
Under review as a conference paper at ICLR 2023

Supplementary Material
A MODEL ADDENDUM

A.1 GRAPH MINI-BATCHING & SHALLOW METHODS

To train a GCN-based model (or generally, whenever propagations based on the graph topology
are involved in the model) on a large network (that cannot fit in the GPU memory), one has to do
minibatching through neighbor sampling. For large-scale networks, mini-batching takes much longer
than full-batch training, which is one of the reasons that graph GCNs are not preferred in real-world
settings (see, e.g., (Jin et al., 2022b; Zhang et al., 2022a; Zheng et al., 2022a; Lim et al., 2021; Maurya
et al., 2021; Rossi et al., 2020)).

For this reason, most methods that can scale on real-world settings are shallow. Shallow (or node-
level) models are based on manipulating the node features X and the graph topology A so that
propagations do not occur during training. Examples of these methods are LINKX, FSGNN (Maurya
et al., 2021), and SIGN (Rossi et al., 2020). Such methods treat the input embeddings as tabular data
and pass them through a feed-forward neural network (MLP) to produce the predictions. Thus, they
avoid the need for neighborhood sampling and instead rely on simple tabular mini-batching.

A.2 RELATIONSHIP TO LABEL PROPAGATION

From a label propagation perspective, one could argue that our method is related to the HITS algorithm
of Kleinberg (1999). Besides, on a directed graph, a potential solution would be to perform label
propagation with the Gram matrix AA

T and use this information as the propagated labels instead of
y
0
i
. This, however, would not be inductive.

A.3 SCALABILITY

Table 3: Inference Complexity (on the whole dataset) for various methods. The adjacency matrix A

is given in sparse (CSR) format.

Method Inference Complexity

GLINKX O(mc + n(dXh + h
2
LX + dPh + h

2
LP + h

2
Lagg))

LINKX O(md + n(dXh + h
2
LX + h

2
Lagg)

L-layer GCN O(mdL + nd
2
L)

L-hop SIGN/FSGNN O(nL(nd + d
2
h + Laggh

2))
L-hop ⌧ -iteration Label Propagation O((n + m)cL⌧)

Cost of 1st Stage: For the 1st Stage, we are using Pytorch-Biggraph to train PEs such as TransE
(Bordes et al., 2013), DistMult (Yang et al., 2014). Please refer to (Lerer et al., 2019) for more
information.

Cost of 2st Stage: For the 2nd Stage we pay once O(mtrainc) (mtrain = |Etrain| is the num-
ber of edges in the graph induced by the train nodes) to do perform MLaP Forward and then
the MLP that takes xi and pi with LX layers for the features xi and LP layers for the PEs
pi, and Lagg layers for the ResNet and hidden dimension h, has forward pass complexity
O
�
n(dXh+ h

2
LX + dPh+ h

2
LP + h

2
Lagg)

�
. Finally, MLaP Backward costs O(mtrainc), sim-

ilarly to MLaP Forward.

Cost of 3rd Stage: The final model costs O(n(dXh+h
2
LX+dPh+h

2
LP +ch+h

2
Lprop+h

2
Lagg))

for a forward pass of the MLP, where c is the class dimensionality and Lprop are the layers for the
MLP handling the propagated labels y0

i
.

Inference Complexity: Tab. 3 shows the inference complexity of GLINKX and compares it with the
complexity of other methods such as LINKX, L-layer GCN, L-hop FSGNN/SIGN and LP.

Compared to LINKX we pay an O(mtrainc) extra cost once. Regarding embedding the adjacency
matrix LINKX pays a O(mh+nh

2
LP) cost for generating the h-dimensional adjacency embeddings

13

Under review as a conference paper at ICLR 2023

whereas we pay O(ndPh+nh
2
LP) which is better for dP = O(m/n). This holds in most real-world

large networks since dP ⇠ 102 whereas n ⇠ 1B and m ⇠ 100B. Also note that using KGEs as
PEs has an additional benefit, since KGEs can be trained only once and can be used off-the-shelf for
other downstream tasks. An L-layer GNN propagates using the adjacency matrix A and multiplies
with a projection matrix W

(i) (for each layer) thus achieving an O(dLm + nd
2
L) complexity;

the former term is due to the propagation (assuming A is sparse), and the latter term accounts for
the multiplication with the projection matrix. The L-hop SIGN (resp. L-hop FSGNN) performs
L (resp. 2L) propagations of the feature matrix X using a sequence of matrices {�`}`2[L] which
cost a total of O(n2

dL) (assuming the matrices are dense), and then uses a ResNet with Lagg layers
block to concatenate the propagated features, which costs O(nLdhLagg), yielding an inference
complexity cost of O(nL(nd + d

2
h + Laggh

2)). Finally, Label Propagation with sparse matrices
costs O((n+m)cL⌧), where ⌧ is the number of iterations of the LP algorithm.

