UniGaussian: Driving Scene Reconstruction from
Multiple Camera Models via Unified Gaussian Representations

Supplementary Material

This supplementary material is organized as follows: in
Sec. 6, we present more details of the experimental setups;
in Sec. 7, we provide the implementation details of our ap-
proach; in Sec. 8, we present the experimental comparison
with Fisheye-GS [17]; in Sec. 9, we present results of novel
view synthesis with lane shift; in Sec. 10, we discuss the de-
tails of our approach to Lidar simulation; in Sec. 11, we dis-
cuss the key difference between NeRF-based methods and
our approach; in Sec. 12, we discuss the limitation and fu-
ture work of our approach.

6. Experimental Setups

6.1. Experimental Setup for Fisheye Rendering Ge-
ometric Error Analysis

The pinhole and fisheye cameras are set to have the same
FOV and resolution during rendering. To ensure the ren-
dering quality of the “project-convert” method, the FOV is
set close to the FOV of the training data. The resolution
needs to be set to a large value because the pinhole image
will shrink to the center area after distortion. The 3DGS
hyper-parameters are mainly set following [11].

6.2. Experimental Setup for Driving Scene Fisheye
Camera Simulation

Dataset. We conduct experiments on the KITTI-360
dataset [16]. KITTI-360 contains images captured from
fisheye cameras in real-world driving scenes and pro-
vides camera calibration and ego-vehicle pose. We se-
lect a segment of 221 images (frame ids 227-447 from
“2013_05-28_drive_0000_sync”) and evenly select every
eighth image as the test set while the others are used as
the training set. In addition to comparing the global im-
age quality, three local zones (A, B, C) are compared. As
shown in Fig. 5, zone “A” (Blue) is the bottom area where
objects appear usually very close to the camera, zone “B”
(Green) is the sky with little texture where the geometry is
not very accurate, and zone “C” (Red) is far away from the
camera with the large distortion in this region.

Camera Model Conversion. The MEI camera model is
the only model provided for the fisheye camera on KITTI-
360, so to evaluate our method on both the MEI and
Kannala-Brandt models, we convert the MEI model to the
Kannala-Brandt model. Specifically, the conversion is an
approximation of 64(6) determined by Eq. (3) of the main
paper with the series expansion Eq. (2) of the main paper.
Note that when 6 = 0, the first derivative of Eq. (2) equals

1, while the first derivative of Eq. (3) is 1/(1 + £). To elim-
inate this difference, Eq. (3) is modified as:

fa = arctanrgq = arctan ((x + kix® + k2X5) (1+9). 22)

Correspondingly, the focal length of Kannala-Brandt is set
as fo = /(1 + &) and f, = v2/(1 + &). The first step
of the conversion is to generate a set of 6 and 6, by us-
ing Eq. (22), where 6 € (0,7/2]. Then, k;(i=1,2,3,4) of
the Kannala-Brandt model can be estimated by the least
squares method. In our experiments, we test both the MEI
and Kannala-Brandt camera models but the results are al-
most the same, so we by default report the results with the
MEI model.

Compared Methods. We compare our approach with
three NeRF-based methods, including Instant-NGP [22],
Nerfacto-big [25], Zip-NeRF [2], and one 3DGS-based
method, namely “3DGS [11]+Undistort”. To adapt 3DGS
for driving scene reconstruction with fisheye images, we
rectangularize fisheye images for reconstruction and render
scene with the pinhole camera model and distort to fish-
eye images (named 3DGS+Undistort). Besides, the NeRF-
based methods are implemented based on [25].

6.3. Experimental Setup for Multiple Camera
Model Simulation

Dataset. We conduct our experiments on KITTI-360 [16],
because it is a real-world autonomous driving dataset that
provides both pinhole and fisheye images, while the other
commonly used datasets provide only one type of image.
For evaluation, we select four sequences as [26]. Each
sequence contains 64 frames, and we select every fourth
frame as the test set while the others are used as the train-
ing set. Note that although there are fisheye datasets for
autonomous driving, such as Woodscape [34], they are con-
structed for perception tasks (e.g., object detection, segmen-
tation, efc.) rather than driving scene reconstruction, so they
often only have discrete frames and lack continuous video
sequence data. In contrast, KITTI-360 provides a complete
real-world autonomous driving sensor suite, including fish-
eye, pinhole and LiDAR, so evaluation on KITTI-360 for
multiple camera model simulation is comprehensive to ver-
ify the effectiveness of our approach.

Compared Methods. To the best of our knowledge,
no existing driving scene reconstruction method simulates
both pinhole and fisheye cameras in a unified framework.

Methods

‘Alameda Berlin London

Nyc ‘ Average

Ours 26.0
Fisheye-GS [17] 24.1

23.8 279 223 | 250
242 251 203 | 234

Table 5. Comparison with Fisheye-GS on the Zip-NeRF(fisheye) dataset. Results are in terms of PSNR?.

