
A Feature Importance Explanation Methods

We briefly review several FI explanation methods and explain how they are used in this paper. These
methods can be classified as gradient-based (1-2), attention-based (3), and perturbation-based (4-7).
Note that when computing derivatives of model outputs for explanation methods, we use the logit of
the predicted class rather than the predicted probability for purposes of numerical stability.

1. Vanilla Gradient (VGrad) [49]. This method offers an explanation of model behavior in terms of
the gradient of the model output with respect to the input, ∇xfθ(x)ŷ . When computing scores for
a bounding box vector representation, we sum up the gradient for each element.

2. Expected Gradients (ExpGrad) [15]. This method estimates the integral in Integrated Gradients
[54] by Monte Carlo sampling in order to speed up computation, and it uses the data distribution
to obtain baseline inputs. That is, the explanation

ẽ = Eα∼Unif(0,1)Ex′∼D

[
(x′ − x) ◦ ∇xfθ

(
x′ + α(x− x′)

)
ŷ

]
is estimated with a single sample of α and x′ ∼ D using the training dataset D. We consider
alternative baselines x′ later.

3. Attention weights (AttWeight) [25, 63, 52]. This approach treats attention weights in a model as
an explanation of model feature importance. For the Up-Down model [2], we use its sole set of
top-down attention weights, but early experiments suggest this is not an effective method and we
do not explore it further.

4. Leave-one-out omission (LOO) [32]. An LOO explanation assigns a score to feature j as the
difference in the function output on the original input and an input with feature j replaced. Any
Replace function may be used with LOO. Hence ẽj = diff

(
f(x), Replace(x, 1⃗−j)

)
where diff

measures the difference in function outputs, and 1⃗−j is the ones vector with element j set to 0.
5. Keep-one-in omission (KOI). The complement of leave-one-out, this method scores each feature

by computing the effect of replacing all features except that a given feature.
6. SHAP [37]. We use the model-agnostic Kernel SHAP method, a generalization of LIME which

assigns scores to features by fitting a linear model on perturbations of an input in order to predict
the effect of each feature perturbation on the model output. Specifically, Kernel SHAP obtains an
explanation by solving a weighted regression problem where model outputs are predicted based
on the presence of features in the input:

argmin
ẽ

Es∼Ds
π(s)

(
fθ(xs)ŷ − fθ(x0⃗)ŷ − ẽT s

)2
(8)

where s is a random binary mask over features, xs = Replace(x, s), the “null” input x0⃗ =

Replace(x, 0⃗), and π is the Shapley kernel [37]. Any Replace function may be used with SHAP.
7. Average Effect (AvgEffect). This method follows SHAP exactly except for the use of a regression.

To estimate a feature’s importance, we aim to compute the expected difference between model
outputs with that feature observed vs. replaced:

ẽj = Es1,s0∼Ds
diff

(
fθ(xs1)ŷ, fθ(xs0)ŷ

)
(9)

where s1 and s0 are versions of a random binary vector s where some element has been set to 1 in
s1 and 0 in s0. In practice this expectation is estimated via Monte Carlo sampling. As long as
elements of s are sampled independently, this method gives the same result as Kernel SHAP when
the number of samples is large, but results will differ when the sample size is small.

B Replace Functions

We explain the tuning process for Replace functions in this section. As the Replace function is used
in both obtaining model FI and data augmentation, we tune the Replace functions using the Align
and Align+Suff-Human objectives with the LOO explanation method, and we select the function
with the highest average Dev set performance. For the full sequential tuning process across all
hyperparameters, see Appendix F. We consider five different Replace functions: All-Zeros, All-
Negative-Ones, Gaussian, Marginal Distribution, and Shuffling. The first two functions simply replace

17



Table 6: Replace Functions Tuning

Method Align Align+Suff-Human

All-Zeros 68.41 68.55
All-Negative-Ones 68.29 70.67
Gaussian 68.80 69.94
Marginal Dist 67.54 69.25
Shuffle 43.10 46.10

features with zeros or negative ones. Gaussian function adds zero-mean Gaussian noise to input
features with the standard deviation calculated using all features within the current batch. Marginal
Distribution replaces a feature (a bounding box) with a randomly sampled feature (another bounding
box) from the current batch. The Shuffle function shuffles elements of the input representation across
all bounding boxes that need replacement within one sample (within and across bounding boxes). We
find that All-Negative-Ones Replace function has the highest average accuracy on the Dev set, and
we use it for all situations where replacement is needed (see Table 6).

