m and transform it into bit stream m̂. Specifically,
we set d = 32, Lt = 2 and Lt = 4 during the experiments.

D.2 LUCKY WHEEL

As illustrated in Fig. 9a, the wheel is evenly divided into three regions. At each time step, the player
can select either action 0 or action 1, where action 0 corresponds to a clockwise rotation of the wheel,
and action 1 corresponds to an anti-clockwise rotation. If action 0 is selected, there is a probability
p = 0.2 that the pointer remains in its current region, and a probability 1 − p = 0.8 that it moves
to the next region in the clockwise direction. Similarly, if action 1 is selected, there is a probability
p = 0.2 that the pointer remains in its current region, and a probability 1− p = 0.8 that it moves to
the next region in the anti-clockwise direction. The rewards for the three regions are 5, −5, and 0,
respectively. The player receives a reward at each time step based on the region in which the pointer
is located.

D.3 CATCH THE BALL

The “Catch the Ball” game is set in a 3 × 3 grid, as illustrated in Fig. 9b. A ball randomly appears
at the top of the grid and descends one grid space at each time step. Meanwhile, a board at the
bottom moves horizontally to catch the falling ball. Each time the board successfully catches a ball,
the player receives a reward r. If the ball falls to the bottom of the grid without being caught, it
disappears, resulting in a penalty of −r for the player. At all other times, there are no rewards or
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Figure 10: Control-communication trade-off of Act2Comm in “Erratic Robot”.

penalties for the player. After a ball disappears or is caught, a new ball appears randomly (with equal
probability) at one of the three positions at the top of the grid.

The player has three available actions to move the board: move left, move right, or remain stationary.
If the player chooses to move left or right, there is a probability p ∈ [0, 1) that the movement fails
(in which case the board remains in its current position), and a probability 1−p that the board moves
for one grid space successfully as intended. Additionally, any action that attempts to move the board
outside the grid will always fail. In this experiment, we set r = 5 and p = 0.8.

D.4 ERRATIC ROBOT.

The ‘Erratic robot’ game takes place on a 4×4 grid map with 16 states and 5 actions, as shown in Fig.
9c. The robot is designed to minimize the number of steps required to collect goods while avoiding
obstacle points. Specifically, its primary objective is to continuously take goods from designated
destination points, earning a reward of +5 for each successful collection. The grid also includes
four obstacle points, each incurring a penalty of −2 when encountered. The robot has five available
actions: move left, move right, move up, move down, or remain stationary. Due to the instability,
any movement of the robot has a probability p ∈ [0, 1) of resulting in an additional unintended step.
Actions that would move the robot outside the grid boundaries always fail. In this experiment, the
probability of additional operation is set to p = 0.2. The results are presented in the Fig. 10.

As shown in the Fig. 10, the proposed Act2cComm scheme can achieve perfect communication with
R = 1/5, albeit with a reduction in the average reward from the optimal value of 0.753 to 0.45. If we
relax BER, the same rate can be achieved with a better reward. Similarly, for different reward targets,
we can obtain different communication performances. This additional experiment also highlights the
versatility of the proposed Act2Comm scheme across various environments.

E ADDITIONAL ABLATION EXPERIMENTS

This section presents additional ablation experiments for our proposed Act2Comm framework, using
the lucky wheel environment as the default experimental setting with an initial state 0.

E.1 ABLATION STUDY OVER DIFFERENT MECHANISMS

To showcase the efficiency of our approach, we present the loss values monitored throughout the
iterative training process in Fig. 11. While the loss value occasionally fluctuates during the training
updates—primarily due to the alternating update scheme between the decoder and encoder—overall,
the model exhibits a rapid and consistent convergence.

Additionally, to further validate the performance of the Critic Network, we compare the estimated
loss values generated by the Critic with the true loss during training. As shown in Fig. 11, the Critic
Network maintains accurate loss estimation throughout the training phase.

We present a detailed comparative analysis of each mechanism within our method, as shown in
Table 5, emphasizing the specific contributions of each component to the cumulative performance
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Figure 11: Loss during the training process,
where the loss value decreases significantly
with each decoder update, while showing a
slight increase with each encoder update.

