
A Common Core environments

In Section 3, we briefly described four Common Core-inspired environments: equations,
fractions, ternary-addition and sorting. We now provide a detailed description of the
states, actions and problem generators for each of these environment.

A.1 equations

The equations environment exercises the ability to coordinate primitive algebraic manipulations in
order to solve an equation. Each problem is a linear equation on a single variable x, and actions are
valid manipulations of the equation, following simple axiomatic rules. A valid state in this domain is
an equality, which is comprised of two expressions: one on the left and one on the right. In turn, an
expression can be one of the following:

Constant: An integer n, or a rational ab with b 6= 0,
Binary operation: A (recursively defined) left-hand side expression el, an operator op ∈

{+,−,×, /}, and a right-hand side expression er,
Unary operation: The operator − followed by an expression er,
Unknown: The unknown x.

A state is solved only when it is in the form x = n, where n is a constant. When representing states
as strings, we use the standard mathematical notation, with the detail that we parenthesize all binary
operations so that operator precedence is made explicit.

To generate problems in this domain, we leverage the Cognitive Tutor Algebra dataset [28]. This
dataset contains logs of student interactions with an automated algebra tutor. We collected all
equations from the logs, and replaced their numerical constants by placeholders. This gave us 290
syntactic equation templates, such as

(�x+ ♦) = x

and
(�− (−♦)) = (((F/x) + (−z))− (−�)) .

To generate a problem, we first sample one of the templates, and then replace each constant indepen-
dently by an integer between -10 and 10 inclusive, uniformly.

Table 4 lists all axioms in the domain, with examples of applying each.

The following are two examples of step-by-step solutions generated by ConPoLe for sampled
problems, with the axioms used to derive each step. Numbers in square brackets represent fractions,
not divisions (e.g. [4/5] means 4

5).

(-7) = (3 - ((-7) / x)) =>
((-7) - 3) = ((3 - ((-7) / x)) - 3) | sub 3 =>
((-7) - 3) = ((3 - 3) - ((-7) / x)) | sub_comm 4, ((3 - ((-7) / x)) - 3) =>
((-7) - 3) = (0 - ((-7) / x)) | eval 5, (3 - 3) =>
(-10) = (0 - ((-7) / x)) | eval 1, ((-7) - 3) =>
-10x = ((0 - ((-7) / x)) * x) | mul x =>
(-10x / (-10)) = (((0 - ((-7) / x)) * x) / (-10)) | div (-10) =>
((x * (-10)) / (-10)) = (((0 - ((-7) / x)) * x) / (-10)) | comm 2, -10x =>
(x * ((-10) / (-10))) = (((0 - ((-7) / x)) * x) / (-10)) | assoc 1, ((x * (-10)) / (-10)) =>
(x * 1) = (((0 - ((-7) / x)) * x) / (-10)) | eval 3, ((-10) / (-10)) =>
x = (((0 - ((-7) / x)) * x) / (-10)) | mul1 1, (x * 1) =>
x = ((0x - (((-7) / x) * x)) / (-10)) | dist 3, ((0 - ((-7) / x)) * x) =>
x = ((0x - (x * ((-7) / x))) / (-10)) | comm 7, (((-7) / x) * x) =>
x = ((0x - ((x * (-7)) / x)) / (-10)) | assoc 7, (x * ((-7) / x)) =>
x = ((0x - (-7x / x)) / (-10)) | comm 8, (x * (-7)) =>
x = ((0 - (-7x / x)) / (-10)) | mul0 4, 0x =>
x = ((0 - ((-7) * (x / x))) / (-10)) | assoc 5, (-7x / x) =>
x = ((0 - ((-7) * 1)) / (-10)) | div_self 7, (x / x) =>
x = ((0 - (-7)) / (-10)) | eval 5, ((-7) * 1) =>
x = (7 / (-10)) | eval 3, (0 - (-7)) =>
x = ([-7/10]) | eval 2, (7 / (-10))

12

Table 4: Axioms of the equations domain.

Mnemonic Description Example

refl Reflexivity: if a = b, then b = a. 1 + 2 = x→ x = 1 + 2
comm Commutativity: + and × com-

mute.
(2x)/2 = 4→ (x× 2)/2 = 4

assoc Associativity: + (resp. ×) asso-
ciates over + and − (resp. × and
/).

((x+ 1)− 1) = 9→ (x+ (1− 1)) = 9

dist Distributivity: × and / distribute
over + and −.