C Differentiable SHAP

In this section, we show how to differentiate through SHAP explanations while respecting the
theoretical properties that SHAP explanations provide. In Appendix D, we discuss how to limit the
computational burden of computing perturbation-based explanations during model training.

Kernel SHAP [37] values are obtained via a weighted linear regression as follows: To explain a model
f : X → Y , one defines a data distribution Ds over binary feature masks for randomly replacing
features with some reference value (denoted in our paper by the Replace operation). In SHAP, these
reference values are either (1) randomly drawn from the marginal data distribution over that feature,
or (2) preset by the user to a fixed value for all features. We choose the second option based on
Replace function tuning. The closed-form solution for SHAP values is then given by a weighted
least-squares regression [37]:

ẽ = (STWS)−1STWY (10)

where the row vector Si is drawn from Ds, W is a diagonal weight matrix with elements Wii = π(Si),
and Yi is the difference in function outputs on xSi

and the “null” input, fθ(xSi
) − fθ(x0⃗). This

formulation can also satisfy the additivity constraint that the explanation weights sum to the
difference fθ(x)− fθ(x0⃗). This is done by adding a “data point” Si that is all ones, with its weight
Wii manually set to a large value. The resulting explanation is differentiable w.r.t. θ by virtue of
being differentiable w.r.t. Y .

D Varying Compute Budgets in Feature Importance Methods

In Table 10, we show the performance of each FI method for improving CLEVR-XAI dev ID accuracy
with UpDn. Surprisingly, we find that accuracy improvements do not increase with a higher compute
budget for the FI method. Below, we describe how the compute budget can vary for each method.

Vanilla Grad and Attention have invariable compute budgets, as measured in terms of the number of
forward+backward passes. However, the other methods have variable budgets. Expected Gradients
depends straightforwardly on the number of sampled α values, since we use the same negative-ones
baseline feature value for all points (one forward and one backward pass per sample).

To compute a perturbation-based explanation, we need to compute fθ at least once per feature in x.
This is because we need to measure the effect of replacing each feature separately. With SHAP, we
need at least one sample Si per feature in order for ẽ to be identifiable (equivalently, for STWS to
be invertible). However, a complete explanation is not needed for every datapoint during training.
Instead, we can estimate feature importance for only a subset of features for each datapoint in a given
batch. This allows us to greatly limit the computational cost of explanation supervision. In fact, we
can use as little as a single sample per data point. The strength of SGD-based training in this context
is that, over the course of training, a large number of feature importance estimates will be computed
and penalized against human explanations.

18



Table 7: Resplit Sensitivity Test.

Resplit 1 Resplit 2 Resplit 3

FI Method ID Acc. OOD Acc. ID Acc. OOD Acc. ID Acc. OOD Acc.

Baseline 69.99 50.40 69.21 57.73 69.08 58.75
VISFIS 72.00 52.79 71.03 60.28 70.70 62.14

Figure 4: Threshold ablation on CLEVR-XAI.

With our per-explanation compute budget of k model forward+backward passes and an input dimen-
sionality d, we allow for k < d by explaining only k features while keeping the other d− k features
constant. With LOO explanations, this simply requires not computing scores for d − k features,
which are ignored in the Lalign loss. With SHAP explanations, we pick d− k features to always set to
0 in our random masks s. Then when computing Eq. 10, we drop those constant feature columns
from S to obtain a new k × k matrix, which ensures that ẽ is identifiable.

E Data Details

Dataset License. We conduct experiments on three datasets: CLEVR-XAI [5] under the CC
BY-NC-ND 4.0 license, GQA [21], and VQA-HAT [11] both under the CC BY 4.0 license.

Distribution Shift Resplit Sensitivity. Since we randomly construct ID and OOD splits with our
distribution shift, we show the robustness of VISFIS across three resplits of CLEVR-XAI dataset
here. In Table 7, we see that VISFIS gives significant performance improvements in all resplits. The
absolute OOD accuracies vary across resplits, but the size of the OOD performance improvement
between VISFIS and the baseline is generally similar, with between a 2.3 and 3.4 percentage point
improvement for each split.