HUGS [36] is a state-of-the-art 3DGS-based method for
driving scene reconstruction and 3D scene understanding.
We therefore use it as a baseline method for comparison.
We modify HUGS based on the official code and the paper
and additionally use our differentiable rendering method to
train HUGS for fisheye camera simulation. For the other
compared driving scene simulation methods, we borrow the
results from [26]. Note that although there are some other
driving scene simulation methods, they are mostly designed
for pinhole camera simulation, so we choose the represen-
tative HUGS [36], AlignMiF[26] and UniSim-SF[26, 33]
for comparison in our experiments. Modifying existing
state-of-the-art methods for fisheye camera simulation in
autonomous driving is beyond the scope of this work.

7. Implementation Details

We implement our approach using python and pytorch. Fol-
lowing [11, 36], we set the initial position learning rate to
1.6 x 10~* with a decay to 1.6 x 107° at the last iter-
ation. Both scaling and rotation learning rates are set to
0.001, the learning rate of the spherical harmonics feature
is set to 0.0025 and the opacity learning rate is set to 0.05.
Adaptive Density Control is performed every 100 iterations
starting from 500 iterations. For composite scene Gaus-
sians, the background Gaussians are initialized with LIDAR
point clouds, the dynamic Gaussians are randomly initial-
ized, and the sky Gaussians are uniformly initialized in a
distant (more than 100 meters) spherical region for simplic-
ity, but more advanced sky cubemaps [32] can be used. The
training loss £ of our approach is defined in Eq. (20) of the
main paper. The details of these losses and regularization
terms are listed below.

Image Losses Egb and L] ;. They are the reconstruc-

tion losses between the ground-truth and the rendering pin-
hole/fisheye images, which are defined as:

Ergb = (]- - A'r‘gb)»cl +)\'rngSSIMa (23)

where L1 isthe L1 loss, Lssras isaD-SSIM term [11], and
Argb is set to 0.2 following [11].

Depth Loss £,4. It is the depth loss computed between
the rendering depth and the monocular depth £;_ 000 OF
LiDAR depth £4_jigqr- Although the depth derived from
LiDAR is accurate, it can only supervise the masked re-
gion with the projected point clouds. On the other hand,

the monocular depth is coarse but can supervise the whole
depth map. Thus, we define £, as:

Ed = Ed—lidar + Ed—mmwa (24)

where L£4_jiqar 1s the L1 loss between the depth derived
from LiDAR point clouds and the masked region from the
rendered depth map, and L4_,,0n0 is the Pearson depth
loss [30] between the rendered depth map and the monocu-
lar depth map computed with [9].

Semantic Loss £,. It is the semantic loss for the render-
ing semantic map M and the predefined 2D semantic seg-
mentation map [15]. This is implemented with the cross-
entropy loss to classify the semantic logits and its weight is
set to 0.01. This loss helps to generate semantic maps for
driving scenes, improving the holistic driving scene under-
standing.

Normal Loss £,, Itis the normal consistency loss regular-
izing the rendering normal NV,, and the normal derived from
the depth N4. It encourages a better geometric representa-
tion of the driving scene. We define it as:

Ly =Fn(|1 = N} Nall1), (25)

where F,,, denotes the mean operation.

Opacity and Scale Regularization Term £, .,. Follow-
ing [12], we employ the Gaussian opacity and scale regu-
larization term to encourage a compact scene Gaussian rep-
resentation. It is defined as:

Lreg = Areg (Fm(0]) + Fm(ls])) (26)

where o are the Gaussian opacities, s are the Gaussian
scales and A, is set to 0.01.

8. Experimental Comparison with Fisheye-GS

As discussed in Sec. 2, Fisheye-GS [17] is only based on
ideal camera models with equidistant projection, which hin-
ders its use in driving scene reconstruction because fish-
eye cameras in driving scene are usually generic models
and have large FOVs. Since Fisheye-GS is a state-of-the-
art method adapting 3DGS to fisheye cameras, it would
be interesting to compare our differentiable fisheye render-
ing method with Fisheye-GS. To this end, we conduct ex-
perimental comparison on Zip-NeRF(fisheye) [2] with four

Pinhole

Fisheye

Pinhole

Fisheye

HUGS++

Figure 9. Qualitative results of novel view synthesis with lane shift on KITTI-360.