Table 5: Ablation study when sequentially removing one im-
provement after another. Note higher BER means worse per-
formance for a given reward here with R = 1/4.
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Figure 12: (a) Performance for different coding schemes. (b) Approaching a given policy π̄.

improvements. Notably, utilizing the Critic network to predict the loss directly, or eliminating policy
noise during inner-step training can yield failure, underscoring the critical importance of appropriate
policy noise and neighboring sampling mechanisms.

All these design elements collectively ensure that our proposed solution consistently delivers robust
performance across a wide range of scenarios.

E.2 ABLATION STUDY OVER THE FEEDBACK DESIGN

Act2Comm supports both history-dependent coding, which encodes using both message and feed-
back blocks, and Markov coding, which encodes using only the message block. We examine
Act2Comm scheme with both history-dependent codes and Markov codes across various coding
rates R for a pure communication optimization.

The experimental results are depicted in Fig. 12a. It is evident that the BER performance improves
significantly as the channel coding rate decreases. Specifically, with a coding rate R = 1/6, the
BER reaches 10−6 level, indicating a significant enhancement in performance due to the increased
number of channel uses. Comparing history-dependent codes with Markov codes reveals that in-
corporating feedback blocks can yield substantial performance improvements. Although, from a
theoretical perspective, channel feedback does not enhance the capacity of a memoryless channel, it
is beneficial for finite block-length coding. The observed benefits may be attributed to the attention
mechanism applied to historical states and their corresponding actions. This mechanism effectively
utilizes prior coding experience to simplify the subsequent coding process.
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E.3 ABLATION STUDY OVER THE MESSAGE LENGTH

Additional experiments with Act2Comm are conducted across different message lengths and coding
rates, as presented in Table. 6. The results demonstrate that Act2Comm scheme consistently delivers
competitive performance over different message lengths and coding rates. An interesting observa-
tion is that communication performance generally improves with longer block lengths; however, it
eventually declines due to the increased learning complexity. Notably, for longer message lengths k,
adapting a larger block size µ can potentially enhance performance while addressing the increased
learning complexity.

Coding rate k = 12 k = 24 k = 36
R = 1/2 1.16e−2 1.06e−2 9.15e−3

R = 1/3 1.06e−3 1.02e−3 1.14e−3

R = 1/5 2.84e−5 1.62e−5 2.06e−5

Table 6: BER for Act2Comm across different message length and coding rate, where µ = 3.

E.4 ABLATION STUDY OVER A SPECIFIC POLICY

In the previous experiments, we used the optimal control policy as the target policy for training the
encoder, as this is better for achieving a higher control reward. However, our approach is highly
flexible and can be adapted to any control policy, allowing users to tailor the system to align with
specific policies for their own tasks.

In the lucky wheel environment, now we consider a sub-optimal policy π̄ as the target policy, given
as:

π̄ =

[
π(x = 0|s = 0) π(x = 1|s = 0)
π(x = 0|s = 1) π(x = 1|s = 1)
π(x = 0|s = 2) π(x = 1|s = 2)

]
=

[
0.7 0.3
0.3 0.7
0.7 0.3

]
. (23)

We evaluate the Act2Comm scheme with different coding rates and consider a single message trans-
mission with an accumulated reward. The experimental results in Fig. 12b display the curve repre-
senting the lower envelope of all possible BER-reward trade-off outcomes for each coding rate. This
curve illustrates that the region above it is achievable by our Act2Comm scheme.

Notably, our method can achieve good communication performance, approximately 4 × 10−1, 4 ×
10−2, and 3×10−3 for R = 1/3, R = 1/4, and R = 1/5 respectively, with almost no loss in control
performance. This is due to the stochastic nature of our target policy, as opposed to a deterministic
one, allowing our method to adaptively learn a similar policy that maintains comparable rewards
while being more favorable for channel coding. In summary, the experimental results demonstrate
that our Act2Comm framework achieves satisfactory communication performance while maintaining
the reward, as defined by a specific policy, at a certain level in scenarios such as those involving
stochastic policies.
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