
Appendix

A Broader Impacts

The proposed research on pre-training temporal graph neural networks across multiple networks has
the potential to advance the field of machine learning and its applications significantly. By introducing
methodologies to enhance the scalability and transferability of TGNNs, this work could revolutionize
areas like network security, financial fraud detection, and real-time social network analysis, where
dynamic and adaptive models are essential. The publicly available dataset of 84 Ethereum-based
temporal networks will serve as a valuable resource for the research community, fostering innovation
and collaboration. Furthermore, the principles of multi-network pre-training introduced here can
inspire analogous advances in other temporal data domains, such as healthcare, transportation, and
climate science. This research opens up a new direction in training generalizable temporal graph
models that, for the first time, can be trained on distinct temporal networks, paving the way for
Temporal Graph Foundation Models.

This work also introduces a set of Ethereum transaction token networks, which are publicly available
to users who have the necessary resources, such as fast SSDs, large RAM, and ample disk space,
to synchronize Ethereum clients and manually extract blocks. Additionally, all Ethereum data is
accessible on numerous Ethereum explorer sites such as etherscan.io. An Ethereum user’s privacy
depends on whether personally identifiable information (PII) is associated with any of their blockchain
address, which serves as account handles and are considered pseudonymous. If such PII were obtained
from other sources, our datasets could potentially be used to link Ethereum addresses. However,
real-life identities can only be discovered using IP tracking information, which we neither have nor
share. Our data does not contain any PII. Furthermore, we have developed a request to exclude an
address from the dataset.

B Extended Related Work on Graph Benchmarks

Benchmark datasets have become fundamental for advancing graph machine learning, providing a
common ground to evaluate models and facilitate the development of graph foundation models. Early
graph ML studies often relied on a handful of small, static benchmark graphs (e.g., citation networks
like Cora/Citeseer and molecular graphs from the TU collection [37]). Repositories such as the
Stanford SNAP dataset collection and the Network Repository cataloged many graphs for research
use, but without standardized tasks or unified evaluation protocols [28, 47]. The lack of consistency
in tasks and splits made it difficult to compare algorithms fairly. This motivated community efforts to
create dedicated benchmark suites that are large-scale, diverse, and standardized.

B.1 Static Graph Benchmarks

Static graph benchmarks focus on time-agnostic graph tasks (node classification, link prediction,
graph classification) on fixed networks or sets of graphs. A seminal effort in this direction is the Open
Graph Benchmark (OGB) [15], introduced at NeurIPS 2021. OGB provides a diverse collection
of realistic graph datasets spanning domains such as social networks, citation networks, molecular
graphs, knowledge graphs, and more. Importantly, OGB defines consistent evaluation protocols with
meaningful train/validation/test splits (e.g., avoiding overly easy random splits) and unified metrics,
addressing issues of reproducibility and out-of-distribution evaluation. The OGB suite includes
challenging datasets like a citation network with hundreds of thousands of nodes (OGBN-Arxiv), a
protein interface graph (OGBL-PPA) for link prediction, and molecule datasets for graph property
prediction [15]. By benchmarking various GNN models on these datasets, Hu et al. showed that OGB
tasks remain far from solved and identified key challenges such as scalability to large graphs and
generalization under realistic splits. Following OGB’s release, it has become a standard evaluation
framework in graph ML research, with a public leaderboard tracking state-of-the-art results on each
task.

Building on OGB, the community pushed toward even larger-scale benchmarks to catalyze foundation
model-level advances. Hu et al. organized the OGB Large-Scale Challenge (OGB-LSC) in 2021, as
part of the KDD Cup and later reported at NeurIPS 2021 [17]. OGB-LSC introduced three exceedingly
large graph datasets, each targeting a core task at unprecedented scale: (1) a node classification task

20

https://etherscan.io/

on a heterogeneous academic graph with over 240 million nodes and 1.2 billion edges (MAG240M),
(2) a link prediction task on a massive knowledge graph with 90 million entities (WikiKG90M), and
(3) a graph regression task on a molecular dataset with 4̃ million molecular graphs (PCQM4M) [17].
These datasets are orders of magnitude larger than prior benchmarks. The challenge drew 500+
teams, yielding innovative, scalable GNN approaches and significant performance improvements.
Notably, the best-performing models in OGB-LSC employed techniques like deep transformer-based
GNNs and aggressive neighbor sampling to handle scale (e.g., the Graphormer model, a Transformer
tailored to graphs, won the molecular track) [63]. The OGB-LSC findings highlighted that expressive
models can significantly outperform simpler, scalable baselines on large graphs, but also that many
standard GNNs fail to even run at this scale without specialized training algorithms [17]. The annual
OGB-LSC benchmark (continued in 2022) serves as a graph analog to ImageNet challenges, steering
the community towards scalable graph learning techniques and pretraining strategies suited for
extremely large data.

Another notable effort for static graphs is the Benchmarking Graph Neural Networks study by
Dwivedi et al. [32]. Rather than introducing new data, the work systematically evaluated popular
GNN architectures on a curated set of existing graph datasets (including both classical node/graph
classification benchmarks and synthetic graph tasks). It revealed inconsistencies in prior evaluations
and underscored the need for standard benchmarks like OGB. Overall, these static benchmark
initiatives (OGB and others) have greatly improved the rigor and comparability of graph model
evaluation. They also supply the data foundation for graph representation learning – for instance,
OGB datasets are commonly used to pre-train GNNs or evaluate graph foundation models via
fine-tuning.

B.2 Temporal Graph Benchmarks

While static benchmarks assume a fixed graph structure, many real-world graphs are dynamic, evolv-
ing over time with new nodes or edges (e.g., social interactions, transaction networks, communication
networks). Until recently, research on temporal graph neural networks relied on individually curated
datasets and inconsistent protocols. For example, Kumar et al. (KDD 2019) introduced dynamic
interaction graphs for Reddit and Wikipedia to evaluate embedding trajectory prediction [27], and
various works used their own splits of social network data (e.g., user-item interaction logs, citation
dynamics) to benchmark temporal GNN models. This fragmented landscape made it hard to gauge
progress in learning on temporal graphs.

Recognizing this gap, Huang et al. proposed the Temporal Graph Benchmark (TGB), first released
in 2023 [19]. TGB (accepted at NeurIPS 2023) is a unified collection of large-scale temporal graph
datasets with standardized tasks and evaluation pipelines. It covers diverse domains, including social
networks, communication, trade, finance, and transportation, reflecting the broad applicability of
temporal graph learning. TGB defines two primary task categories: dynamic link prediction (predict-
ing the future existence or properties of edges) and dynamic node property prediction (predicting
future attributes or labels of nodes). Each dataset consists of a sequence of graph snapshots or time-
stamped edge events spanning multiple years. For example, TGB includes a Wikipedia co-editing
network (users editing pages over time), an E-commerce review network (Amazon user–product
interactions over 20+ years), a Reddit reply network (users replying to each other over time), and
an air traffic network (temporal flights between airports), among others. Crucially, TGB provides
consistent train/validation/test splits along the timeline and an automatic evaluation pipeline, enabling
reproducible benchmarking of temporal graph models.

In their extensive experiments, Huang et al. found that the performance of popular temporal GNN
architectures varies wildly across different TGB datasets, and intriguingly, on certain dynamic node
prediction tasks, simple time-series models can outperform complex temporal GNNs [19]. These
insights point to open challenges and the need for better inductive biases in temporal models. TGB is
an actively maintained project with a public leaderboard, poised to drive research in temporal graph
representation learning. Recently, TGB 2.0 was introduced at NeurIPS 2024 to extend this benchmark
to multi-relational dynamic graphs, i.e., temporal knowledge graphs and heterogeneous graphs with
various edge types [13]. TGB 2.0 contributed eight new datasets spanning domains like social media,
biomedicine, and communications, with up to tens of millions of time-stamped edges [13]. The
inclusion of temporal knowledge graphs (e.g., evolving knowledge bases of events) bridges graph
ML with temporal reasoning tasks from the knowledge graph community. Experiments in TGB

21

2.0 underscored that leveraging edge type (relation) information is crucial for high performance
on multi-relational tasks, and again noted that simple heuristic methods can sometimes rival more
sophisticated models [13]. However, most existing methods struggled to scale to the largest TGB 2.0
graphs, reinforcing the necessity for new scalable temporal GNN techniques. Together, TGB and its
extension provide a comprehensive platform to evaluate how well algorithms handle the evolving,
temporal aspect of graphs, complementing the static benchmarks like OGB.

B.3 Blockchain Graph Benchmarks

One emerging application domain for graph learning is blockchain networks, which pose unique
challenges and opportunities for benchmarks. Blockchains (like Bitcoin and Ethereum) can be
represented as graphs (e.g., transaction networks where addresses are nodes and transactions are
edges), often large-scale, dynamic, and multi-layered. For instance, the Bitcoin network continuously
grows with each block of transactions, and Ethereum’s smart contract calls form complex interaction
graphs. Traditionally, machine learning on blockchain graphs was limited by data accessibility and
labeling: researchers relied on isolated datasets curated for specific tasks, with no unified benchmark.
A notable example is the Elliptic illicit transaction dataset [57], introduced in 2019, which consists of
a Bitcoin transaction graph with ∼200K nodes labeled as licit or illicit. This dataset has been widely
used to evaluate graph-based fraud detection and anti-money laundering models, and it established
a baseline task of classifying illicit transactions on a large transaction graph. Other works have
compiled datasets for tasks like Ethereum phishing address detection or DeFi fraud, but each dataset
was used in a siloed manner in its respective paper [30].