A.4 KNOWLEDGE GRAPH EMBEDDING TRAINING

In the sequel, we provide a general algorithm for training KGEs to be used as positional embedding
P . Briefly we treat G as a knowledge graph with only one relation r = ⇢. Specifically, each edge
(u, v) 2 E corresponds to a head entity with embedding h = pu and a tail entity with embedding
t = pv. Without loss of generality we can pick ⇢ = 1 to be the vector of all 1s since the constants
per dimension can be absorbed by the positional embeddings.

Algorithm 2 Knowledge Graph Embedding Training

Input: Graph G(V,E), Embedding dimension dP , Comparison function
f : RdP ⇥RdP ⇥RdP ! R, Sample loss function ` : R⇥R ! R, Number of epochs T , Batch Size
B, Number of negative samples ⌫
Output: Positional Embeddings P 2 Rn⇥dP

Randomly, initialize the entity embedding matrix P 2 Rn⇥dP with row vectors pu for all u 2 V .
Let ⇢ = 1
For each epoch t 2 [T], sample minibatches {Ebatch} of the edges E of size B.

1. For each minibatch Ebatch and each (u, v) 2 E sample ⌫ negative samples (u0
i
, v

0
i
) /2 E and

build Tbatch =
S

i2[⌫]{((u, v), (u0
i
, v

0
i
))}

2. Update the embeddings P wrt

rP

X

((u,v),(u0,v0))2Tbatch

`(f(pu,⇢,pv), f(p
0
u
,⇢,p

0
v
))

Output P

In our case, we have chosen the DistMult embeddings Yang et al. (2014) which correspond to
choosing the triple product

f(h, r, t) =
X

i2dP

hiriti

as a comparison function, and the margin-based ranking loss `(f(h, r, t), f(h0
, r, t

0)) = max{0, �+
f(h, r, t)� f(h0

, r, t
0)} where � is the margin.

B INDUCTIVE GLINKX

In the paper we focus on the transductive setting. Here we show how we can extend our framework to
the inductive setting. In the inductive setting, during training we only have access to the training graph
Gtrain(Vtrain, Etrain). During test, the whole graph G ✓ Gtrain is revealed and we make predictions for
the test set. The stages of GLINKX in the inductive setting are as follows

14

Under review as a conference paper at ICLR 2023

1st Stage. For the KGE pretraining Stage, we train KGEs on Gtrain. Then we can use existing methods
in the literature such as (El-Kishky et al., 2022; Albooyeh et al., 2020) to infer the KGEs of the test
nodes.

2nd Stage. We train the model that predicts the distribution of the neighbors on Gtrain as in Alg. 1.
Then for the test nodes, we know their ego features xi and we can also infer their PEs (see above)
from the pre-trained PEs on the training set. We use these and the pre-trained shallow model in order
to predict ỹi for the test nodes. Then, we run MLaP backward to compute y

0
i
.

3rd Stage. First, we train the second shallow model by using the propagated soft-predictions only on
Gtrain. We then use the ego features, PEs and the propagated information y

0
i

to make predictions on
the test set.

Alg. 3 shows the process of making predictions on the test set.

Algorithm 3 Inductive GLINKX

Input: Graph G(V,E) with train set Vtrain ✓ V and test set Vtest ✓ V , node features X , labels Y
Output: Predictions for all nodes i 2 Vtest
Pre-training. Call Alg. 1 with input graph Gtrain(Vtrain, Etrain) and compute PEs {pi}i2Vtrain , and
pre-trained models f1 (from 2nd Stage) and f2 (from 3rd Stage)

1st Stage. Create PEs {pi}i2Vtest for the nodes of the test set (see e.g. (El-Kishky et al., 2022;
Albooyeh et al., 2020))

2nd Stage. Predict the distribution of neighbors for the nodes of the test set as ỹi = f1(xi,pi) for
all i 2 Vtest. Calculate y

0
i
=

P
j2V :(i,j)2E ỹj

|{j2V :(i,j)2E}| for all i 2 Vtest (MLaP Backward).