Threshold for Human Feature Importance. For all our objectives except for Align, we need to
select the threshold for human FI to separate important features from unimportant ones. We select the
threshold separately for each dataset mainly based on (1) qualitative visualizations of the important
features and (2) the percentage of data without important features. If a data point is without important
features given a threshold, we do not use FI supervision objectives for that datapoint, but we do
compute the main task objective, LTask. Although we want the importance features to be reasonable
given qualitative visualizations, we don’t want to exclude too much data from training. We balance
between good qualitative results and relatively few excluded data points by selecting thresholds of
0.85, 0.55, and 0.3 for CLEVR-XAI, VQA-HAT, and GQA respectively. These thresholds exclude
1%, 1%, and 8% of data from training with additional objectives for the three datasets. To ensure that
VISFIS is robust to this choice of threshold, we measure its performance improvement across a range
of thresholds using UpDn on CLEVR-XAI. In Fig. 4, we present model accuracy as a function of the

19



Figure 5: Training Size Ablation on GQA with an UpDn model.

Table 8: Thresholds for categorizing explanation faithfulness and subsequent distribution statistics,
for UpDn models on CLEVR-XAI.

Distribution over Faithfulness

Metric Category Threshold Data Proportion

Sufficiency Worst ≥0.25 21%
Sufficiency Middle <0.25 25%
Sufficiency Best <0.01 53%
Comprehensiveness Worst <0.20 32%
Comprehensiveness Middle <0.40 41%
Comprehensiveness Best ≥ 0.40 27%

percentage of objects across images that are deemed as important based on a threshold. The values
of the threshold vary from 0.1 to 0.98. The results show that performance improvements in ID and
particularly OOD test accuracy are obtainable across a large range of threshold values.

Training Size Ablation. GQA dataset [21] contains 943k training points and 132k validation points.
After distribution shift, based on a ratio of 6:1:1.5:1.5, we obtain 645k, 107k, 161k, and 161k data for
Train, Dev, Test ID, and Test OOD sets respectively. We then downsample the train set to about 1/6
of its original size. We also exclude a small fraction of data with no ground-truth bounding boxes,
and we limit our dev and test sets to 20k points. Thus the final split sizes are 101k train points, 20k
Dev, 20k ID Test, and 20k OOD Test. We term this dataset GQA-101k in the main paper. To measure
how FI supervision improvements vary with the amount of training data, we compare VISFIS with
the baseline for GQA using between 5k and 600k training points. Shown in Fig. 5, the results suggest
that supervision is most helpful for improving OOD accuracy when using between 10k and 300k
training points, though improvements in OOD accuracy may still be obtained beyond this value.

Categorizing Faithfulness into Worst/Middle/Best Groups. As part of our analysis of how
accuracy varies with explanation plausibility, we group datapoint explanations into three faithfulness
categories, Worst, Middle, and Best. We select these based on theoretically sensible values of the
Sufficiency and Comprehensiveness metric (see Sec. 5 for metric definitions). To be in the Best
Sufficiency category, the average Sufficiency score (across explanation sparsity levels) must be
at or below 0.01, meaning that the Replaced input must receive a predicted probability no more
than one percentage point below the original. For UpDn on CLEVR-XAI, this is about 53% of
the data. To be in the Best Comprehensiveness category, removing the top features must lower the
predicted probability by at least 0.4 points (on average across explanation sparsity levels). We give
the remaining values and data proportions in Table 8.

20



Table 9: Feature importance method tuning for VISFIS objective with UpDn model on CLEVR-XAI
dev set. The accuracy is averaged over five random seeds. See Appendix F for the full tuning details.

Method accuracy

Vanilla Grad-gt 72.55
KOI-gt 71.92
ExpGrad-pred 72.43

F Training Details

Our implementations makes use of PyTorch [42]. Our UpDn model is optimized with a standard
Adam [29], and LXMERT uses Adam with a linear-decayed learning-rate schedule [12]. We use a
batch size 64 for UpDn and 32 for LXMERT. For all experiments, we train UpDn for 50 epochs and
LXMERT for 35 epochs. UpDn is trained from scratch, while LXMERT uses the default pretrained
checkpoint. It takes about an hour to train UpDn on an Nvidia RTX 2080 Ti and about 6 hours for
LXMERT on an Nvidia A100.