To advance graph ML for blockchain data, Shamsi et al. introduced Chartalist [49], the first com-
prehensive repository of labeled blockchain graph datasets, which was published in the NeurIPS
2022 Datasets and Benchmarks track. Chartalist organizes blockchain data (from both UTXO-based
blockchains like Bitcoin and account-based blockchains like Ethereum) into ML-ready graph datasets,
complete with labels and task definitions. Importantly, it addresses the considerable preprocessing
burden: raw blockchain ledgers are massive and require domain expertise to convert into meaningful
graph features and labels. Chartalist provides cleaned and annotated graphs, including dynamic
multi-layer networks extracted from blockchains. For example, it curates the evolving transaction
graph of Bitcoin with ground-truth labels for certain known illicit events (like ransomware addresses),
and similarly for Ethereum, it tracks address interaction networks with identified scams or anoma-
lies [49]. By incorporating major blockchain events and annotating addresses (e.g., hacks, frauds),
Chartalist enables supervised learning tasks such as address classification, transaction link prediction,
temporal anomaly detection, and forecasting on blockchain graphs. This was a significant step, as
previously no public benchmark existed for graph ML on blockchain data [49]. Chartalist’s datasets
are large-scale (the Bitcoin network graph in 2025 exceeds 400 million edges) and dynamic by nature,
reflecting months or years of blockchain activity rather than static snapshots.

Recent benchmark efforts have further expanded blockchain graph datasets and tasks. One example
is the "Multi-Chain Graphs of Graphs" dataset proposed by Luo et al. [35]. This work goes beyond
single-chain analysis by constructing a hierarchical Graph-of-Graphs: local transaction graphs for
multiple cryptocurrencies are connected via a higher-level graph that captures interactions between
those cryptocurrencies (for instance, if one token is used to purchase another). Their dataset includes
detailed labels at the token level and links across blockchains, supporting novel tasks like cross-
chain link prediction and anomaly detection. This approach recognizes that modern blockchain
ecosystems are interconnected (e.g., users swapping assets across chains), and analyzing them
requires considering a network-of-networks structure. Another notable dataset is EX-Graph by
Wang et al. [55], introduced at ICLR 2024, which bridges blockchain data with social networks.
EX-Graph links the Ethereum transaction graph with the Twitter (X) social graph by identifying
accounts that are active in both networks. It contains 2 million Ethereum addresses (nodes) and 30
million transaction edges, alongside 1 million Twitter user nodes and their following relationships,
with over 30,000 address–social account linkages. By combining on-chain and off-chain (social)
information, this benchmark allows researchers to study how incorporating external social features
can improve blockchain analytics, for example, using Twitter interactions to predict cryptocurrency
address behavior or to detect coordinated illicit activities. The introduction of EX-Graph underscores
a trend of creating hybrid benchmarks that connect blockchain graphs with other data modalities to
enrich learning signals.

22

It is worth noting that blockchain graphs also appear in the aforementioned broad benchmarks: for
instance, the Temporal Graph Benchmark includes a cryptocurrency transaction dataset derived
from Ethereum token transfers (a stablecoin transaction network during the 2022 Terra collapse) as
one of its dynamic link prediction tasks [19, 49]. Similarly, TGB’s dynamic node prediction tasks
include a user–token interaction graph where the goal is to predict users’ future activity with various
cryptocurrencies [19]. The inclusion of these in TGB indicates a convergence where domain-specific
efforts (like Chartalist) feed into general benchmark frameworks (like TGB). Going forward, we
anticipate more blockchain-specific benchmarks to emerge, potentially covering areas like smart
contract vulnerability graphs or transaction network simulations, given the growing interest in
applying GNNs to cryptocurrency ecosystems. For now, Chartalist and its derivatives represent
the state-of-the-art in providing public, labeled blockchain graph benchmarks for machine learning
research.

B.4 Benchmarks and Graph Foundation Models

The development of these benchmarks has been closely intertwined with progress on graph foundation
models and training algorithms. By graph foundation models, we refer to large, general-purpose
graph neural networks (or related architectures) that are trained on broad graph data (often via
self-supervised learning) and can be adapted to a wide range of downstream tasks, analogous to
NLP’s pre-trained language models. High-quality benchmark datasets are a prerequisite for training
and evaluating such models. For example, the massive node classification graph in OGB-LSC
(MAG240M) and the huge molecular graph set in OGB have spurred research into pre-training GNNs
on unlabeled graph data at scale [17]. Likewise, the diverse tasks in OGB (node, link, graph prediction
across domains) provide natural downstream evaluations for a foundation model’s versatility. We
have started to see the emergence of self-supervised GNN training frameworks leveraging these
benchmarks. Notably, Hu et al. proposed GPT-GNN [18], a generative pre-training method for GNNs
using an attribute-masked graph generation task, which they demonstrated on the billion-edge Open
Academic Graph (a subset of MAG) and an Amazon reviews graph. Their pre-trained model achieved
significant gains on downstream node classification, showing the promise of foundation models on
large graphs. Similarly, contrastive learning approaches like GraphCL [65] and graph autoencoders
like GraphMAE [14] have been applied to OGB datasets to learn transferable representations. These
algorithms create task-agnostic embeddings by maximizing agreement between differently perturbed
versions of the same graph or by reconstructing masked features, enabling the model to capture
generic graph structure and semantics.

Finally, benchmarks like TGB are driving advances in temporal graph learning algorithms that will
feed into foundation models capable of handling dynamic data. The surprising observation that
simple models sometimes beat complex temporal GNNs on TGB [19] suggests current architectures
are not fully capturing temporal information; this has led researchers to rethink model designs
(e.g., incorporating memory modules or temporal attention mechanisms) and training procedures for
dynamic graphs. A foundation model that can jointly understand structure and temporal evolution
might be trained by self-supervision on large temporal graphs (many of which are now available
through TGB and related efforts). The multi-relational focus of TGB 2.0 [13] also pushes the
development of models that can handle richly attributed graphs (multiple edge types, dynamic
attributes), which is relevant for heterogeneous graph foundation models.

The ecosystem of graph and blockchain benchmarks, from static collections like OGB, to dynamic
suites like TGB, and domain-specific data like Chartalist, provides the critical testbed and training
ground for graph foundation models. These benchmarks cover a broad spectrum of graph scenarios
that a foundation model should excel in: large-scale static networks, evolving temporal graphs,
and complex multi-relational or cross-domain graphs (as in blockchains). By benchmarking new
algorithms on these datasets, researchers can identify generalization gaps and scalability issues,
guiding the design of more powerful graph neural network architectures. The continued expansion
of benchmark datasets (especially at top venues like NeurIPS) ensures that, as graph ML enters the
foundation model era, it does so on a firm, well-evaluated base.

Why is the MiNT Benchmark Unique? Our MiNT benchmark introduces a novel scale and
structure for temporal graph learning by assembling 84 real-world ERC20 token transaction networks
and 8 social interaction graphs, enabling both within- and cross-domain transfer studies. Unlike
prior benchmarks such as TGB [19] and OGB [15, 16], which offer diverse but isolated dynamic

23

or static graph tasks, MiNT focuses specifically on the challenge of learning transferable temporal
representations across independent dynamic graphs.

Table 6: Comparison of temporal graph bench-
marks.

Dataset # temporal graphs included # newly introduced graphs
EdgeBank [42] 13 6
ROLAND [64] 8 0
TGB [19] 9 8
GraphPulse [50] 9 7
Ours (MiNT) 92 84

Each token network in MiNT is temporally dis-
joint, semantically distinct, and characterized
by varying lifespan, novelty, and transactional
behavior, making it unsuitable for naive aggrega-
tion or multi-label classification. This indepen-
dence supports rigorous investigation of zero-
shot generalization and pre-training on long-
range temporal structures. Moreover, MiNT
introduces network-level property prediction tasks, shifting the focus from local node- or edge-
level tasks to macro-scale graph dynamics forecasting. It is the first benchmark to reveal neural
scaling trends in temporal graph learning, demonstrating how increasing the number of training
networks improves performance on unseen graphs. These properties position MiNT as the first
foundation-model-oriented benchmark for temporal graph learning, complementing prior efforts by
enabling systematic pre-training, ablation, and transfer evaluations across a controlled, large, and
heterogeneous collection of temporal graphs.

C MiNT Datasets

Numerous graph benchmark datasets have been introduced to advance research within the temporal
graph learning community. Poursafaei et al. [42] introduced six dynamic graph datasets while
proposing visualization techniques and novel negative edge sampling strategies to facilitate link
prediction tasks of dynamic graphs. Following the good practice from OGB [15], [19] introduced
TGB, which provides automated and reproducible results with a novel standardized evaluation
pipeline for both link and node property prediction tasks. However, these datasets belong to different
domains, making them unsuitable for studying the scaling laws of neural network models trained with
a large number of datasets from the same domain. [29] provides a temporal benchmark for evaluating
graph neural networks in link prediction tasks, though their focus does not extend to training on
multiple networks. Conversely, the Live Graph Lab dataset by [66] offers a temporal dataset and
benchmark, employed for tasks like temporal node classification using TGNNs. This work aims to
explore multi-network training and understand the transferability across temporal graphs. Therefore,
we curate a collection of temporal graphs rather than focusing on individual ones as in prior work.

C.1 Datasets Extraction

We utilize a dataset of temporal graphs sourced from the Ethereum blockchain [58]. In this section,
we will describe Ethereum, explain our data pipeline, and conclude by defining the characteristics of
the resulting dataset.

Ethereum and ERC20 Token Networks. We create our transaction network data by first in-
stalling an Ethereum node and accessing the P2P network by using the Ethereum client Geth
(https://github.com/ethereum/go-ethereum). Then, we use Ethereum-ETL (https://
github.com/blockchain-etl/ethereum-etl) to parse all ERC20 tokens and extract asset trans-
actions. We extracted more than sixty thousand ERC20 tokens from the entire history of the Ethereum
blockchain. However, during the lifespans of most token networks, there are interim periods without
any transactions. Additionally, a significant number of tokens live for only a short time span. To
avoid training data quality challenges, we use 84 token networks with at least one transaction every
day during their lifespan and are large enough to be used as a benchmark dataset for multi-network
model training.