Methods ‘ Pinhole FID|@3m Fisheye FID] @3m

Ours 182.7 193.7
HUGS++ 191.7 300.8

Table 6. Quantitative results of novel view synthesis with lane shift
on KITTI-360.

large scenes, namely, Alameda, Berlin, London, and Nyc.
These scenes are respectively captured with a fisheye lens
of 180 degree. We select every eighth frame as the test set
while the others are used as the training set. As shown in
Tab. 5, our approach achieves better performance compared
with Fisheye-GS. Specifically, in the Alameda, London and
Nyc scenes, our approach achieves significantly better re-
sults, while in the Berlin scene, our approach achieves com-
parable performance compared with Fisheye-GS. On aver-
age, our approach yields PSNR of 25.0 dB while Fisheye-
GS obtains PSNR of 23.4 dB. These results verify the supe-
riority of our approach over Fisheye-GS.

9. Novel View Synthesis with Lane Shift

In driving scene reconstruction, it is important to synthesize
novel views after the lane shift (left or right) of the ego vehi-

cle for real-world simulators. In this experiment, we further
present the results of novel view synthesis with lane shift @
3 meters of the ego vehicle on KITTI-360. From Tab. 6 and
Fig. 9, we can see that our approach is able to synthesize
high-quality rendered images for novel view synthesis with
lane shift while HUGS++ generates significantly worse re-
sults. For example, the FID of our approach is significantly
better than HUGS++ and the buildings and vehicles in the
rendered images of our approach are much clearer and more
complete.

10. Details of the Optional LiDAR Simulation

In this section, we discuss the potential of our approach
to LiDAR point clouds simulation. As mentioned in the
main paper, our unified framework can be extended to sim-
ulate point clouds by extracting points from the rendering
depth maps. This is achieved by predefining the LiDAR
scans based on real-world LiDAR parameters and mapping
the points of the scans from the world coordinate space to
the camera coordinate space. By default, depth maps are
associated with the pinhole camera coordinate space, but
KITTI-360 only has two front pinhole cameras with narrow
FOVs so the rendering depth maps cannot cover all point
clouds. To solve this problem, we further render depth maps

e . -

from eight pseudo cameras, covering the left, right, front
and back directions, as well as downward towards the road
from each of these directions. In this way, we extract each
point cloud from the nearest depth map. Furthermore, to
simulate the intensities of point clouds, we render intensity
maps via a-blending of the 3D logits of 3D Gaussians in the
rasterizer. Then, the intensities of point clouds are extracted
at the corresponding locations on the intensity maps. To fa-
cilitate model optimization for LIDAR simulation, a LIDAR
loss £; is added to Eq. (20) of the main paper, which is de-
fined as:

El = >\l (Fm(|xszm - zgtD +-Fm(‘Iszm - Igt|)) 5 (27)
where x4, and I, are the simulated point cloud posi-
tions and intensities, x4, and I4; are ground truths, and); is
set to 0.1. In Fig. 10, we visualize some simulated LiDAR
point cloud maps and intensity maps. From these results,
we can observe that the simulated point cloud and intensity
maps are close to the real LiDAR, especially for the nearby
regions. On the other hand, we can also observe some noisy
points because the indirect simulation strategy relies heav-
ily on the accuracy of the depth maps. Note that the Li-
DAR simulation is not the focus of this work and more ef-
fort should be made in order to improve LiDAR simulation
with 3DGS and to simulate more complex LiDAR phenom-
ena.

11. Key Difference between NeRF-based meth-
ods and our approach

Although there have been some NeRF-based methods for
fisheye rendering, such as [4], they are mostly time-
consuming and cannot be combined with Gaussian splat-
ting for driving scene simulation. Besides, in [4], Choi et
al. show that the performance of their approach is close to
Instant-NGP and NeRFacto, while our experiments in Tab. 2

Figure 10. Visualization of simulated LiDAR point clouds on KITTI-360.

show that our approach significantly outperforms Instant-
NGP and NeRFacto. More importantly, we did not thor-
oughly compare these NeRF-based methods because the
novelty of our approach is a new fisheye method to solve
limitation of 3DGS and a unified framework for driving
scene reconstruction, while the performance of NeRF-based
methods does not diminish the novelty of our approach.

12. Limitation and Future Work

Due to the nature of explicit 3D Gaussian representations,
3DGS may not provide sufficient details when the view-
ing distance is close to the observation areas. This issue
may be exacerbated when adapting 3DGS to fisheye cam-
eras in driving scene reconstruction due to the capability of
fisheye cameras to observe nearby vehicles and buildings
along the road. However, our experiments in Sec. 4.2 show
that even for zone “A” (Blue) in Fig. 5, i.e., the bottom area
where objects appear usually very close to the camera, our
approach achieves better reconstruction and renders better
results compared with existing methods. To further address
this limitation, future endeavors can focus on dynamically
adjusting the variable lower bound of scale for 3D Gaus-
sians observed at the close proximity based on the antici-
pated nearest observation distance. Such an approach would
enhance the adaptability and efficiency of the rendering pro-
cess, capturing nearby details. Besides, our future work also
aims to develop a real-world autonomous driving simulator.