Hyperparameter Tuning. We detail the tuning steps here. All tuning is done using CLEVR-XAI.
The tuning is done in sequential order. We first tune learning rate for the baseline UpDn and LXMERT
models. Learning rate is chosen from {1e-2, 5e-3, 1e-3, 5e-4, 1e-4} for UpDn and {5e-4, 1e-4,
5e-5, 1e-5}. We settle with 1e-3 and 5e-5 respectively. We then fix the learning rate and tune the
weight λi for different objectives. For augmentation objectives, we tune the weight with UpDn
and use the same weight for LXMERT. The weight for augmentation is chosen from {100, 10, 1,
1e-1, 1e-2}, and we end up using weight of 1 for all augmentation objectives. For Inv-FI and Align
objectives, we use FI method LOO with all-zeros replacement function, and tune the weight for
UpDn and LXMERT separately. For UpDn, the weight is chosen from {100, 10, 1, 1e-1, 1e-2},
and for LXMERT, it is chosen from {1e-3, 1e-4, 1e-5, 1e-6, 1e-7}. We use weight 1 for UpDn and
weight 1e-3 for LXMERT+Inv-FI and weight 1e-6 for LXMERT+Align. We also tune the alignment
function - Cosine Similarity, KL divergence, L1 distance, and L2 distance - for the Uncertainty and
Align objectives and use KL for Uncertainty and Cosine Similarity for Align. In addition, we tune
the weight for HINT [47] and SCR [64] with Vanilla Gradient. The weight is chosen {10, 1, 1e-1,
1e-2, 1e-3, 1e-4} for UpDn and {1e-3, 1e-4, 1e-5, 1e-6, 1e-7} for LXMERT. We use 1e-3 for UpDn
and 1e-6 for LXMERT. We then fix the objective weights and tune the Replace function (results
in Table 6). Finally, we tune the FI method to use for Inv-FI and Align objectives. KOI-gt works
the best with Inv-FI, and Expected Gradient-pred for Align. The numbers for Inv-FI and Align in
Table 11 are obtained with KOI-gt and Expected Gradient-pred respectively. We then tune VISFIS
with KOI-gt, Expected Gradient-pred, and, for fair comparison with other relevant works, Vanilla
Gradient-gt. It turns out that Vanilla Gradient gives the greatest performance gain, and we choose it
for all our experiments with VISFIS (see Table 9).

Stop Gradient. When backpropagating through model explanations, we apply a stop gradient for
particular FI supervision methods in order to avoid influencing how the model handles the full input
(which should be used principally for the task loss LTask). For FI methods that involve baseline output
fθ(x) or "null" output fθ(x0⃗), which includes Excepted Gradient, LOO, KOI, and SHAP, we stop
the gradient at fθ(x) and fθ(x0⃗).

G Additional Results

G.1 Which Objectives Are Affected by Random Supervision?

Design. In earlier experiments, we find that VISFIS does not improve performance with random
supervision. Here, we further explore how each of the four additional objective terms in VISFIS is
individually influenced by random supervision. To assess the effect of random supervision on each
objective, we give random supervision to one of the objectives and normal supervision to the other
three on CLEVR-XAI with UpDn.

Results. We show the results in Table 12. The Suff-Human objective is the main reason why
VISFIS does not work with random supervision. Uncertainty and alignment objectives with random

21



Table 10: Feature importance method ablation using the Align objective term, for Updn on the
CLEVR-XAI dataset. Budget is the number of additional forward and backward passes used by the
method.

Accuracy @ Compute Budget

Method 0 1 2 15 30

Attention 71.07 - - - -
Vanilla Grad - 71.03 - - -
Expected Grad - - 71.80 71.75 71.54
LOO - 70.89 71.11 70.99 -
KOI - - 71.04 71.16 -
SHAP - - 71.05 71.18 71.18
AvgEffect - - 71.05 71.03 71.15