Temporal Networks. Each token network represents a distinct temporal graph, reflecting the time-
stamped nature of its transactions. In these networks, nodes (addresses), edges (transactions), and
edge weights (transaction values) evolve over time, capturing the dynamic behavior of the network.
Additionally, these networks differ in their start dates and durations, introducing further variation
in their evolution. While each token network operates independently with its own set of investors,
they exhibit common patterns and behaviors characteristic of transaction networks. These similarities
allow the model to learn and generalize from these patterns across different networks. Collecting
temporal graphs from various ERC20 token networks allows for comparative analysis, uncovering

24

https://github.com/ethereum/go-ethereum
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl

Figure 6: MiNT data processing overview. (1) Token extraction: extracting the token transaction
network from the Ethereum node. (2) Discretization: creating weekly snapshots to form discrete time
dynamic graphs.

common patterns and unique behaviors. This strengthens the model’s ability to generalize and
improves its robustness.

Figure 6 illustrates the MiNT overview from dataset extraction and discretizing graph networks for
the model training step.

Table 7: All token networks’ statistics.

Token #Node #Transaction Duration (days) Growth rate Novelty Surprise Token #Node #Transaction Duration (days) Growth rate Novelty Surprise

ARC 11325 70968 606 0.43 0.32 0.88 Metis 52586 343141 907 0.44 0.48 0.89
CELR 65350 235807 1691 0.49 0.56 0.96 cDAI 52753 358050 1437 0.45 0.46 0.9
CMT 86895 205961 309 0.45 0.72 0.92 BITCOIN 34051 347054 178 0.48 0.39 0.63
DRGN 113453 341849 2164 0.44 0.57 0.97 INJ 60472 312822 1113 0.46 0.52 0.98
GHST 35156 180955 1146 0.43 0.51 0.93 MIM 23038 269366 885 0.44 0.4 0.89
INU 8556 66315 154 0.27 0.41 0.59 GLM 53385 234912 1080 0.5 0.53 0.96
IOTX 63079 288469 1993 0.45 0.56 0.99 Mog 14590 240680 107 0.37 0.38 0.55
QSP 117977 299671 2178 0.45 0.67 0.99 DPI 40627 234246 1150 0.49 0.5 0.86
REP 83282 224843 346 0.46 0.69 0.96 LINA 45342 227147 1144 0.45 0.46 0.95
RFD 23208 173695 169 0.3 0.39 0.6 Yf-DAI 22466 226875 1158 0.42 0.31 0.87
TNT 88247 316352 1216 0.43 0.55 0.93 BOB 42806 212099 199 0.35 0.48 0.73
TRAC 71667 299181 2110 0.46 0.54 0.97 RGT 35277 211932 1110 0.44 0.46 0.98
RLB 28033 240291 129 0.43 0.49 0.76 TVK 42539 208082 1062 0.41 0.48 0.93
steCRV 19079 211538 1033 0.45 0.53 0.9 RSR 50645 205906 659 0.47 0.62 0.91
ALBT 63042 434881 1152 0.43 0.44 0.89 WOJAK 34341 198653 201 0.37 0.48 0.73
POLS 128159 554705 1132 0.45 0.61 0.94 ANT 36517 200262 1107 0.47 0.46 0.93
SWAP 69230 509769 1213 0.46 0.45 0.79 LADYS 37486 192176 181 0.37 0.52 0.79
SUPER 83299 502030 986 0.47 0.46 0.85 ETH2x-FLI 11008 199088 965 0.47 0.28 0.84
RARI 87186 502960 1207 0.43 0.47 0.91 TURBO 38638 189048 189 0.33 0.48 0.72
KP3R 39323 493258 1102 0.43 0.33 0.88 REPv2 39061 191367 1194 0.48 0.5 0.97
MIR 79984 444998 1066 0.45 0.43 0.92 NOIA 29798 185528 1133 0.46 0.37 0.7
aUSDC 23742 475680 1067 0.46 0.4 0.73 0x0 21531 182430 283 0.51 0.46 0.81
LUSD 25852 430473 943 0.48 0.36 0.87 PSYOP 25450 168896 169 0.32 0.39 0.59
PICKLE 28498 430262 1149 0.48 0.34 0.69 ShibDoge 40023 134697 680 0.43 0.53 0.8
DODO 47046 390443 1131 0.47 0.45 0.91 ADX 14567 123755 1188 0.44 0.4 0.91
YFII 43964 391984 1196 0.44 0.44 0.96 BAG 11860 122634 298 0.31 0.44 0.87
STARL 71590 369913 856 0.46 0.48 0.86 QOM 21757 118292 598 0.46 0.41 0.81
LQTY 34687 374230 943 0.45 0.34 0.91 BEPRO 26521 120261 1132 0.46 0.48 0.87
FEG 118294 367584 1007 0.4 0.62 0.92 AIOZ 29231 119926 947 0.43 0.49 0.89
AUDIO 91218 362685 1108 0.45 0.58 0.95 PRE 40476 118625 1113 0.5 0.55 0.86
OHM 45728 377068 690 0.43 0.46 0.88 CRU 19990 117712 1144 0.5 0.43 0.95
WOOL 16874 351178 716 0.41 0.18 0.41 POOH 27245 111641 193 0.26 0.49 0.69
DERC 24277 111205 824 0.45 0.49 0.83 aDAI 13648 187050 1068 0.45 0.46 0.82
stkAAVE 37355 110924 1128 0.42 0.57 0.71 ORN 44010 239451 1134 0.46 0.47 0.87
BTRFLY 8450 108371 453 0.48 0.34 0.44 DOGE2.0 7664 79047 123 0.45 0.38 0.66
SDEX 9127 104869 240 0.41 0.44 0.75 HOICHI 5075 77361 436 0.36 0.32 0.71
XCN 20085 104185 607 0.46 0.42 0.84 EVERMOON 7552 79868 163 0.24 0.35 0.52
HOP 37004 102650 514 0.41 0.6 0.88 MUTE 12426 82345 977 0.43 0.46 0.95
MAHA 18401 96180 749 0.43 0.47 0.91 crvUSD 2950 88647 174 0.61 0.37 0.73
DINO 15837 94140 358 0.44 0.44 0.74 SLP 6675 95368 1151 0.43 0.36 0.91
bendWETH 1454 96898 593 0.51 0.21 0.51 sILV2 12838 92905 611 0.4 0.34 0.48
PUSH 14501 93103 936 0.46 0.38 0.83 SPONGE 25852 90468 184 0.31 0.66 0.81

C.2 Dataset Statistics

Our MiNT dataset is a collection of 84 ERC20 token networks derived from Ethereum from 2017 to
2023. Each token network is represented as a dynamic graph, in which each address and transaction
between addresses are a node and a directed edge, respectively. The biggest MiNT token network
contains 128, 159 unique addresses and 554, 705 transactions, while the smallest token network has
1, 454 nodes.

Figure 3 shows that most networks have more than 10k nodes and over 100k edges. The lifespan
of MiNT networks varies from 107 days to 6 years, and there exists at least one transaction each

25

day. Figure 3.a shows the novelty scores, i.e., the average ratio of unseen edges in each timestamp,
introduced by [42]. Figure 3 shows that most of the 84 networks have novelty scores greater than
0.3, indicating that each day sees a considerable proportion of new edges in these token networks.
We adopt a 70%− 15%− 15% split of train-test-validation for each token network and calculate the
surprise score [42], which indicates the number of edges that appear only in the test data. As Table 7
shows, the token networks have quite high surprise values with an average of 0.82. We also provide
the node, edge, and length distribution for train and test sets separately in Figure 7. Overall, train set
datasets mostly have more nodes than those in the test set, while the number of edges and days are in
the same range for both.

We summarize detailed statistics of each token network in MiNT datasets in Table 7. In the table, the
growth rate is the ratio of label 1, indicating the increase in the number of edge counts concerning the
problem definition defined in Appendix section E. In addition, we use the novelty and surprise scores
introduced by Poursafaei et al. [42]. The novelty score is defined as the average ratio of new edges in
each timestamp. The surprise score is defined as the ratio of edges that only appear in the test set.
Formally,

novelty =
1

T

T∑
t=1

|Et \ Et
seen|

|Et| , (2a)

surprise =
|Etest \ Etrain|

|Etest|
, (2g)

where Et and Et
seen denotes the set of edges present only in timestamp t and seen in previous

timestamps, respectively. Etest represents edges that appear in the test set, and edges appearing in
the train set are represented as Etrain.

Comparison Between Training And Testing Set. Nodes, transactions, and length (in days) dis-
tribution over the training and testing sets are shown in Figure 7. Training sets well-support the
multi-network model to generalize characteristics of the entire MiNT dataset due to the similarity be-
tween nodes, edge and length in days distributions shown in Figures 7a, 7b, 7c and those distributions
across 84 token networks of MiNT datasets. In addition, the variance of datasets’ characteristics of
the testing set is shown in Figures 7d, 7e and 7f.

104 105
0

2

4

6

8

10

12

Fr
e
q
u
e
n
cy

Nodes

(a) Unique Nodes of training set

5
(×10)Edges

1 2 3 4 5
0

2

4

6

8

10

12

14

Fr
e
q
u
e
n
cy

(b) Transaction of training set

0

2

4

6

8

10

12

Fr
e
q
u
e
n
cy

500 1000 1500 2000
Days

(c) Length in days of training set

4
(×10)

2 4 6 8
0

1

2

3

4

5

6

7

Fr
e
q
u
e
n
cy

Nodes

(d) Unique Nodes of testing set

1 2 3 4

Edges

0

2

4

6

8

Fr
e
q
u
e
n
cy

5
(×10)

(e) Transactions of testing set

500 1000 1500 2000
Days

0

1

2

3

4

Fr
e
q
u
e
n
cy

(f) Length in days of testing set

Figure 7: Distribution of the characteristics of the datasets over training and testing sets.