2× (x+ 1) = 5→ (2x+ (2× 1)) = 5

sub_comm Consecutive subtractions can have
their order swapped.

((2x− 1)− x) = 1→ ((2x− x)− 1) = 1

eval Operations with constants can be
replaced by their result.

x = (9/3)→ x = 3

add0 Adding 0 is an identity operation. (x+ 0) = 9→ x = 9
sub0 Subtracting 0 is an identity opera-

tion.
(x− 0) = 9→ x = 9

mul1 Multiplication by 1 is an identity
operation.

1x = 9→ x = 9

div1 Division by 1 is an identity opera-
tion.

(x/1) = 9→ x = 9

div_self Dividing a non-zero term by itself
results in 1

x = (5x/5x)→ x = 1

sub_self Any term minus itself is 0. x = ((x+ 1)− (x+ 1))→ x = 0
subsub Subtracting −e is equivalent to

adding e.
(x− (−9)) = 10→ (x+ 9) = 10

mul0 Multiplying by 0 results in 0. x = (1 + 0× 2x)→ x = (1 + 0)
zero_div 0 divided by a non-zero term re-

sults in 0.
x = (0/(x+ 1))→ x = 0

add Any subterm can be added to both
sides of the equation.

(x− 1) = 0→ ((x− 1) + 1) = (0 + 1)

sub Any subterm can be subtracted
from both sides of the equation.

(x+ 1) = 0→ ((x+ 1)− 1) = (0− 1)

mul Any subterm can be multiplied to
both sides of the equation.

(x/2) = 6→ ((x/2)× 2) = (6× 2)

div Any subterm can be used to divide
both sides of the equation.

2x = 6→ ((2x)/2) = (6/2)

(2 + 8x) = (-2x + 10) =>
((2 + 8x) - -2x) = ((-2x + 10) - -2x) | sub -2x =>
((2 + 8x) - -2x) = ((10 + -2x) - -2x) | comm 11, (-2x + 10) =>
((2 + 8x) - -2x) = (10 + (-2x - -2x)) | assoc 10, ((10 + -2x) - -2x) =>
((2 + 8x) - -2x) = (10 + 0) | sub_self 12, (-2x - -2x) =>
(2 + (8x - -2x)) = (10 + 0) | assoc 1, ((2 + 8x) - -2x) =>
(2 + ((8 - (-2)) * x)) = (10 + 0) | dist 3, (8x - -2x) =>
(2 + 10x) = (10 + 0) | eval 4, (8 - (-2)) =>
(10x + 2) = (10 + 0) | comm 1, (2 + 10x) =>
((10x + 2) - 2) = ((10 + 0) - 2) | sub 2 =>
(10x + (2 - 2)) = ((10 + 0) - 2) | assoc 1, ((10x + 2) - 2) =>
(10x + 0) = ((10 + 0) - 2) | eval 5, (2 - 2) =>
10x = ((10 + 0) - 2) | add0 1, (10x + 0) =>
(10x / 10) = (((10 + 0) - 2) / 10) | div 10 =>
((x * 10) / 10) = (((10 + 0) - 2) / 10) | comm 2, 10x =>
(x * (10 / 10)) = (((10 + 0) - 2) / 10) | assoc 1, ((x * 10) / 10) =>
(x * 1) = (((10 + 0) - 2) / 10) | eval 3, (10 / 10) =>
x = (((10 + 0) - 2) / 10) | mul1 1, (x * 1) =>
x = ((10 - 2) / 10) | eval 4, (10 + 0) =>
x = (8 / 10) | eval 3, (10 - 2) =>

13

Table 5: Axioms of the fractions domain.

Mnemonic Description Example

factorize Factorize a composite integer into a prime factor
times a divisor.

20
5 →

5×4
5

cancel Eliminate a common factor between both the nu-
merator and the denominator. Only applies when
the factor is explicitly written in both expressions.

2×5
5×10 →

2
10

eval Evaluate an operation with numbers. 2×5
10 →

10
10

scale Multiply both the numerator and denominator of a
fraction by a prime p ∈ {2, 3, 5, 7}.

1
2 + 1

6 →
1×3
2×3 + 1

6

simpl1 Replace a fraction with denominator 1 by its nu-
merator.

10+5
1 → 10 + 5

mfrac Rewrite a number as a fraction with denominator
1.

5 + 2
3 →

5
1 + 2

3

mul Multiply two fractions. 3
4 ×

2
3 →

3×2
4×3

combine Add or subtract two fractions that have syntacti-
cally equal denominators.