Table 11: Objective term ablation for the CLEVR-XAI dataset with an UpDn model

Accuracy RRR Metrics Expl. Metrics

Objective ID ↑ OOD ↑ Suff ↑ Inv ↑ Unc ↓ Plau Suff ↓ Comp ↑
Baseline 71.37 36.80 48.82 77.89 55.17 28.82 34.66 47.56
Saliency Guided 71.50 37.71 73.00 92.17 76.98 13.84 -7.13 21.23
Inv-DA 71.17 35.91 72.53 93.12 76.29 14.33 -7.32 21.30
Inv-FI 71.41 38.88 45.31 76.34 71.41 28.60 35.79 48.20
Uncertainty 71.30 38.34 10.75 86.58 4.16 8.56 73.49 41.65
Align 72.04 41.61 61.19 79.51 64.22 37.20 26.86 35.18
Suff-Random 71.73 39.08 73.59 92.59 60.93 17.32 -5.29 22.48
Suff-Human 71.87 40.91 76.94 90.82 81.42 16.27 -6.68 26.45
+ Align 72.42 41.63 78.55 89.69 80.02 35.73 0.53 27.18
+ Unc 72.33 41.54 77.83 89.70 41.68 23.41 -5.18 37.15
+ Align+Unc+Inv 72.82 43.78 76.65 91.72 43.64 22.67 -0.30 29.51

Table 12: Random supervision control experiments on UpDn + CLEVR-XAI for different objective
terms in VISFIS. We use a fixed set of random explanations for one objective at a time.

Method ID acc OOD acc

Baseline 71.30 36.80
VISFIS 72.82 43.78
w/ random Suff-Human 69.93 36.70
w/ random Unc 72.51 41.87
w/ random Align 71.27 39.58
w/ random Inv-FI 72.59 44.20

supervision hurt the performance, but not as much as the sufficiency objective. Note that Suff-Human
with random supervision is different from Suff-Random, which has different features mask out across
the training process for the same sample. Here, Suff-Human with random supervision has the same
(random) features masked out for the entire training process. The invariance objective with random
supervision does not hurt the performance at all.

G.2 Accuracy-Plausibility Relationship Across Test Splits, Datasets, and Models

In the main paper Fig. 2, we show how accuracy varies as a function of explanation plausibility and
faithfulness for UpDn models on CLEVR-XAI, and we group data points across ID and OOD test
splits. Here, we show that the main trends are generally consistent across the choice of explanation
metric (Sufficency vs. Comprehensiveness), test split (ID vs. OOD), dataset, and model. Trends
across metric and split are shown in Fig. 6, and trends across datasets are shown in Fig. 7. We show
results for LXMERT on CLEVR-XAI in Fig. 8. Though the trends weaken slightly in certain settings,
we always find that accuracy correlates positively with plausibility for highly faithful explanations,
while the relationship is weaker or non-existent for unfaithful explanations.

22



Comprehensiveness Sufficiency

ID
O

O
D

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Explanation Plausibility

Model
Accuracy

Explanation
Faithfulness

Best
Middle
Worst

Datapoint-level Accuracy vs. Plausibility

Figure 6: Datapoint level accuracy by explanation plausibility and faithfulness, for CLEVR-XAI
models, grouped by faithfulness metric and test split.

CLEVR-XAI GQA VQA

-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

Explanation Plausibility

Model
Accuracy

Explanation
Faithfulness

Best
Middle
Worst

Datapoint-level Accuracy vs. Plausibility

Figure 7: Datapoint level accuracy by explanation plausibility and faithfulness for UpDn models,
grouped by dataset.

G.3 Which FI Method Produces the Most Faithful Explanations?

Design. We calculate the Explanation Sufficiency and Explanation Comprehensiveness metrics for
the FI methods listed in Appendix A, using either the predicted or ground truth class to select the
output logit that is explained. All experiments are conducted on CLEVR-XAI with UpDn. Following
guidelines from Hase et al. [20], the UpDn models are trained with Suff-Random objective to make
the replaced features in-distribution for the models. For LOO and KOI, we use a budget of 15 and
36 on CLEVR-XAI and VQA-HAT/GQA, which is the same number as the number of bounding
boxes. For SHAP, Average Effect, and Expected Gradient, we use a budget of 1000 to reduce noise in
deriving each explanation, as these methods involve random sampling. We select the best explanation
method for each dataset by taking the best score on average across the two metrics.

Results. We show the results in Table 13. In general, explanations obtained on predicted class are
more faithful to the model decisions than those obtained on ground truth class. UpDn attention,
LOO-pred, and KOI-pred are among the best across three datasets. SHAP and Average Effect
surprisingly are not very faithful across all three datasets. KOI on predicted class is the most faithful
one for CLEVR-XAI and VQA-HAT, while LOO on predicted class is the best for GQA. Hence,
when calculating explanation metrics, we use KOI on predicted class for CLEVR-XAI and VQA-HAT
and LOO on predicted class for GQA.