Node Overlap Analysis. We analyze the overlap of nodes between different datasets and within
each dataset, which helps demonstrate the highly dynamic nature of our datasets. Specifically, we
compared the nodes in each test network with those in the training networks and calculated the average

26

overlap. As shown in Table 8, on average, only 2% of the nodes are common between the training and
test datasets, highlighting the rapidly changing structure of these networks. Furthermore, we analyzed
the node overlap within each test dataset by splitting it into the standard train-validation-test setup.
We compared the nodes in the 70% training snapshots with the nodes in the final 15% test snapshots,
and on average, only 4% of the nodes overlapped. This indicates the highly inductive nature of our
model and emphasizes the zero-shot challenge it addresses in this domain. These findings underscore
the importance of tackling such dynamic and evolving challenges in temporal graph learning.

D Temporal Graph Learning

Table 8: Overlapping Nodes Statistics

Dataset
Avg. Common Nodes

vs Train Set (MiNT-64)
Train vs Test
Node Overlap

MIR 0.021 ± 0.019 0.007
DOGE2.0 0.026 ± 0.033 0.015
MUTE 0.033 ± 0.020 0.045
EVERMOON 0.023 ± 0.033 0.043
DERC 0.020 ± 0.020 0.031
ADX 0.024 ± 0.020 0.018
HOICHI 0.023 ± 0.013 0.053
SDEX 0.024 ± 0.019 0.141
BAG 0.019 ± 0.017 0.107
XCN 0.016 ± 0.010 0.034
ETH2x-FLI 0.038 ± 0.041 0.028
stkAAVE 0.026 ± 0.027 0.057
GLM 0.014 ± 0.015 0.047
QOM 0.018 ± 0.014 0.044
WOJAK 0.025 ± 0.032 0.018
DINO 0.018 ± 0.014 0.049
Metis 0.020 ± 0.013 0.041
REPv2 0.016 ± 0.017 0.013
TRAC 0.015 ± 0.016 0.031
BEPRO 0.023 ± 0.022 0.021

In this section, we give further details about the tem-
poral graph learning models we used as a baseline
for our work.

Persistence Forecast (P.F) uses data from the pre-
vious and current weeks to predict the next week’s
property. If we observe an increasing trend in the
number of transactions in the current week compared
to the previous week, we predict a similar increasing
trend for the following week. This simple model is
based on the assumption that trends in transaction
networks can persist over time. Our baseline method
has three key aspects. First, we do not use any future
information to generate the labels. Second, we com-
pare the current week’s transaction count to that of
the previous week to determine the trend. Finally, if
the current week shows an increase, we predict the
same trend for the next week. This straightforward
approach provides a basic baseline for comparison
against more sophisticated predictive models.

HTGN leverages the power of hyperbolic geometry, which is well-suited for capturing hierarchical
structures and complex relationships in temporal networks. HTGN maps the temporal graph into
hyperbolic space and utilizes hyperbolic graph neural networks and hyperbolic gated recurrent neural
networks to model the evolving dynamics. It incorporates two key modules that are hyperbolic
temporal contextual self-attention (HTA) and hyperbolic temporal consistency (HTC)-to ensure that
temporal dependencies are effectively captured and that the model is both stable and generalizable
across various tasks [62].

GraphPulse addresses the challenge of learning from nodes and edges with different timestamps,
which many existing models struggle with. It combines two key techniques: the Mapper method from
topological data analysis to extract clustering information from graph nodes and Recurrent Neural
Networks (RNNs) for temporal reasoning. This principled approach helps capture both the structure
and dynamics of evolving graphs [50].

GCLSTM combines a Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM)
units to handle both the structural and temporal aspects of evolving networks. The GCN is used to
capture the local structural properties of the network at each snapshot, while the LSTM learns the
temporal evolution of these snapshots over time [11].

EvolveGCN is designed to capture the temporal dynamics of graph-structured data. Instead of relying
on static node embeddings, EvolveGCN evolves the parameters of a graph convolutional network
(GCN) over time. By using a recurrent neural network (RNN) to adapt the GCN parameters, this
model is capable of dynamically adjusting during both training and testing, allowing it to handle
evolving graphs, even when node sets vary significantly across different time steps [40].

ROLAND is a dynamic graph learning framework that models node representations as hierarchical
states, updated recurrently to capture temporal dependencies in evolving graphs. It supports scalable
training using techniques like truncated backpropagation through time and meta-learning. In our
DTDG setting, we use ROLAND to benchmark its performance and adaptability across diverse
temporal networks [64].

27

WinGNN employs a lightweight GNN to capture the graph’s structural features, similar to prior
approaches. To address temporal dependencies, it introduces a unique random gradient aggregation
mechanism combined with meta-learning. Specifically, WinGNN computes snapshot-level losses and
propagates their gradients forward to model temporal evolution without relying on recurrent units. A
randomized sliding window is further applied to extract window-aware gradients across snapshots,
which are then aggregated to update the GNN parameters effectively [68].

E Temporal Graph Property Prediction

We define graph property prediction as the task of forecasting a specific structural property of a
temporal graph over a future time interval. In this work, we focus on two binary classification tasks:
predicting the growth or shrinkage of (i) transaction volume (i.e., edge count), and (ii) the size of the
largest connected component (LCC).

In the network growth prediction task, the goal is to determine whether the number of transactions
will increase in the upcoming time window relative to a preceding interval. Given the current
weekly snapshot of a network, the model predicts whether transaction activity will rise or decline
in the following week. This task is particularly relevant in financial domains, where fluctuations in
transaction volume can reflect shifts in user engagement, liquidity, or investor interest. We adopt the
same evaluation setup used in GraphPulse [50], and define the property formally as follows:

Definition (Network Growth). Let t1 and tn denote the start and end of the observation window,
and δ1, δ2 define the prediction interval. Let E(tn+δ1 , tn+δ2) be the multi-set of edges between times
tn+δ1 and tn+δ2 . The binary property P is defined as:

P (G, t1, tn, δ1, δ2) =
{
1, if |E(tn+δ1 , tn+δ2)| > |E(t1, tn)|,
0, otherwise.

(3)

Why is this task useful? The network growth/shrink property prediction in financial networks
forecasts changes in transaction numbers (edge count), revealing trends in investment activity. A
growth in edge count indicates increased investor engagement, while a shrinkage suggests reduced
activity or market hesitation. Such investor behavior impacts token prices, and analyzing the behavior
helps guide investment strategies, resource allocation, and risk management by providing insights
into the evolving dynamics of token networks. For social networks, network growth in time requires
resource (e.g., server) allocation and maintaining dynamic load balancing. As a result, forecasting
the growth allows for efficient planning.

Definition (LCC Growth). The second prediction task focuses on structural connectivity. Let Ct

denote the size of the largest connected component (LCC) at time t. The model predicts whether the
LCC will grow over the upcoming interval. Formally:

P (G, t1, tn, δ1) =
{
1, if |C(tn+δ1 , tn+δ2)| > |C(t1, tn)|,
0, otherwise.

(4)

Why is this task useful? In Ethereum token networks, the growth of the largest connected component
reflects increasing structural integration, where more addresses become part of a unified transaction
graph. This is important because token networks typically evolve through isolated pairwise trades,
leading to many disconnected components or "islands" of investors. Such fragmentation limits
information flow and liquidity, which can undermine price stability and market efficiency. A growing
LCC, by contrast, indicates expanding interaction and network cohesion, which are often associated
with higher liquidity, stronger network effects, and sustained adoption. Predicting LCC growth helps
identify tokens that are moving toward broader market integration.

Setting n = 7, δ1 = 3, and δ2 = 10 days, we establish a practical graph property with a 7-day
prediction window. This choice is particularly relevant in financial contexts, such as Ethereum asset
networks, where it can guide investment decisions, and in social network infrastructure, like Reddit,
where it supports maintenance planning.

28

While this work focuses on specific properties, numerous other characteristics, such as temporal
triangle counting that can identify wash trades [12], can also be defined in this domain to highlight
the significance of temporal graph property predictions.

F Hyperparameters

Single Models. We adopt a 70%−15%−15% split ratio for the train, validation, and test, respectively,
for each token network, and during each epoch, the training model processes all snapshots in
chronological order. We train every single model for a minimum of 100 and a maximum of 250
epochs with a learning rate set to 15×10−4. We apply early stopping based on the AUC results on the
validation set, with patience and tolerance set to 20 and 5×10−2, respectively. Specifically, in HTGN
training, the node embeddings are reset at the end of every epoch. We use Binary Cross-Entropy Loss
for performance measurement and Adam [24] as the optimization algorithm. It is important to note
that the graph pooling layer, performance measurement, and optimization algorithm are also shared
by the multi-network model training setup.

Multi-network Models. While following a similar training approach as in the single model training,
we make specific adjustments for the multi-network model training. We set the number of epochs to
300 with a learning rate of 10−4 and a train-validation-test chronological split ratio same as single
models. Early stopping is applied based on the validation loss with a tolerance of 5× 10−2 and the
patience is set to 30. The best model is selected based on the validation AUC and used to predict the
unseen test dataset.

G Hyperbolic Temporal Graph Network

Hyperbolic geometry has been increasingly recognized for its ability to achieve state-of-the-art
performance in several static graph embedding tasks [62]. HTGN is a recent hyperbolic work that
shows strong performance in learning over dynamic graphs in a DTDG manner. The model employs
a hyperbolic graph neural network (HGNN) to learn the topological dependencies of the nodes and a
hyperbolic-gated recurrent unit (HGRU) to capture the temporal dependencies. Temporal contextual
attention (HTA) is also used to prevent recurrent neural networks from only emphasizing the most
nearby time and to ensure stability, along with generalization of the embedding. In addition, HTGN
enables updating the model’s state at test time to incorporate new information, which makes it a
good candidate for learning the scaling law of TGNNs. In our MiNT framework, we use the HTGN
architecture as part of our multi-network model because it excels in dynamic graph learning through
hyperbolic geometry. Its strong performance makes it a valuable addition to our approach.