3rd Stage. Compute yfinal,i = f2(xi,pi,y
0
i
) for all i 2 Vtest.

Return {yfinal,i}i2Vtest

C HYPERPARAMETERS

For each of the methods we train for 200 epochs and report the test set accuracy on the epoch with
the best validation accuracy.

C.1 KGES

We use the following hyperparameters for the KGEs using Pytorch-Biggraph:

• dimension = 400
• 50 epochs
• negative samples = 1000
• batch size = 10000
• dot comparator, softmax loss (Yang et al., 2014)
• learning rate = 0.1

C.2 GLINKX W/ ADJACENCY

C.2.1 SWEEPS

We perform the following sweeps:

• glinkx init layers X 2 {1, 2}
• glinkx init layers A”2 {1, 2}
• glinkx init layers agg 2 {1, 2}
• glinkx inner dropout : 2 {0.5}
• lr 2 {0.1, 0.001}

15

Under review as a conference paper at ICLR 2023

• optimize:r: AdamW

name init layers A init layers X init layers agg inner dropout lr

arxiv-year 1 2 1 0.5 0.001
PubMed 1 2 1 0.5 0.001
squirrel 2 1 1 0.5 0.001
yelp-chi 2 2 1 0.5 0.01

Table 4: GLINKX w/ Adjacency Hyperparameters

C.3 GLINKX W/ KGES

C.3.1 SWEEPS

We perform the following sweeps for all datasets

• glinkx init layers X 2 {1, 2}
• glinkx init layers A 2 {1, 2}
• glinkx init layers agg 2 {1, 2}
• glinkx inner dropout : 2 {0.5}
• lr 2 {0.1, 0.001}
• optimize:r: AdamW

• biggraph vector length: 400

name biggraph vector length init layers A init layers X init layers agg inner dropout lr

arxiv-year 400 2 1 1 0.5 0.01
ogbn-arxiv 400 2 2 2 0.5 0.001
PubMed 400 2 2 2 0.5 0.01
squirrel 400 2 1 2 0.5 0.001
yelp-chi 400 2 2 2 0.5 0.01

Table 5: GLINKX w/ Biggraph Hyperparameters

C.4 GAT

C.4.1 SWEEPS

• gat num layers 2 {1}
• gat hidden channels 2 {4, 8, 16, 32}
• gat num heads 2 {2, 4}
• lr 2 {0.01, 0.001}

name gat heads gat hidden channels gat num layers lr

arxiv-year 4 8 1 0.1
ogbn-arxiv 4 4 1 0.1
PubMed 4 16 1 0.1
squirrel 4 4 1 0.1

Table 6: GAT w/ 1 layer Hyperparameters

16

Under review as a conference paper at ICLR 2023

C.5 GCN

C.5.1 SWEEPS

We perform the following sweeps:

• gcn num layers 2 {1}
• gcn hidden channels 2 {4, 8, 16, 32, 64}
• lr 2 {0.01, 0.001}

name gcn hidden channels gcn num layers lr

arxiv-year 64 1 0.01
ogbn-arxiv 64 1 0.01
PubMed 64 1 0.01
squirrel 64 1 0.01
yelp-chi 64 1 0.01

Table 7: GCN w/ 1 layer Hyperparameter

C.6 FSGNN

We run the following sweeps for FSGNN

• layers = 1 for the 1-layer case and layers 2 {2, 3} for the higher-order case

• hidden channels 2 {32, 64, 128}
• learning rate 2 {0.01, 0.001}
• layer normalization 2 {true, false}

C.7 LABEL PROPAGATION

We run the following sweeps using the implementation of Label Propagation from (Lim et al., 2021):

• ↵ 2 {0.01, 0.1, 0.25, 0.5, 0.75, 0.99}
• hops 2 {1, 2}

D EXPERIMENTS ADDENDUM

D.1 IMPLEMENTATION AND ENVIRONMENT

GLINKX is implemented in Pytorch-Geometric. For the knowledge graph embeddings we use the
official Pytorch-Biggraph implementation. We use the official implementation of LINK. For hardware
we used Vertex AI notebooks with 8 NVIDIA Tesla V100 with 16GB of memory and 96 CPUs.