3
4+1 + 9×2

4+1 →
3+(9×2)

4+1

x = [4/5] | eval 2, (8 / 10)

A.2 fractions

The fractions environment exercises the ability to reason about integer factorizations, especially
common divisors and common multiples, from primitive axioms. A state in this environment is one
of:

Number: An integer n,

Number operations: Either addition, subtraction or multiplication of two terms, both of which can
be either numbers or number operations,

Fraction: A single fraction, where numerator and denominator are either numbers or number
operations,

Fraction operation: An operation (+, − or ×) between two fractions, two numbers, or a fraction
and a number.

A state is solved if it is either a number or a fraction where both numerator and denominators are
numbers that are coprime (i.e. their greatest common divisor has to be 1). Note that a fraction
operation can only involve two fractions, not other (recursively defined) fraction operations. This is
to keep this domain testing an orthogonal skill compared to equations: nested operations would
require more elaborate algebraic manipulations, but this environment focuses on the Common Core
topic of fraction manipulation.

The following are three random problems solved by ConPoLe demonstrating all axioms:

[1]/[105] + [1]/[42] =>
[1]/[105] + [(5 * 1)]/[(5 * 42)] | scale 4, 5 =>
[1]/[105] + [(5 * 1)]/[210] | eval 8, 5 * 42 =>
[(2 * 1)]/[(2 * 105)] + [(5 * 1)]/[210] | scale 1, 2 =>
[(2 * 1)]/[210] + [(5 * 1)]/[210] | eval 5, 2 * 105 =>
[((2 * 1) + (5 * 1))]/[210] | combine 0 =>

14

Table 6: Axioms of the ternary-addition domain.

Mnemonic Description Example

swap Swap any two adjacent digits b3 b5 c3→ b3 c3 b5

comb Combine (add) two adjacent digits that multiply
the same power p, replacing them by two other
digits: the result (which has power p) and the carry
(with power p+ 1).

b3 c3 b5→ a3 b4 b5

del Erase a digit 0 (a). a3 b4 b5→ b4 b5

[(2 + (5 * 1))]/[210] | eval 2, 2 * 1 =>
[(2 + 5)]/[210] | eval 3, 5 * 1 =>
[7]/[210] | eval 1, 2 + 5 =>
[7]/[(7 * 30)] | factorize 2, 210, 7*30 =>
[1]/[30] | cancel 0, 7

[18]/[5] - 1 =>
[18]/[5] - [1]/[1] | mfrac 4, 1 =>
[18]/[5] - [(5 * 1)]/[(5 * 1)] | scale 4, 5 =>
[18]/[5] - [5]/[5] | cancel 4, 1 =>
[(18 - 5)]/[5] | combine 0 =>
[13]/[5] | eval 1, 18 - 5

5 * 3 =>
[5]/[1] * 3 | mfrac 1, 5 =>
[5]/[1] * [3]/[1] | mfrac 4, 3 =>
[(5 * 3)]/[(1 * 1)] | mul 0 =>
[(5 * 3)]/[1] | eval 4, 1 * 1 =>
[15]/[1] | eval 1, 5 * 3 =>
15 | simpl1 0

We used a custom generator for fraction problems. First, with 25% chance, we choose to generate a
single-term problem; otherwise, we will generate a fraction operation (two terms with an operator
drawn uniformly from {+,−,×}). We then generate the subterms independently as follows. With
50% chance, we generate a number. A number is generated by first picking the number of prime
factors (between 0 and 4), then drawing each factor independently from the set {2, 3, 5, 7} and
multiplying them. A fraction is generated by generating two numbers with the same described
procedure: the first becomes the numerator, and the second becomes the denominator.

A.3 ternary-addition

The ternary-addition domain exercises step-by-step arithmetic, in an analogous fashion to some
example-tracing arithmetic tutors [30], where operations can be performed out of the traditional order
as long as they are correct deductions. Each state is a sequence of digits multiplying powers of 3, that
are being added together. Two digits can be combined (added together) when they are adjacent and
multiply the same power (e.g. 2× 33 and 1× 33 can be combined together, but 2× 33 and 1× 35

cannot). Three operations are available: (a) combining two adjacent digits that multiply the same
power – generating two other digits, (b) swapping any pair of adjacent digits, and (c) deleting a digit
0 from anywhere. A state is solved when the final number can be readily read from the state: all
digits must multiply different powers, they must be sorted by power, and there should be no zero
digits. For example, 2× 33 + 1× 35 is simplified. On the other hand, 2× 33 + 1× 35 + 1× 33 is
not: the digits multiplying 33 can be brought together and further combined.