Given feature vectors XE
t of snapshot t in Euclidean space, an HGNN layer first adopts an exponential

map to project Euclidean space vectors to hyperbolic space as follows XH
t = expc(XE

t), and then
performs aggregation and activation similar to GNN but in a hyperbolic manner, X̃H

t = HGNN(XH
t).

To prevent recurrent neural networks from only emphasizing the most nearby time and to ensure
stability along with generalization of the embedding, HTGN uses temporal contextual attention (HTA)
to generalize the lastest w hidden states such that H̃H

t−1 = HTA(Ht−w; ...;Ht−1) [62]. HGRU takes
the outputs from HGNN, X̃H

t , and the attentive hidden state, H̃H
t−1, from HTA as input to update gates

and memory cells and then provides the latest hidden state as the output, HH
t = HGRU(X̃H

t , H̃H
t−1).

To interpret hyperbolic embeddings, [62] adopt Poincaré ball model with negative curve −c, given
c > 0, coresponds to the Riemannian manifold (Hn,c) = {x ∈ Rn : c||x||2 < 1} is an open
n-dimensional ball. Given a Euclidean space vector xE

i ∈ Rd, we consider it as a point in the tangent
space Tx′Hd,c and adopt the exponential map to project it into hyperbolic space :

xH
i = expcx′(xE

i) (5)

Resulting in xH
i ∈ Hd,c, which is then served as input to the HGNN layer as follows [62]:

29

mH
i = W ⊗c xH

i ⊕c b, (6a)

m̃H
i = expc

x′(
∑

j∈N (i)

αij log
c
x′(m

H
i)), (6b)

x̃H
i = expc

x′(σ(log
c
x′(m̃

H
i)). (6c)

where W , b are learnable parameters and hyperbolic activation function σ achieved by applying
logarithmic and exponential mapping. HGNN leverages attention-based aggregation by assigning
attention score αij to indicate the importance of neighbour j to node i, computed as followed:

αij = softmax(j∈N (i))(sij) =
exp(sij)∑

j′∈Ni
exp(sij′)

,

sij = LeakReLU(aT [logc0(m
l
i)∥ logc0(m

l
j)]),

(7)

where a is trainable vector and || denotes concatenation operation.

The output of HGNN, X̃H
t , is then used as input to HGRU along with attentive hidden state H̃H

t−1
obtained by HTA, which generalize Ht−1 to lastest w snapshots {Ht−w, ...,Ht−1} [62]. Operations
behind HGRU are characterized by the following equation [62]:

XE
t = logcx′(X̃

H
t), (8a)

HE
t−1 = logcx′(H̃

H
t−1), (8b)

PE
t = σ(WzX

E
t + UzH

E
t−1) (8c)

RE
t = σ(WrX

E
t + UrH

E
t−1), (8d)

H̃E
t = tanh(WhX

E
t + Uh(Rt ⊙HE

t−1)), (8e)

HE
t = (1− PE

t)⊙ H̃E
t + PE

t ⊙HE
t−1, (8f)

HH
t = expc

x′(H
E
t). (8g)

where Wz,Wr,Wh, Uz, Ur, Uh are the trainable weight matrices, PE
t is the update gate to control

the output and RE
t is the reset gate to balance the input and memory [62].

0.2

0.4

0.6

0.8

1

B
A
G

X
C
N

B
E
PR

O

E
T
H

2
x-

FL
I

D
E
R
C

M
IR

T
R
A
C

D
IN

O

M
et

is

W
O

JA
K

R
E
Pv

2

M
U

T
E

Q
O

M

st
kA

A
V
E

E
V
E
R
M

O
O

N

G
LM

H
O

IC
H

I

D
O

G
E
2
.0

A
D

X

S
D

E
X

A
U

C

MiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64 Single Model

Figure 8: Test AUC-ROC of multi-network models trained on 2n datasets where n ∈ [1, 6] and
evaluated on unseen test datasets for network growth or shrink task. Comparing the performance of
single models trained and tested on each dataset.

H Social Domain Results

To assess the generalizability of our proposed MiNT models beyond transaction-based networks,
we conducted experiments on a diverse set of eight real-world social interaction networks. This
evaluation aims to demonstrate that MiNT is not constrained to transactional graph domains and can
effectively transfer learned representations to structurally and semantically distinct networks.

30

Table 9: AUC scores of social multi-network mod-
els and single models on test sets across three seeds
for the network growth or shrink task. Best scores
per dataset are shown in bold.

Network Standard Training Transfer Model
HTGN MiNT-2 Social MiNT-4 Social MiNT-6 Social

mathoverflow 0.788 ± 0.050 0.750 ± 0.000 0.751 ± 0.000 0.758 ± 0.015

RedditB 0.655 ± 0.040 0.650 ± 0.002 0.651 ± 0.004 0.663 ± 0.008

The selected social datasets include LastFM[48],
MathOverflow[39], SuperUser[39], Email-
Eu[39], AskUbuntu[39], CollegeMsg[38],
StackOverflow[39], and RedditB[26]. These
datasets span a wide range of social commu-
nication settings, from question-answering
platforms to messaging and collaboration
networks, providing a rigorous testbed for
cross-domain transfer.

We trained three variants of the MiNT model, MiNT-2, MiNT-4 and MiNT-6 on six social networks
and evaluated them on two held-out unseen networks: MathOverflow and RedditB. As shown in
Table 9, the transferable MiNT models perform competitively with the standard HTGN model
that is trained directly on the test network. Notably, MiNT-6 achieves the best performance on
RedditB (0.663 AUC), surpassing the standard HTGN model, and demonstrates strong results on
MathOverflow (0.758 AUC), further closing the gap with the single model baseline. We observe a
consistent scaling behavior with increasing model capacity (i.e., number of source networks), similar
to what was reported in transaction network experiments. This trend indicates that as the number of
training networks increases, the MiNT models are better equipped to capture structural and temporal
patterns in unseen networks. This reinforces the model’s ability to extract transferable knowledge
and leverage broader training contexts effectively.

I MiNT on Additional Property Prediction Task

Table 10: AUC scores of multi-network models and single models on test sets across three seeds on
the largest connected component growth task. Best results in bold, second best underlined.

Standard Training Transfer Model
Network HTGN MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64

MIR 0.745 ± 0.023 0.570 ± 0.117 0.655 ± 0.012 0.783 ± 0.041 0.766 ± 0.053 0.845 ± 0.035
DOGE2.0 0.446 ± 0.164 0.530 ± 0.113 0.548 ± 0.063 0.631 ± 0.027 0.571 ± 0.139 0.661 ± 0.047
MUTE 0.574 ± 0.022 0.471 ± 0.014 0.468 ± 0.021 0.509 ± 0.037 0.592 ± 0.038 0.582 ± 0.078
EVERMOON 0.494 ± 0.127 0.424 ± 0.059 0.421 ± 0.029 0.376 ± 0.014 0.542 ± 0.077 0.527 ± 0.118
DERC 0.717 ± 0.035 0.552 ± 0.015 0.584 ± 0.040 0.554 ± 0.011 0.733 ± 0.067 0.689 ± 0.096
ADX 0.753 ± 0.013 0.610 ± 0.019 0.635 ± 0.033 0.603 ± 0.019 0.619 ± 0.012 0.587 ± 0.014
HOICHI 0.746 ± 0.010 0.738 ± 0.009 0.696 ± 0.072 0.715 ± 0.027 0.592 ± 0.147 0.722 ± 0.034
SDEX 0.911 ± 0.104 0.330 ± 0.117 0.425 ± 0.199 0.361 ± 0.113 0.437 ± 0.316 0.382 ± 0.280
BAG 0.493 ± 0.043 0.772 ± 0.213 0.685 ± 0.163 0.892 ± 0.036 0.952 ± 0.019 0.893 ± 0.074
XCN 0.566 ± 0.199 0.742 ± 0.039 0.688 ± 0.041 0.802 ± 0.037 0.774 ± 0.144 0.827 ± 0.025
ETH2x-FLI 0.561 ± 0.037 0.610 ± 0.015 0.625 ± 0.020 0.658 ± 0.018 0.636 ± 0.076 0.618 ± 0.025
stkAAVE 0.623 ± 0.077 0.613 ± 0.041 0.567 ± 0.038 0.668 ± 0.061 0.687 ± 0.045 0.688 ± 0.019
GLM 0.761 ± 0.031 0.585 ± 0.144 0.679 ± 0.026 0.698 ± 0.054 0.783 ± 0.031 0.818 ± 0.074
QOM 0.658 ± 0.150 0.535 ± 0.036 0.513 ± 0.003 0.566 ± 0.036 0.696 ± 0.092 0.645 ± 0.109
WOJAK 0.378 ± 0.028 0.407 ± 0.012 0.362 ± 0.053 0.384 ± 0.024 0.421 ± 0.029 0.492 ± 0.107
DINO 0.706 ± 0.120 0.794 ± 0.090 0.827 ± 0.039 0.815 ± 0.043 0.753 ± 0.165 0.561 ± 0.006
Metis 0.679 ± 0.039 0.697 ± 0.031 0.671 ± 0.047 0.711 ± 0.028 0.705 ± 0.047 0.780 ± 0.041
REPv2 0.730 ± 0.007 0.653 ± 0.014 0.642 ± 0.061 0.694 ± 0.002 0.765 ± 0.030 0.742 ± 0.041
TRAC 0.733 ± 0.009 0.658 ± 0.040 0.643 ± 0.052 0.720 ± 0.048 0.767 ± 0.012 0.762 ± 0.028
BEPRO 0.694 ± 0.009 0.587 ± 0.002 0.604 ± 0.006 0.589 ± 0.018 0.601 ± 0.129 0.628 ± 0.017

Top Rank ↑ 4 0 1 1 6 7

Avg. Rank ↓ 2.80 4.40 4.65 3.45 2.50 2.20

To further demonstrate that the scalability of our approach is not restricted to a specific property, we
extended our experiments to evaluate the performance of MiNT models on a new task. This task
involves predicting the growth or shrinkage of the largest connected component, which is particularly
meaningful in the context of transaction networks.