D.2 EXPERIMENTAL PROTOCOL

Error Bars. For the PubMed dataset and the heterophilous datasets provided by (Pei et al., 2020;
Lim et al., 2021; Yang et al., 2016) we used the fixed splits provided with a fixed seed. For the OGB
datasets, where there exists only one officialy released split for each dataset (Hu et al., 2020) we
generate the error bars by runnning the respective experiments with 10 different seeds (0-9).

D.3 DATASETS

For our experiments we use the following datasets (see Tab. 1 for the dataset statistics):

17

Under review as a conference paper at ICLR 2023

• PubMed (Yang et al., 2016; Sen et al., 2008). The PubMed dataset consists of scientific
publications from PubMed database pertaining to diabetes classified into one of three classes.
Each node is described by a TF-IDF weighted word vector from a dictionary which consists
of 500 unique words.

• ogbn-arxiv (Hu et al., 2020; Bhatia et al., 2016; Sinha et al., 2015). The ogbn-arxiv dataset
is a directed graph, representing the citation network between all CS papers on arxiv mined
from the Microsoft Academic Graph (MAG). Nodes are papers and edges correspond to
citations. The node features correspond to the average of word embeddings of the title and
abstract of the papers. The task is to predict the papers’ subcategories (e.g. CS.LG, CS.SI
etc.).

• squirrel (Rozemberczki et al., 2021). The data represents page-to-page networks on squirrels
mined from Wikipedia between October 2017 and November 2018. Node represent articles
and edges are mutual links between the pages. The features of each node are binary and
represent the existence of informative nouns that appear on the corresponding Wikipedia
pages.

• arxiv-year, yelp-chi (Lim et al., 2021). The arXiv-year dataset is derived from the ogbn-arxiv
dataset where the labels have been changed in order to convert the dataset from homophilous
to heterophilous. Instead of predicting each paper’s subcategories, the new task focuses
on predicting the year that a paper is posted, where batches of years have been converted
to labels. The yelp-chi dataset includes hotel and restaurant reviews filtered (spam) and
recommended (legitimate) by Yelp. The graph structure comes from (Dou et al., 2020) and
the features from (Sen et al., 2008). The task is to predict whether a review is a spam or not.

E STAGES DIAGRAM

Figure 4: GLINKX stages.

F PROOFS

F.1 PROOF OF THM. 1 (PARAMETRIC ESTIMATION OF Q)

Counting Estimator. As the first step, we can estimate Qi, denoted by bQi by taking the average
class assignment in its neighbor N (i), i.e.

bQi,j =
1

|N (i)|
X

k2N (i)

I{yk = j}

Evidently, E[bQi,j] = Qi,j . Also, using Hoeffiding concentration inequality, we have, with a probabil-
ity at least 1� �, ������

bQi,j �
1

|N (i)|
X

k2N (i)

Pk,j

������

r

1

2K
log

2

�

Since
Qi =

1

|N (i)|
X

k2N (i)

Pk

18

Under review as a conference paper at ICLR 2023

we have

k bQi �Qik1
r

1

2K
log

2c

�

with probability at least 1� �. Therefore, by the law of total expectation and by minimizing wrt �,
we get

max
j2[c]

E[|Qij � bQij |] E[kQi � bQik1] min
�2(0,1)

r
1

2K
log

2c

�
+ � O

 r
log(Kc)

K

!

Parametric Estimator. As the first step, we show that through a parametric optimization, we will
be able to obtain a better estimation of Qi. In particular, we assume that all Qi can be written in
the parametric form q(j|⇠i;✓), where ✓ 2 RD is the parameter of the model. Let ✓⇤ be the optimal
model parameter such that Qi,j = q(j|⇠i;✓⇤). We define the following loss function

L(✓) = � 1

n

nX

i=1

cX

j=1

Qi,j log q(j|⇠i;✓)

Evidently, ✓⇤ is the minimizer of L(✓). We assume that L(✓) is L smooth and �-PL function, i.e.

krL(✓)k L, L(✓)� L(✓⇤)
1

2�
krL(✓)k2

The real objective function bL(✓) based on the observation of class assignments is given as

bL(✓) = � 1

n

nX

i=1

cX

j=1

bQi,j log q(j|⇠i;✓)