G.4 Can Explanation Supervision Improve Model Explainability?

Design. To assess the effect of FI supervision on model explainability, we record faithfulness metrics
using all of our CLEVR-XAI models. We then plot explanation Sufficiency and Comprehensiveness
for each model (averaged across five seeds) to visualize the distribution of faithfulness scores.

23



0.00

0.25

0.50

0.75

1.00

-1.0 -0.5 0.0 0.5 1.0
Explanation Plausibility

A
cc

ur
ac

y

Explanation
Faithfulness

Best
Middle
Worst

LXMERT Datapoint-level Accuracy vs. Plausibility

Figure 8: Datapoint level accuracy by explanation plausibility and faithfulness, for LXMERT on
CLEVR-XAI, averaged across faithfulness metrics and test splits.

0.00

0.25

0.50

0.75

1.00

count
equal_color

equal_integer

equal_material

equal_shape

equal_size

exist
greater_than

less_than

query_color

query_material

query_shape

query_size

Question Type

O
O

D
 A

cc
ur

ac
y

Model

Baseline
VisFIS

Supervision Improvement by Question Type

Figure 9: OOD accuracy for the baseline and VISFIS on CLEVR-XAI with UpDn, grouped by
question type.

Table 13: FI tuning for explanation metrics with UpDn models on Dev ID data.

CLEVR-XAI VQA-HAT GQA-101k

FI Method Suff ↓ Comp ↑ Suff ↓ Comp ↑ Suff ↓ Comp ↑
UpDn Attention 1.19±0.30 20.46±0.72 4.08±4.48 9.06±2.83 0.08±0.40 11.29±1.65
Vanilla Grad-pred 8.80±1.79 12.70±1.20 8.06±4.24 5.70±4.33 14.76±1.67 1.60±1.23
Vanilla Grad-gt 5.04±1.08 16.01±0.83 13.21±2.32 5.46±3.44 15.64±2.27 3.00±0.97
ExpGrad-pred 5.15±1.92 12.39±2.05 3.41±5.06 9.20±2.91 0.25±0.38 7.90±1.80
ExpGrad-gt 9.71±1.12 9.78±1.58 6.12±3.85 6.91±3.46 5.00±1.22 4.43±0.99
LOO-pred -5.01±0.24 14.34±0.82 -2.51±6.97 9.86±3.99 -3.32±0.33 9.26±1.82
LOO-gt 2.62±0.73 9.67±0.48 5.75±4.04 4.35±1.82 5.31±1.62 3.14±0.82
KOI-pred -5.17±0.32 22.43±1.14 -3.45±7.34 10.61±4.31 6.05±7.61 7.81±2.68
KOI-gt 3.25±0.73 18.23±0.77 7.71±3.57 5.40±2.28 19.63±6.27 3.62±1.24
SHAP-pred 17.06±0.73 2.86±0.19 36.12±12.57 2.20±3.03 15.25±7.98 0.04±0.14
SHAP-gt 17.07±0.76 2.84±0.19 33.87±12.60 2.11±2.82 13.53±7.07 0.04±0.16
Average Effect-pred 17.35±0.71 2.83±0.18 7.51±3.30 3.79±4.58 1.69±0.14 0.14±0.22
Average Effect-gt 17.46±0.72 2.74±0.20 7.38±3.37 3.88±4.52 1.68±0.14 0.14±0.22

Results. We show results for each model in Fig. 10 (scores also listed in Appendix Table 11). We find
that average explanation Sufficiency and Comprehensiveness scores lie along a Pareto frontier, shown
by the gray line, which represents a trade-off between better Sufficiency and Comprehensiveness
(models better in one metric are worse in the other). Generally, explanation supervision does not
improve model explainability relative to unsupervised models, with the exception of the Suff+Unc
objective. In the bottom right of the plot, this model demonstrates a better combination of Sufficiency

24



Most explainable models

Suff+Unc
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.3 0.4 0.5
Explanation Comprehensiveness

E
xp

la
na

ti
on

 S
uf

fi
ci

en
cy

FI Supervision

Supervised
Unsupervised

Pareto Frontier of Model Explainability

Figure 10: Average model explanation Sufficiency and Comprehensiveness scores (shown for models
on in-distribution CLEVR data).