Experimental Results. Table 10 presents the performance of MiNT models and the baseline HTGN
across twenty networks. MiNT models, especially MiNT-32 and MiNT-64, outperform the baseline
in the majority of cases. MiNT 64 achieves the highest AUC in seven networks and ranks second in
three others. It also records the best average rank overall, indicating strong generalization to this new
property prediction task.

These results show that MiNT models are not limited to a particular type of graph signal. Instead,
they are capable of adapting to a broad range of temporal properties.

31

J Effect of Snapshot Scaling on Model Performance

50 100 200 500
Number of Training Snapshots

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

AU
C

MiNT Model
All snapshot training

Figure 9: Scaling effect of
number of snapshots used in
MiNT-64 training.

We conducted an additional experiment to analyze how the number
of training snapshots affects model performance over time. Specif-
ically, we evaluated the scaling behavior of the MiNT-64 model by
training it on different amounts of historical data. For this study, we
selected five snapshot counts: 50, 100, 200, 500, and full snapshot
history. These snapshots were drawn sequentially from the end of
each dataset, just before the validation period, to simulate a realistic
training scenario.

For each configuration, MiNT-64 was trained using three random seeds, and the average AUC results
are presented in Figure 9. The trend illustrates the scaling behavior of the model as more snapshots
are provided. As the training window expands, the model gains access to richer temporal information,
which contributes to improved generalization and performance. The trend suggests that access to a
larger number of historical snapshots enables temporal models to better capture evolving patterns and
improve predictive performance.

K Effect Of Data Selection

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Data Pack A Data Pack B Data Pack C

MiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32

Figure 10: Effect of data selection on
model performance for network growth
or shrink task. When models reach larger
sizes (i.e., Mint-32), the effect of data
packs is negligibly similar.

We investigate the effect of data selection on the perfor-
mance of MiNT models trained with different training
data packs. As the first work on multi-network training for
temporal graphs, we explore the importance of our dataset
selection process. To avoid any bias, we randomly sam-
pled the training datasets from the 64 available networks.
We conducted an empirical experiment to examine the
impact of dataset selection on training MiNT models. In
this experiment, we choose three disjoint sets of datasets
(data pack A, B, and C) for training MiNT-2, MiNT-4,
MiNT-8, and MiNT-16 and two disjoint sets of datasets
(data pack A, B) for training MiNT-32. Using disjoint
data packs ensures that each model is trained on unique
data, eliminating any overlap that could obscure the results.
We then test our models on 20 unseen test datasets. Note
that MiNT-32 has only two packs, whereas other MiNT
models have three packs due to the limited number of available training networks. Specifically, since
MiNT-32 requires 32 distinct networks per training run and only 64 total networks are available, we
can only create two non-overlapping training sets of size 32. In contrast, smaller models such as
MiNT-2 through MiNT-16 allow for more disjoint groupings.

As shown in Figure 10, as the number of training networks increases, the multi-network model
performance increases while the variance between different choices of training networks decreases.
However, the difference between models that use the same number of datasets diminishes as we
move from models of 2 to 32 datasets. We observe that smaller models (i.e., MiNT-2) have a higher
variance when compared to larger models (i.e., MiNT-64); in addition, the model performance also
increases from small to large models. For example, MiNT-64 outperforms MiNT-32 on 16 out of 20
datasets.

L Choice of graph pooling

Pooling plays an important role in temporal graph property prediction. In our study, we employ mean
pooling due to its stability across diverse datasets. To assess alternative choices, we compared mean
pooling with max pooling and found that the latter leads to an average 6% drop in AUC, Table 11,
highlighting the effectiveness of mean pooling in our zero-shot temporal graph setting. Adaptive or
hierarchical pooling mechanisms may better capture structural dependencies, and we consider this an
interesting direction for future work.

32

M Additional Results

Table 11: Test AUC on unseen networks be-
tween MiNT-4 with max pooling and MiNT-4
with mean pooling

Dataset
MiNT-4 Test AUC

Max Pooling
MiNT-4 Test AUC

Mean Pooling

MIR 0.588 0.510
DOGE2.0 0.500 0.667
MUTE 0.685 0.627
EVERMOON 0.622 0.373
DERC 0.761 0.617
ADX 0.692 0.708
HOICHI 0.583 0.795
SDEX 0.401 0.643
BAG 0.610 0.802
XCN 0.557 0.774
ETH2x-FLI 0.704 0.632
stkAAVE 0.525 0.571
GLM 0.598 0.671
QOM 0.611 0.624
WOJAK 0.611 0.556
DINO 0.480 0.827
Metis 0.558 0.734
REPv2 0.746 0.725
TRAC 0.572 0.752
BEPRO 0.788 0.742
Average 0.6096 0.668

Here, we present the test results for the six multi-
network models trained on different network sizes, as
well as the single model results. Figure 8 illustrates
the AUC of these models on the test set. In most
datasets, multi-network models outperform the single
model. We have also compared our model against
additional state-of-the-art models, specifically includ-
ing Roland [64], EvolveGCN [40], GC-LSTM [11],
and the only model designed for temporal graph prop-
erties prediction, GraphPulse [50] as baselines for the
test set. In Table 12 and Table 13 the average and
standard deviation of AUC and AP are presented, re-
spectively, for all models. Surprisingly, MiNT-64
stands out as the best model, consistently achiev-
ing competitive performance in a greater number of
datasets for both AUC and AP scores compared to
all other models. Similarly, MN-32 demonstrates
strong performance, achieving the highest score in
several datasets and placing second in numerous oth-
ers; however, it does not surpass MN-64 in overall
rankings. These results show the power of multi-
network models in performing downstream tasks on
unseen datasets. Importantly, this high level of performance is achieved through zero-shot inference,
meaning that the model was not specifically trained on these datasets. In contrast, other models,
including GraphPulse, were trained directly for the datasets they evaluated. This considerable dif-
ference underscores the potential of MiNT-64 and highlights the power of zero-shot learning in
effectively leveraging knowledge across different temporal graphs.

Table 14 presents the detailed performance of all MiNT models trained with GCLSTM. Notably, we
observed a consistent trend with GCLSTM: as the model was trained on a larger number of networks,
its zero-shot inference performance improved significantly. This highlights the positive impact of
training on diverse networks for enhancing the model’s generalization capabilities.

Table 12: AUC scores of multi-network models and single models on test sets across three seeds, in-
cluding comparisons with state-of-the-art models EvolveGCN, GC-LSTM, GraphPulse and ROLAND
for network growth or shrink task. The best performance is shown in bold, and the second best is
underlined.

Token ROLAND GraphPulse HTGN GCLSTM EvolveGCN MiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64

WOJAK 0.529 ± 0.005 0.467± 0.030 0.479 ± 0.005 0.484 ± 0.000 0.505 ± 0.023 0.534 ± 0.020 0.556 ± 0.029 0.561 ± 0.018 0.556 ± 0.016 0.534 ± 0.017 0.524 ± 0.027

DOGE2.0 0.513 ± 0.022 0.384 ± 0.180 0.590 ± 0.059 0.538 ± 0.000 0.551 ± 0.022 0.397 ± 0.124 0.667 ± 0.219 0.603 ± 0.080 0.526 ± 0.059 0.551 ± 0.022 0.538 ± 0.038

EVERMOON 0.349 ± 0.119 0.519 ± 0.130 0.512 ± 0.023 0.562 ± 0.179 0.451 ± 0.046 0.287 ± 0.153 0.373 ± 0.037 0.426 ± 0.065 0.488 ± 0.054 0.543 ± 0.075 0.517 ± 0.039

QOM 0.641 ± 0.003 0.775 ± 0.011 0.633 ± 0.017 0.612 ± 0.001 0.618 ± 0.002 0.635 ± 0.061 0.624 ± 0.025 0.633 ± 0.032 0.644 ± 0.009 0.669 ± 0.034 0.647 ± 0.019

SDEX 0.483 ± 0.254 0.436 ± 0.030 0.762 ± 0.034 0.720 ± 0.002 0.733 ± 0.028 0.585 ± 0.139 0.643 ± 0.021 0.515 ± 0.031 0.476 ± 0.010 0.536 ± 0.042 0.614 ± 0.020

ETH2x-FLI 0.621 ± 0.023 0.666 ± 0.047 0.610 ± 0.059 0.670 ± 0.009 0.688 ± 0.010 0.595 ± 0.083 0.632 ± 0.019 0.663 ± 0.018 0.710 ± 0.037 0.715 ± 0.032 0.729 ± 0.015
BEPRO 0.439 ± 0.125 0.783 ± 0.003 0.655 ± 0.038 0.632 ± 0.019 0.610 ± 0.012 0.720 ± 0.028 0.742 ± 0.013 0.762 ± 0.007 0.765 ± 0.024 0.776 ± 0.008 0.782 ± 0.003

XCN 0.765 ± 0.015 0.821 ± 0.004 0.668 ± 0.099 0.306 ± 0.092 0.512 ± 0.067 0.754 ± 0.025 0.774 ± 0.062 0.773 ± 0.076 0.827 ± 0.061 0.848 ± 0.000 0.851 ± 0.043
BAG 0.418 ± 0.016 0.934 ± 0.020 0.673 ± 0.227 0.196 ± 0.179 0.329 ± 0.040 0.667 ± 0.134 0.802 ± 0.155 0.808 ± 0.095 0.884 ± 0.044 0.898 ± 0.075 0.931 ± 0.028