To represent digits and powers as strings, we use the letters a, b, c to represent digits 0, 1, 2 respectively,
and decimal digits 0 − 9 to represent powers. There is an implicit addition operation between all
digits in the state. For example, c3 b5 b3 represents 2× 33 + 1× 35 + 1× 33. Table 6 lists the three
axioms described above, with examples.

The following are two of ConPoLe’s solutions for random problems, both utilizing all 3 axioms.

15

Table 7: Axioms of the sorting domain.

Mnemonic Description Example

swap Swap two adjacent elements. [=|==|====|===]→ [=|==|===|====]
reverse Reverse the entire list. [===|==|=]→ [=|==|===]

#(c3 c3 b5 b5 b5 a1 a0 c0) =>
#(c3 c3 b5 c5 a6 a1 a0 c0) | comb 3, b5 b5 =>
#(c3 c3 a5 b6 a6 a1 a0 c0) | comb 2, b5 c5 =>
#(c3 c3 a5 b6 a6 a1 c0) | del 6, a0 =>
#(c3 c3 a5 b6 a6 c0) | del 5, a1 =>
#(c3 c3 a5 b6 c0) | del 4, a6 =>
#(c3 c3 a5 c0 b6) | swap 3, b6 c0 =>
#(c3 c3 c0 b6) | del 2, a5 =>
#(c3 c0 c3 b6) | swap 1, c3 c0 =>
#(c0 c3 c3 b6) | swap 0, c3 c0 =>
#(c0 b3 b4 b6) | comb 1, c3 c3

#(a1 b5 c1 b3 c3 b5 a2 c1 c1 c1 b0 b3 a5 b5) =>
#(a1 b5 c1 b3 c3 b5 a2 c1 b1 b2 b0 b3 a5 b5) | comb 8, c1 c1 =>
#(a1 b5 c1 b3 c3 b5 a2 a1 b2 b2 b0 b3 a5 b5) | comb 7, c1 b1 =>
#(b5 c1 b3 c3 b5 a2 a1 b2 b2 b0 b3 a5 b5) | del 0, a1 =>
#(b5 c1 b3 c3 b5 a2 b2 b2 b0 b3 a5 b5) | del 6, a1 =>
#(b5 c1 a3 b4 b5 a2 b2 b2 b0 b3 a5 b5) | comb 2, b3 c3 =>
#(b5 c1 b4 b5 a2 b2 b2 b0 b3 a5 b5) | del 2, a3 =>
#(c1 b5 b4 b5 a2 b2 b2 b0 b3 a5 b5) | swap 0, b5 c1 =>
#(c1 b5 b4 b5 b2 b2 b0 b3 a5 b5) | del 4, a2 =>
#(c1 b5 b4 b5 c2 a3 b0 b3 a5 b5) | comb 4, b2 b2 =>
#(c1 b4 b5 b5 c2 a3 b0 b3 a5 b5) | swap 1, b5 b4 =>
#(c1 b4 c5 a6 c2 a3 b0 b3 a5 b5) | comb 2, b5 b5 =>
#(c1 b4 c5 c2 a3 b0 b3 a5 b5) | del 3, a6 =>
#(c1 b4 c5 c2 b0 b3 a5 b5) | del 4, a3 =>
#(c1 b4 c5 b0 c2 b3 a5 b5) | swap 3, c2 b0 =>
#(c1 b4 b0 c5 c2 b3 a5 b5) | swap 2, c5 b0 =>
#(c1 b0 b4 c5 c2 b3 a5 b5) | swap 1, b4 b0 =>
#(b0 c1 b4 c5 c2 b3 a5 b5) | swap 0, c1 b0 =>
#(b0 c1 b4 c5 c2 b3 b5) | del 6, a5 =>
#(b0 c1 b4 c2 c5 b3 b5) | swap 3, c5 c2 =>
#(b0 c1 b4 c2 b3 c5 b5) | swap 4, c5 b3 =>
#(b0 c1 b4 c2 b3 a5 b6) | comb 5, c5 b5 =>
#(b0 c1 b4 c2 b3 b6) | del 5, a5 =>
#(b0 c1 c2 b4 b3 b6) | swap 2, b4 c2 =>
#(b0 c1 c2 b3 b4 b6) | swap 3, b4 b3

To generate a problem, we first pick the number of digits in the sequence uniformly from 1 to 15.
Then, we choose each element independently, by choosing a digit from {0, 1, 2} and a power from
{0, 1, 2, 3, 4, 5, 6}, all independently and uniformly.