To find the optimal ✓, we run stochastic gradient descent. At each iteration t, we sample one node it,
and compute the gradient gt as

gt =
cX

j=1

bQi,jr✓ log q(j|xit ;✓)

and update the solution by
✓t+1 = ✓t � ⌘gt

where ⌘ is a fixed step size whose value will be decided later. We have

E[L(✓t+1)� L(✓t)]

 E [hrL(✓t),✓t+1 � ✓ti] +
L

2
E
⇥
k✓t+1 � ✓tk2

⇤

= �⌘

✓
1� ⌘L

2

◆
E
⇥
krL(✓t)k2

⇤
+

⌘
2
L

2
E
⇥
kgt � g

0
t
k2 + kg0

t
�rL(✓t)k2

⇤

where g
0
t
=
P

c

j=1 Qi,jr✓ log q(j|xit ;✓). We assume that kr✓ log q(j|⇠i;✓)k G for any ✓ and
any i. We have

E
⇥
kgt � g

0
t
k2
⇤

✓
c
2

K
log

2

�
+ �

◆
G

2
, E

⇥
kg0

t
�rL(✓t)k2

⇤
 G

2

By choosing � = c
2
/K, we have

E
⇥
kgt � g

0
t
k2
⇤
 2c2G2

K
log

2K

c2

Putting the above bounds together, we have

E [L(✓t+1)� L(✓t)] �⌘

✓
1� ⌘L

2

◆
E
⇥
krL(✓t)k2

⇤
+

⌘
2
G

2
L

2

✓
1 +

2c2

K
log

2K

c2

◆

19

Under review as a conference paper at ICLR 2023

Assume ⌘L 1. Using the fact

L(✓t)� L(✓⇤)
1

2�
krL(✓t)k2

we have

E [L(✓t+1)� L(✓⇤)]
⇣
1� ⌘�

4

⌘
E [L(✓t)� L(✓⇤)] +

⌘
2
G

2
L

2

✓
1 +

2c2

K
log

2K

c2

◆

and therefore

E [L(✓t+1)� L(✓⇤)] exp

✓
�⌘�t

4

◆
(L(✓0)� L(✓⇤)) +

⌘G
2
L

2

✓
1 +

2c2

K
log

2K

c2

◆

Let ✓1 = ✓n+1. By choosing

⌘ =
4

n�
log

✓
n�(L(✓0)� L(✓⇤))

2G2L(1 + 2c2/K log(2K/c2))

◆

we have

E [L(✓1)� L(✓⇤)]
2G2

L

n�

✓
1 +

2c2

K
log

2K

c2

◆
log

n�(L(✓0)� L(✓⇤))
2G2L(1 + 2c2/K log(2K/c2))

= O

✓
log n

n�

◆

Since

L(✓1)� L(✓⇤) =
1

n

nX

i=1

cX

j=1

q(j|⇠i;✓⇤) log
q(j|⇠i;✓1)
q(j|⇠i;✓⇤)

=
1

n

nX

i=1

cX

j=1

KL (q(·|⇠i;✓⇤)kq(·|⇠i;✓1))

and (by Pinkser’s Inequality),

KL (q(·|⇠i;✓⇤)kq(·|⇠i;✓1)) � 2

0

@
cX

j=1

|q(j|⇠i;✓1)� q(j|⇠i;✓⇤)|

1

A
2

we have

1

n

nX

i=1

E

2

64

0

@
cX

j=1

|q(j|⇠i;✓1)�Qi,j |

1

A
2
3

75 C log n

n�

where

C = G
2
L

✓
1 +

2c2

K
log

2K

c2

◆
log

�(L(✓0)� L(✓⇤))
2G2L(1 + 2c2/K log(2K/c2)

Hence, on average, we have

|q(j|⇠i;✓1)�Qi,j |

s
C log n

n�

which could be significantly smaller than O(1/
p
K) when n � K, indicating that through the

parametric modeling of Qi,j and optimization of bL(✓), we will be able to achieve significantly better
estimation of Qi,j than a simple counting.

F.2 PROOF OF THM. 2 (PARAMETRIC ESTIMATION OF P)

Naı̈ve Approach. We now will utilize the estimation q(·|⇠i;✓1) further estimate Pi. Similar to last
section, we introduce a parametric estimator p(j|⇠i;w), where w 2 Rd is the parameter. We denote
by w⇤ the optimal parameter, i.e. Pi,j = p(j|⇠i;w⇤). Let G(w) be the objective function based on
population average, i.e.