TRAC 0.495 ± 0.223 0.767 ± 0.001 0.712 ± 0.071 0.748 ± 0.000 0.748 ± 0.000 0.734 ± 0.012 0.752 ± 0.009 0.764 ± 0.012 0.776 ± 0.012 0.770 ± 0.007 0.785 ± 0.008
DERC 0.405 ± 0.357 0.769 ± 0.040 0.683 ± 0.013 0.703 ± 0.022 0.669 ± 0.009 0.593 ± 0.108 0.617 ± 0.030 0.657 ± 0.009 0.723 ± 0.058 0.756 ± 0.045 0.798 ± 0.027
Metis 0.696 ± 0.108 0.812 ± 0.011 0.715 ± 0.122 0.646 ± 0.023 0.688 ± 0.027 0.672 ± 0.103 0.734 ± 0.017 0.730 ± 0.036 0.734 ± 0.016 0.753 ± 0.005 0.760 ± 0.025

REPv2 0.751 ± 0.003 0.830 ± 0.001 0.760 ± 0.012 0.725 ± 0.014 0.709 ± 0.002 0.690 ± 0.024 0.725 ± 0.023 0.719 ± 0.022 0.774 ± 0.013 0.773 ± 0.013 0.789 ± 0.020

DINO 0.497 ± 0.092 0.801 ± 0.020 0.730 ± 0.195 0.874 ± 0.028 0.868 ± 0.029 0.692 ± 0.140 0.827 ± 0.112 0.794 ± 0.096 0.809 ± 0.087 0.764 ± 0.048 0.779 ± 0.113

HOICHI 0.815 ± 0.036 0.714 ± 0.010 0.807 ± 0.047 0.857 ± 0.000 0.856 ± 0.001 0.733 ± 0.101 0.795 ± 0.025 0.759 ± 0.040 0.763 ± 0.026 0.731 ± 0.029 0.765 ± 0.018

MUTE 0.289 ± 0.042 0.779 ± 0.004 0.649 ± 0.015 0.593 ± 0.030 0.617 ± 0.010 0.613 ± 0.027 0.627 ± 0.024 0.633 ± 0.024 0.684 ± 0.042 0.657 ± 0.035 0.673 ± 0.013

GLM 0.559 ± 0.357 0.769 ± 0.018 0.830 ± 0.029 0.451 ± 0.003 0.501 ± 0.033 0.613 ± 0.115 0.671 ± 0.034 0.746 ± 0.082 0.800 ± 0.062 0.826 ± 0.035 0.831 ± 0.024
MIR 0.228 ± 0.060 0.689 ± 0.097 0.750 ± 0.005 0.768 ± 0.026 0.745 ± 0.015 0.497 ± 0.192 0.510 ± 0.015 0.669 ± 0.103 0.800 ± 0.044 0.809 ± 0.022 0.836 ± 0.016
stkAAVE 0.591 ± 0.122 0.743 ± 0.006 0.702 ± 0.042 0.368 ± 0.011 0.397 ± 0.022 0.597 ± 0.076 0.571 ± 0.026 0.626 ± 0.023 0.666 ± 0.033 0.696 ± 0.027 0.709 ± 0.022

ADX 0.761 ± 0.011 0.784 ± 0.002 0.769 ± 0.018 0.723 ± 0.002 0.718 ± 0.004 0.695 ± 0.003 0.708 ± 0.025 0.680 ± 0.008 0.678 ± 0.019 0.671 ± 0.015 0.679 ± 0.024

N Zero-Shot Inference Efficiency of MiNT

As shown in Table 15, MiNT demonstrates remarkable computational efficiency across all unseen
datasets compared to training a single HTGN model on each individual unseen network. On average,
HTGN requires 2141.66 seconds to train a model per dataset, whereas MiNT completes inference in

33

Table 13: AP scores of multi-network models, and single models on test sets across three seeds,
including comparisons with state-of-the-art models EvolveGCN, GC-LSTM, GraphPulse, and Roland
for the network growth or shrink task. The best performance is shown in bold, and the second best is
underlined.

Token ROLAND GraphPulse HTGN GCLSTM EvolveGCN MiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64

WOJAK 0.844 ± 0.003 0.863± 0.006 0.812 ± 0.003 0.812 ± 0.000 0.827 ± 0.017 0.832 ± 0.009 0.836 ± 0.015 0.842 ± 0.015 0.850 ± 0.006 0.842 ± 0.008 0.837 ± 0.019

DOGE2.0 0.918 ± 0.006 0.966 ± 0.002 0.933 ± 0.010 0.925 ± 0.000 0.927 ± 0.004 0.889 ± 0.031 0.940 ± 0.050 0.936 ± 0.014 0.920 ± 0.014 0.927 ± 0.004 0.921 ± 0.014

EVERMOON 0.390 ± 0.033 0.768 ± 0.01 0.585 ± 0.065 0.612 ± 0.200 0.494 ± 0.017 0.442 ± 0.059 0.508 ± 0.045 0.542 ± 0.031 0.530 ± 0.040 0.567 ± 0.053 0.551 ± 0.021

QOM 0.624 ± 0.004 0.840 ± 0.002 0.623 ± 0.024 0.592 ± 0.001 0.597 ± 0.002 0.632 ± 0.070 0.617 ± 0.022 0.616 ± 0.007 0.626 ± 0.020 0.648 ± 0.027 0.635 ± 0.027

SDEX 0.631 ± 0.133 0.662 ± 0.017 0.825 ± 0.048 0.725 ± 0.002 0.750 ± 0.025 0.723 ± 0.039 0.725 ± 0.021 0.650 ± 0.046 0.628 ± 0.036 0.697 ± 0.064 0.699 ± 0.021

ETH2x-FLI 0.619 ± 0.077 0.836 ± 0.015 0.590 ± 0.103 0.735 ± 0.018 0.756 ± 0.013 0.607 ± 0.122 0.621 ± 0.039 0.658 ± 0.057 0.745 ± 0.051 0.737 ± 0.049 0.784 ± 0.007

BEPRO 0.513 ± 0.080 0.802 ± 0.001 0.686 ± 0.042 0.637 ± 0.022 0.622 ± 0.009 0.743 ± 0.033 0.769 ± 0.015 0.799 ± 0.016 0.804 ± 0.034 0.815 ± 0.007 0.816 ± 0.014
XCN 0.747 ± 0.037 0.793 ± 0.002 0.687 ± 0.085 0.420 ± 0.032 0.555 ± 0.073 0.708 ± 0.065 0.765 ± 0.080 0.781 ± 0.082 0.829 ± 0.057 0.851 ± 0.023 0.861 ± 0.042
BAG 0.289 ± 0.005 0.957 ± 0.004 0.523 ± 0.290 0.235 ± 0.041 0.263 ± 0.011 0.474 ± 0.152 0.699 ± 0.193 0.682 ± 0.160 0.784 ± 0.118 0.829 ± 0.119 0.889 ± 0.043

TRAC 0.499 ± 0.192 0.767 ± 0.002 0.685 ± 0.074 0.716 ± 0.006 0.722 ± 0.001 0.705 ± 0.013 0.734 ± 0.012 0.741 ± 0.006 0.764 ± 0.015 0.741 ± 0.015 0.758 ± 0.021

DERC 0.460 ± 0.296 0.773 ± 0.004 0.532 ± 0.021 0.621 ± 0.053 0.513 ± 0.012 0.505 ± 0.157 0.477 ± 0.021 0.516 ± 0.030 0.639 ± 0.118 0.700 ± 0.080 0.741 ± 0.024

Metis 0.596 ± 0.120 0.801 ± 0.003 0.601 ± 0.187 0.575 ± 0.041 0.577 ± 0.006 0.532 ± 0.126 0.645 ± 0.029 0.632 ± 0.056 0.611 ± 0.021 0.647 ± 0.026 0.639 ± 0.077

REPv2 0.727 ± 0.003 0.797 ± 0.003 0.758 ± 0.033 0.691 ± 0.006 0.689 ± 0.001 0.610 ± 0.063 0.619 ± 0.019 0.635 ± 0.042 0.705 ± 0.027 0.721 ± 0.004 0.729 ± 0.011

DINO 0.591 ± 0.076 0.871 ± 0.026 0.747 ± 0.175 0.881 ± 0.029 0.875 ± 0.024 0.738 ± 0.113 0.842 ± 0.102 0.793 ± 0.094 0.824 ± 0.077 0.753 ± 0.030 0.765 ± 0.119

HOICHI 0.699 ± 0.031 0.623 ± 0.003 0.666 ± 0.062 0.650 ± 0.000 0.658 ± 0.011 0.531 ± 0.109 0.677 ± 0.049 0.605 ± 0.037 0.609 ± 0.016 0.551 ± 0.045 0.594 ± 0.012

MUTE 0.332 ± 0.012 0.726 ± 0.002 0.615 ± 0.049 0.504 ± 0.012 0.527 ± 0.015 0.579 ± 0.023 0.612 ± 0.041 0.603 ± 0.058 0.675 ± 0.032 0.609 ± 0.021 0.647 ± 0.048

GLM 0.585 ± 0.191 0.712 ± 0.047 0.797 ± 0.024 0.513 ± 0.001 0.529 ± 0.013 0.598 ± 0.123 0.651 ± 0.031 0.709 ± 0.088 0.783 ± 0.092 0.819 ± 0.035 0.838 ± 0.032
MIR 0.317 ± 0.019 0.766 ± 0.041 0.751 ± 0.003 0.765 ± 0.012 0.752 ± 0.007 0.493 ± 0.212 0.442 ± 0.024 0.645 ± 0.133 0.783 ± 0.064 0.799 ± 0.015 0.811 ± 0.019
stkAAVE 0.630 ± 0.109 0.751 ± 0.005 0.750 ± 0.020 0.506 ± 0.003 0.493 ± 0.009 0.662 ± 0.066 0.622 ± 0.011 0.694 ± 0.021 0.730 ± 0.037 0.741 ± 0.020 0.759 ± 0.019
ADX 0.738 ± 0.026 0.765 ± 0.003 0.758 ± 0.017 0.666 ± 0.002 0.661 ± 0.017 0.638 ± 0.021 0.667 ± 0.040 0.632 ± 0.010 0.621 ± 0.013 0.622 ± 0.018 0.628 ± 0.012

Table 14: AP and AUC scores of GCLSTM-based multi-network models on test sets across three
seeds for network growth or shrink task. The best performance is shown in bold, and the second best
is underlined.