A.4 sorting

The sorting environment tests the ability to measure and compare object lengths, inspired by the
“Measurements and Data” section from Common Core. States in this domain are a permutation of the
integers from 1 to L, where L is the length of the list. When represented as a string, each number
ni is written as a repetition of the = character, ni times; | is used as a separator between numbers.
The goal is to sort the list by the length of each of the substrings. Table 7 lists the only two axioms
in this domain: swapping adjacent elements and reversing the list. Below, we show two solutions
generated by ConPoLe. The first is done with swaps only. In the second problem, the reversed list
has less inversions than the given one: ConPoLe learns to first reverse the list, and then sort the result
using swaps.

[====|==|=|===|=====|======] =>

16

[====|=|==|===|=====|======] | swap 1 =>
[=|====|==|===|=====|======] | swap 0 =>
[=|==|====|===|=====|======] | swap 1 =>
[=|==|===|====|=====|======] | swap 2

[========|======|===|=|==|====|=======|=====]
[=====|=======|====|==|=|===|======|========] | reverse =>
[=====|====|=======|==|=|===|======|========] | swap 1 =>
[=====|====|==|=======|=|===|======|========] | swap 2 =>
[=====|====|==|=|=======|===|======|========] | swap 3 =>
[=====|====|==|=|===|=======|======|========] | swap 4 =>
[=====|==|====|=|===|=======|======|========] | swap 1 =>
[=====|==|====|=|===|======|=======|========] | swap 5 =>
[=====|==|=|====|===|======|=======|========] | swap 2 =>
[=====|==|=|===|====|======|=======|========] | swap 3 =>
[=====|=|==|===|====|======|=======|========] | swap 1 =>
[=|=====|==|===|====|======|=======|========] | swap 0 =>
[=|==|=====|===|====|======|=======|========] | swap 1 =>
[=|==|===|=====|====|======|=======|========] | swap 2 =>
[=|==|===|====|=====|======|=======|========] | swap 3

For generating problems, we first choose a length L uniformly from 2 to 11, and then shuffle the
list of integers from 1 to L. Lists of 11 elements have at most 55 inversions. Therefore, because of
the reverse operation, all of them can be sorted with at most 27 adjacent swaps (plus one use of
reverse, potentially).

B Training and architecture details

Training/test split. The generators described in Appendix A use pseudo-random number generators,
and thus are deterministic if the random seed is fixed. We use this fact to generate distinct training and
test environments. For training, agents start with a random seed given by a OS-provided randomness
source. Every time an agent samples a new problem, a new seed is chosen from 106 to 107 (providing
around 107 potential training problems). For testing, we always use the seeds from 0 to 199, providing
200 training problems.

Architecture details. All models use character-level bidirectional LSTM encoders. We first use
64-dimensional character embeddings. Then, we use two stacked bi-LSTM layers, with a hidden
dimension of 256. Finally, we take the last hidden state of each direction from the last layer,
concatenate their vectors to obtain a 512-dimensional embedding of the state, and transform this
embedding with a 2-layer MLP that preserves dimension (and do the same separately for the action, in
DRRN), and use that final output according to each model’s architecture. ConPoLe learns a 512x512
matrix Wθ that performs the bilinear transform; CVI learns a linear layer, and DRRN embeds state
and action and outputs their dot product.

Hyper-parameters. We first picked the learning rate from 10−i and 5 × 10−i for i ranging from
1 to 6; in shorter experiments of 100k environment steps in equations and fractions, the value
of 5× 10−6 had the highest success rate for CVI and ConPoLe (though the difference to 10−5 and
5× 10−5 was insignificant); for DRRN, 10−4 performed best on average. We thus used these values
in all experiments. Next, we picked the frequency of updates and batch sizes. For ConPoLe and
CVI, we observed that more frequent updates were consistently better; for performance, we chose
to optimize every 10 solved problems, taking 256 gradient steps on randomly sampled contrastive
examples from the replay buffer. For DRRN, since each training example requires computing a
max operation for the Q update, we chose a smaller batch size to keep training runs in a single
domain under 3 days. We therefore picked a batch size of 64, and performed training updates every
16 problems.

17