G(w) =
1

n

nX

i=1

cX

j=1

Pi,j log p(j|⇠i;w)

Evidently, w⇤ is a minimizer of G(w). Similar to the last Section, we assume G(w) is L smooth and
�-PL function.

20

Under review as a conference paper at ICLR 2023

A straightforward approach for optimizing G(w) is, at each iteration t, sample a node it from the
network, and compute the stochastic gradient as

gt = yitr✓ log p(yit |⇠it ;✓t)
and update the solution as

wt+1 = wt � ⌘gt

Following the same analysis from the last Section, we have

E [G(wn+1)� G(w⇤)] O

✓
log n

n�

◆

and

1

n

nX

i=1

E

2

4
cX

j=1

|p(j|⇠i;wn+1)� Pi,j |2
3

5 O

 s
log n

n�

!

Here, we propose a different version of SGD, with the aim to reduce the impact of variance due to
the random sample of class label yi. We divide optimization into two phase. In the first phase, we
will optimize w with respect to the following objective function

bG(w) =
1

n

nX

i=1

cX

j=1

0

@ 1

|N (i)|
X

k2N (i)

q(j|⇠k;✓1)

1

A

| {z }
:= bPi,j

log p(j|⇠i;w)

In the second phase, we will run the SGD optimization that mixes stochastic gradient with the gradient
of bG(w), i.e. optimizes the objective �bG(w) + (1� �)G(w).

Phase I. In Phase I, we will update the solution by

wt+1 = wt � ⌘rbG(wt)

Using the standard analysis, we have

E[G(wt+1)� G(wt)]

 �⌘E
h
hrG(wt), bG(wt)i

i
+

⌘
2
L

2
krbG(wt)k2

= �⌘

2
E[|rG(wt)|2]�

⌘

2
(1� ⌘L)E[krbG(w)k2] + ⌘

2
E[krG(wt)�rbG(wt)k2]

Since

E
h
krG(wt)�rbG(wt)k2

i
|

= E

������
1

n

nX

i=1

cX

j=1

(Pi,j � bPi,j)r log p(j|⇠i;wt)

������

2

 G
2

n2
E
�����

nX

i=1

kPi � bPik1

�����

2

 CG
2 log n

n�

and by further assuming ⌘L 1, we have

E[G(wt+1)� G(wt)] �⌘

2
E[krG(wt)k2] +

⌘CG
2 log n

n�

or

E[G(wt+1)� G(w⇤)] (1� ⌘�)E[G(wt)� G(w⇤)] +
⌘CG

2 log n

n�

By taking the telescope sum, we have

E[G(wt+1 � G(w⇤)] exp (��⌘t) (G(w0)� G(w⇤)) +
CG

2 log n

n�

21

Under review as a conference paper at ICLR 2023

By choosing step size ⌘ = 1/L, and setting t as

t =
L

�
log

n�(G(w0)� G(w⇤))

CG2 log n

we obtain the solution w
0 with guarantee

E[G(w0)� G(w⇤)]
2CG

2 log n

n�

Phase II. In the second phase, we use w
0 as the initial solution for w, and ran a SGD. At each

iteration t, we randomly sample a node it from the graph, compute the gradient as

gt = (1� �)yitr log p(yit |xit ;wt) + �rbG(wt)

and update the solution as
wt+1 = wt � ⌘gt

Following the analysis from the last section, we have
E[G(wt+1)� G(w)]

 �⌘E
h
hrG(wt), (1� �)rG(wt) + �bG(wt)

i
+

⌘
2
L

2
E
h
k�rbG(wt) + (1� �)G(wt)k2

i
+

⌘
2
⌘
2
G

2
L

2

 �⌘

2
E
⇥
krG(wt)k2

⇤
� ⌘

2
(1� ⌘L)E

h
k�rbG(wt) + (1� �)rG(wt)k2

i
+

⌘�
2

2
E
h
krG(wt)�rbG(wt)k2

i

+
(1� �)2⌘2G2

L

2
By choosing ⌘ 1/L, we have

E [G(wt+1)� G(wt)] �⌘

2
E
⇥
krG(wt)k2

⇤
+

(1� �)2⌘2G2
L

2
+

⌘�
2

2
E
h
kG(wt)� bG(wt)k2

i

krG(wt)�rbG(wt)k2

=

������
1

n

nX

i=1

cX

j=1

(Pi,j � bPi,j)r log p(j|⇠i;wt)