AUC AP
Token MiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64 MiNT-2 MiNT-4 MiNT-8 MiNT-16 MiNT-32 MiNT-64

MIR 0.653 ± 0.154 0.638 ± 0.090 0.588 ± 0.135 0.765 ± 0.049 0.742 ± 0.036 0.789 ± 0.016 0.667 ± 0.153 0.602 ± 0.134 0.550 ± 0.166 0.750 ± 0.019 0.758 ± 0.016 0.777 ± 0.013
DOGE2 0.487 ± 0.089 0.590 ± 0.146 0.487 ± 0.219 0.282 ± 0.097 0.769 ± 0.133 0.551 ± 0.022 0.910 ± 0.019 0.930 ± 0.030 0.907 ± 0.046 0.839 ± 0.057 0.965 ± 0.024 0.927 ± 0.004

MUTE 0.592 ± 0.076 0.627 ± 0.018 0.561 ± 0.035 0.589 ± 0.009 0.627 ± 0.009 0.636 ± 0.003 0.534 ± 0.056 0.555 ± 0.017 0.502 ± 0.022 0.501 ± 0.006 0.563 ± 0.002 0.568 ± 0.002
EVERMOON 0.429 ± 0.078 0.318 ± 0.152 0.306 ± 0.085 0.315 ± 0.154 0.420 ± 0.084 0.494 ± 0.048 0.493 ± 0.095 0.423 ± 0.097 0.427 ± 0.037 0.447 ± 0.123 0.530 ± 0.048 0.560 ± 0.010
DERC 0.614 ± 0.129 0.618 ± 0.058 0.569 ± 0.085 0.736 ± 0.027 0.647 ± 0.054 0.696 ± 0.011 0.541 ± 0.150 0.546 ± 0.113 0.460 ± 0.078 0.693 ± 0.032 0.559 ± 0.087 0.629 ± 0.012

ADX 0.692 ± 0.007 0.605 ± 0.182 0.674 ± 0.008 0.676 ± 0.003 0.678 ± 0.004 0.674 ± 0.022 0.614 ± 0.011 0.583 ± 0.147 0.634 ± 0.024 0.609 ± 0.005 0.617 ± 0.004 0.611 ± 0.010

HOICHI 0.663 ± 0.312 0.793 ± 0.065 0.633 ± 0.197 0.817 ± 0.010 0.816 ± 0.043 0.847 ± 0.005 0.529 ± 0.240 0.602 ± 0.066 0.471 ± 0.178 0.637 ± 0.016 0.630 ± 0.055 0.656 ± 0.014
SDEX 0.619 ± 0.210 0.721 ± 0.032 0.574 ± 0.233 0.741 ± 0.014 0.717 ± 0.020 0.724 ± 0.002 0.678 ± 0.115 0.732 ± 0.024 0.670 ± 0.092 0.752 ± 0.007 0.728 ± 0.009 0.729 ± 0.002

BAG 0.573 ± 0.072 0.525 ± 0.010 0.374 ± 0.029 0.442 ± 0.039 0.469 ± 0.060 0.529 ± 0.023 0.358 ± 0.036 0.334 ± 0.005 0.277 ± 0.010 0.303 ± 0.013 0.311 ± 0.025 0.337 ± 0.009

XCN 0.753 ± 0.026 0.739 ± 0.005 0.726 ± 0.014 0.736 ± 0.006 0.731 ± 0.005 0.733 ± 0.003 0.690 ± 0.064 0.657 ± 0.009 0.665 ± 0.031 0.656 ± 0.007 0.650 ± 0.003 0.653 ± 0.002

ETH2x-FLI 0.621 ± 0.119 0.615 ± 0.074 0.542 ± 0.086 0.675 ± 0.008 0.666 ± 0.021 0.697 ± 0.010 0.669 ± 0.165 0.669 ± 0.084 0.570 ± 0.154 0.752 ± 0.015 0.747 ± 0.021 0.766 ± 0.006
stkAAVE 0.601 ± 0.121 0.573 ± 0.084 0.517 ± 0.071 0.609 ± 0.032 0.624 ± 0.017 0.650 ± 0.028 0.687 ± 0.101 0.616 ± 0.108 0.571 ± 0.045 0.669 ± 0.066 0.710 ± 0.017 0.736 ± 0.022
GLM 0.448 ± 0.097 0.363 ± 0.132 0.331 ± 0.083 0.563 ± 0.016 0.463 ± 0.053 0.502 ± 0.027 0.467 ± 0.041 0.436 ± 0.052 0.437 ± 0.020 0.541 ± 0.010 0.480 ± 0.026 0.490 ± 0.012

QOM 0.594 ± 0.043 0.613 ± 0.009 0.574 ± 0.030 0.614 ± 0.005 0.614 ± 0.007 0.618 ± 0.004 0.587 ± 0.020 0.598 ± 0.004 0.573 ± 0.018 0.596 ± 0.005 0.597 ± 0.005 0.599 ± 0.003
WOJAK 0.516 ± 0.057 0.524 ± 0.016 0.561 ± 0.026 0.489 ± 0.060 0.598 ± 0.075 0.534 ± 0.020 0.810 ± 0.052 0.838 ± 0.014 0.834 ± 0.016 0.808 ± 0.027 0.862 ± 0.026 0.844 ± 0.007

DINO 0.667 ± 0.138 0.695 ± 0.147 0.738 ± 0.047 0.617 ± 0.148 0.704 ± 0.065 0.659 ± 0.039 0.719 ± 0.120 0.740 ± 0.107 0.746 ± 0.083 0.619 ± 0.073 0.683 ± 0.046 0.643 ± 0.041

Metis 0.692 ± 0.023 0.677 ± 0.030 0.609 ± 0.025 0.674 ± 0.020 0.690 ± 0.016 0.697 ± 0.013 0.558 ± 0.029 0.541 ± 0.083 0.485 ± 0.065 0.555 ± 0.019 0.586 ± 0.022 0.564 ± 0.019

REPv2 0.670 ± 0.053 0.686 ± 0.043 0.706 ± 0.040 0.735 ± 0.017 0.707 ± 0.019 0.733 ± 0.019 0.617 ± 0.080 0.633 ± 0.008 0.619 ± 0.054 0.720 ± 0.031 0.654 ± 0.032 0.683 ± 0.022

TRAC 0.736 ± 0.015 0.736 ± 0.014 0.710 ± 0.027 0.741 ± 0.003 0.741 ± 0.007 0.742 ± 0.004 0.702 ± 0.031 0.709 ± 0.020 0.708 ± 0.016 0.720 ± 0.002 0.717 ± 0.003 0.717 ± 0.005

BEPRO 0.723 ± 0.053 0.720 ± 0.035 0.685 ± 0.069 0.734 ± 0.016 0.757 ± 0.015 0.746 ± 0.015 0.730 ± 0.096 0.755 ± 0.019 0.727 ± 0.063 0.764 ± 0.021 0.791 ± 0.007 0.776 ± 0.012

only 11.52 seconds, yielding an impressive average efficiency ratio of 180.86×. This result highlights
the clear advantage of MiNT ’s zero-shot inference capability. Once pretrained on multiple networks,
it can generalize to unseen temporal graphs without the need for retraining, thus saving substantial
computational resources.

Table 15: Comparison of time efficiency on unseen
datasets (in seconds): HTGN vs. MiNT

Dataset
HTGN Single Model

Train Time
MiNT Inference

Time
Efficiency

Ratio

EVERMOON 196.18 2.03 96.64
DOGE2.0 392.16 1.47 266.78
SDEX 516.29 3.21 160.84
BAG 504.99 4.06 124.38
DINO 451.06 4.91 91.87
WOJAK 665.12 2.67 249.11
XCN 755.11 8.33 90.65
HOICHI 1262.99 5.72 220.80
Metis 1359.59 12.93 105.15
QOM 1681.95 8.34 201.67
MUTE 1679.20 13.74 122.21
GLM 1896.96 15.35 123.58
ETH2x-FLI 2931.61 13.47 217.64
REPv2 3275.41 16.70 196.13
DERC 3486.62 11.49 303.45
BEPRO 3789.14 15.74 240.73
stkAAVE 3194.12 15.81 202.03
ADX 3673.39 16.57 221.69
MIR 4525.21 28.04 161.38
TRAC 6596.15 29.93 220.39

Average 2141.66 11.52 180.86

A closer look at the dataset-level results reveals
consistent and significant efficiency gains
across all cases. Particularly, datasets such as
DERC (303.45×), DOGE2.0 (266.78×), WO-
JAK (249.11×), BEPRO (240.73×), HOICHI
(220.80×), ADX (221.69×), and TRAC
(220.39×) exhibit extremely large efficiency
ratios, with MiNT inference being more than
two hundred times faster than training a new
HTGN model. These datasets tend to have
relatively complex temporal dynamics or larger
network sizes, implying that MiNT’s pretraining
enables it to generalize efficiently without
the expensive retraining process required by
HTGN.

Even for datasets where the efficiency ratio is
relatively smaller, such as DINO (91.87×), XCN
(90.65×), and GLM (123.58×), the improvement
still amounts to nearly two orders of magnitude,

34

representing a dramatic reduction in computational cost. This consistency across diverse datasets
underscores MiNT ’s scalability and robustness.

Overall, these findings emphasize that MiNT not only provides dramatic time savings but also
scales effectively across both small and large networks, maintaining reliable inference speed without
sacrificing model performance. The ability to perform inference hundreds of times faster makes
MiNT particularly advantageous in dynamic, real-world scenarios, such as financial transaction
networks, communication systems, and social platforms, where new temporal graphs continuously
emerge and require immediate adaptation. Consequently, this efficiency establishes MiNT as a highly
practical and deployable framework for advancing the development of temporal graph foundation
models.

35