Table 14: Datapoint level faithfulness distributions (in terms of Sufficiency) conditional on datapoint-
level and model-level plausibility scores, averaged across CLEVR-XAI models.

Distribution over Faithfulness

Model Plausibility Data Plausibility Worst Medium Best

Low Low 0.51 0.27 0.22
Low Middle 0.19 0.41 0.40
Low High 0.11 0.49 0.40
Middle Low 0.02 0.13 0.85
Middle Middle 0.01 0.1 0.89
Middle High 0.01 0.07 0.92
High Low 0.24 0.31 0.45
High Middle 0.20 0.27 0.52
High High 0.18 0.23 0.60

and Comprehensiveness than other supervised or unsupervised methods, including Saliency-Guided
Training [22]. The Suff+Unc model is especially explainable likely because the Sufficiency objective
encourages the model to rely on a small number of important features, while the Uncertainty objective
encourages the model to become less confident when those important features are removed.

G.5 How Can Models with Low Plausibility Achieve High Accuracy?

Shown in Table 14, we find that models with lower average plausibility show different conditional
relationships than models with higher average plausibility, which helps explain why low-average-
plausibility models can achieve similar accuracies to high-average-plausibility models. Low-average-
plausibility models have low plausibility points with low faithfulness scores, meaning these points are
still often accurately predicted and hence do not bring down the average model accuracy. Meanwhile,
middle and high-average-plausibility models often have low-plausibility points with highly faithful
explanations, meaning these points are often inaccurately predicted, offsetting any gains to average
model accuracy that are achieved for points with both highly plausible and faithful explanations.

G.6 Do RRR Metrics Predict OOD Generalization? Additional Datasets and Models

We measure the correlation between RRR metrics (calculated with ID data) and OOD accuracy
across a large set of models. We report results additional in Table 16 here for LXMERT models
on CLEVR-XAI and UpDn for GQA/VQA. We perform a cross-validation resampling model-level
statistics 10k times, using 40 models’ metrics as training data and 5 for testing each time. The final
metrics we consider are: (1) ID accuracy on its own as a baseline, (2) RRR metrics on their own,
(3) ID accuracy plus average model confidence, (4) ID accuracy plus explanation metrics, (5) ID

25



Table 15: Test accuracy for Updn model on full VQA test set, including all question types.

VQA-HAT

Method ID OOD

Baseline 52.22 ± 0.92 38.95 ± 0.91
Suff-Random 52.26 ± 0.90 39.30 ± 0.97
Selvaraju et al. [47] 52.11 ± 1.01 37.95 ± 1.07
Wu and Mooney [64] 52.16 ± 0.94 38.53 ± 0.94
Simpson et al. [50] 52.32 ± 0.91 38.84 ± 1.08
Chang et al. [7] 50.42 ± 1.01 31.29 ± 1.44
Singla et al. [51] 52.93 ± 0.96 39.05 ± 1.64
VISFIS 52.79 ± 0.95 40.49 ± 0.96

w/ Rand. Supervis. 52.21 ± 0.94 37.95 ± 0.99

Table 16: Correlations between metrics and OOD accuracy for additional datasets and model
architectures. We derive results from 45 models (differing by seed and objective) per condition.

UpDn + VQA-HAT UpDn + GQA-101k LXMERT + CLEVR-XAI

Metric Train Test Train Test Train Test

RRR-Suff 0.393 0.627 0.644 0.584 0.464 0.553
RRR-Inv 0.011 0.148 0.549 0.526 0.035 0.160
RRR-Unc 0.470 0.530 0.478 0.459 -0.111 0.024
ID Acc 0.952 0.850 0.908 0.859 0.903 0.898
+ Model Conf. 0.957 0.866 0.921 0.876 0.910 0.858
+ Expl. Metrics 0.956 0.847 0.923 0.873 0.923 0.883
+ RRR-all 0.958 0.846 0.929 0.875 0.920 0.859
All Metrics 0.965 0.816 0.943 0.832 0.938 0.768

accuracy plus RRR metrics, and (6) All Metrics, which uses all available metrics. The results are
similar to in the main paper, showing that RRR metrics do not achieve a better correlation with OOD
accuracy than ID accuracy does on its own.

26