������

2

 G
2

n2

�����

nX

i=1

kPi � bPik1

�����

2

 CG
2 log n

n�

we have
E[G(wt+1)� G(wt)]

 �⌘

2
E[krG(wt)k2] +

(1� �)2⌘2G2
L

2
+

⌘CG
2
�
2 log n

n�

Using the standard analysis, we have

E[G(wt+1)� G(w⇤)] exp (�⌘�t) (G(w0)� G(w⇤)) +
CG

2
�
2 log n

n�
+

(1� �)2⌘G2
L

2

By minimizing over �, we have

E[G(wt+1)� G(w⇤)] exp (�⌘�t) (G(w0)� G(w⇤)) +G
2

s
CL⌘ log n

2n�

 2CG
2 log n

n�
exp(�⌘�t) +G

2

s
CL⌘ log n

2n�

With t = n and choosing

⌘ = O

✓
log log n

n�

◆

we have
E[G(wn+1)� G(w⇤)] O

✓
1

n�

p
log n log log n

◆

Comparing the naive approach where we simply train over class assignment yi, we are able to reduce
the error by a factor of

p
log n/ log log n.

22

Under review as a conference paper at ICLR 2023

G FURTHER RELATED WORK

Methods for Homophily and Heterophily. Many methods have been adapted to work both in
homophilous and heterophilous regimes. H2GCN (Zhu et al., 2020) is one of the first methods
shown to work in both kinds of datasets. RAW-GNN (Jin et al., 2022a) is a random-walk-based
GCN that exploits both homophily and heterophily by doing random walks and aggregations in two
ways: breadth-first for homophily and depth-first for heterophily. CPGNN (Zhu et al., 2021) is a
GCN-based architecture that uses a compatibility matrix for modeling the heterophily or homophily
level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the
assumption of strong homophily. GPR-GNN (Chien et al., 2020) addresses feature over-smoothing
and homophily/heterophily by combining GNNs with Generalized PageRank techniques, where each
step of feature propagation is associated with a learnable weight. The amplitudes of the weights
trade off the degree of smoothing of node features and the aggregation power of topological features.
However, all the above methods suffer from the same scalability issues that GCNs have.

Regarding scalable methods for both homophily and heterophily, the FSGNN (Maurya et al., 2021)
method is closely related to our work. It relies on using propagations that are separate from the
training (similar to SIGN) and uses separate (higher-order) feature propagations for homophily and
heterophily. In contrast, our one-hop method relies on different components to address homophily
and heterophily. Furthermore, FSGNN components can be added to our method, together with the
ego features, the PEs, and the propagations, and thus their work can also be seen as complementary
to ours. CLP (Zhong et al., 2022) combines a shallow (base) predictor model with a modified
Label Propagation that works both in homophily and heterophily by using a class compatibility
matrix (similarly to CPGNN) for the Label Propagation step. Our method is fundamentally different;
however, incorporating a compatibility matrix for the propagation stage constitutes interesting future
work.

Positional Embeddings. Following up on the recent success of LINKX in classifying nodes in
heterophilous settings based partially on the position of each node (adjacency embedding), a series of
methods have been suggested for incorporating positional embeddings on graph methods (Kim et al.,
2022; Dwivedi et al., 2021). More specifically, (Dwivedi et al., 2021) proposes the MLPGNN-LSPE
architecture, which can simultaneously learn both structural and positional embeddings for nodes,
whereas (Kim et al., 2022) proposes TokenGT, which treats all nodes and edges as independent tokens,
augments them with positional embeddings – eigenvectors of the normalized Laplacian of the graph
ignoring edge directions – and then feeds them to a Transformer model. However, creating positional
embeddings that require the factorization of the Laplacian matrix is impractical for large-scale graphs.
For this reason, various methods have been proposed for embedding nodes in a graph in a scalable
manner, such as TransE (Bordes et al., 2013), DistMult (Yang et al., 2014)7. The recent development
of Pytorch-Biggraph (Lerer et al., 2019) allows training KGEs large heterogeneous graphs (El-Kishky
et al., 2022).

7For more such methods see (Lerer et al., 2019) and the references therein.

23

