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A PROOF OF THEOREM

Notation. Let X denote the observation space and )) = {1, —1} the output space. Denote Pxy as
the joint probability of the joint space of X x ) and assume a meta distribution x and n domains

P(l) Vo P)((%,, P! )3 are i.i.d realizations from . A decision function is a function f € F : X —
y predlcts Ui =f ( i). Wedenote [ : Y x YV — R, aloss function and define the generalization
error of a decision function as

‘C#(f) = EPXYNM]E(JE,?/)NPXY [l(f(l‘), y)] (3)
Since we have no access to p and all the realizations PQ;, e ,P)(g/, P)(("X), but sampled images

from these realizations, we can derive an empirical error:

:Zzl(f(xij);yij) “4)

i=1 j=1

It’s easy to see that when n — co,m — oo, L£(f) converges to £*(f), which gives the intuitive
sense that increasing m and n gives us better-approximated solutions.

To prove Theorem [I] we use a modified version of the standard empirical Rademacher complexity
bound that weakens the i.i.d assumption to an independence assumption Mohri et al.| (2018)).

Theorem 2 For distribution PV |- .. | P(") independent sampled from meta-distribution 11, and
1-Lipschitz loss I(-, -) taking values in [0, 1], the following holds with confidence at least 1 — 6,

1 1 - ; In(2/9)
- ) <
S Lro () <23 Low () + 2R (F) +3y 50 (5)
Jj=1 j=1
where ﬁPw (f) is losses on empirical set Sp) i.i.d. drawn from P,
Proof 1 Let S = U], Spw) and
= sup — Z Lpo) () = Lpo (f)) ©6)

fern

which satisfies the bounded differences property required by McDiarmid’s inequality, which implies
that with confidence at least 1 — %(5 that

In(2/0)

(I)(S) S Esp(lm>~p(1:n) [q)(S)] + an

@)
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Then we can bound the expected value of ®(.S)

Espum)NPovw[¢(Sﬂ

=Es_ .., ~pam [SUD — Zﬁpm —Lpi ()

p(lin fe}' n

®)

€))

fe]-‘ n

<E ) E
= Sp(l:n)NP(l' ) S;:( ) teF

- ]E ~Pln ]E ’
SP(I:n) pn) Sp(ln) teF

j=1 =1
1 n 1 m
<Egy, ~panBo [sup o> ois(f(i;).vi)
fer o i;
I n 1 &
+ ESP(M) ~pim Eg 51612 n ; m ; —0ij (f(xij)a ym)
1 n 1 m
= QESP(1:”)~P<1=MEU ;161.17-)' n < m 2 Uul(f(iﬂz‘j)a Z/z])

= QESP(l:n) ~P(1:n) [Rmn(F)]

Following McDiarmid’s inequality, we know that with confidence at least 1 — %5,

In(2/9)

2mn

2By mpim [Ronn(F)] < 2R (F) +2

Finally, we have

2mn an
_ In(2/
- ’mn + 3 2mn
Thus,
1 1 -, In(2/9)
- J < - L J 2Rmn
ngﬁm ()< n; P> () + 2R (F) + 34/ =

which completes the proof.

I n 1 &
Ly~ P | SUD Z ooy Zl(f(xgj)vygj) = U(f(zij), yi5)

I
. ~pamEq | sup n Z m Zgij(f(x;j)vy;j) —U(f (i), yij)

(10)

(1)

12)

13)

(14)

15)

(16)

a7

(18)

19)

(20)

21

(22)

Then we can derive the generalization bound with standard empirical Rademacher complexity bound

Li et al.| (2022a).
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Theorem 3 For a I-Lipschitz loss I, with confidence at least 1 — 20 and for all f € F, we have

In(2/9) n(2/9)

LO(F) < £9(f) + 2Romn(F) + 2R (F) + 3\/ n(2/5) :M La(2/)

where R(F) standard empirical Rademacher complexity on function class F.

Now we show that both the number of domains n and the number of images observed from each
domain m is negatively correlated to the upper bound of generalization error.

Proof 2 Let P = {p(l), e 7p(”)} be a set of n domain distribution i.i.d. sampled from €. Define

®(P) = sup L(f) — %Z L0 (f) (23)
Jj=1

fer

We construct P’ by replacing any p9) € P with p' ~ p, then we have |®(P) — ®(P')| < 1/n.
Thus, McDiarmid’s inequality tells us that with confidence at least 1 — %5

In(2/4

B(P) < Bpian, [0(P)] + 1) L) e
Following the proof techniques in Theorem we bound the expected value of ®(P)

Epain o, [2(P)] (25)

1 n
=Epan EqjoulL - = L i 26
Py | D | By ulLq(f)] n]; » (f) (26)
< 2Epaim o yB(a, y,)mp [Rn(F)] 27

McDiarmid’s inequality can be used to say with confidence 1 — %(5 that

In(2/0)

QEP(I:")N;LE(I]‘,yj)wp(j) [Rn(]:)] § 2Rn(]:) + 2 T (28)
Thus, we have
1 n
S(P)=sup L(f)—— > L, i (29)
(P)=sup L(f) = ; p0) (£)
In(2/4
< Epam oy, [2(P)] + % (30)
n
In(2/4
< 9R(F) + 3y 2D (1)
2n
With Theorem 2] we have with confidence at least 1 — § that,
1 & R In(2/9)
- J <Lt 2 nm e 2
n;£p<><f>_£ (f) + 2R (F) + 3y 5= (32)
Finally, we have
1 In(2/8
sup L(f) < =Y Lo (f) + 2Rn(F) +3 n(2/9) (33)
fer n = 2

< 2R (F) + 34/ % + 2R, (F) + 34/ % (34)

which completes the proof.

Then we prove our Theorem T}
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Caltech101 vVOC2017 fairytale pixel art wild west
’ -

Figure 6: Examples of synthetic images conditioned on novel domain knowledge from LLM. The
first two columns (i.e. Caltech101 and VOC2017) are selected from VLCS datasets while the rest
three columns are images generated based on the novel domains (i.e. fairytale, etc) provided by
LLMs

Proof 3 With confidence at least 1 — 26 and for all f € F, we have

LU(f) = L (f) = L) = L7 (F) + £ () = £ (f) (35)

With Theorem|3] we have
LR = £ (F) + £ (f) = £ (f) (36)
§2Rmn(f)+27€n(f)+3\/% +3\/@+£”(f)—£“' 37

< R (F) + 2R (F) + 3\/ In(2/9) | :M In(2/9) | sup|Ch(f) — 2] 69

2mn n

With the assumption that D(u, pi') = sup, [L#(f) — LH| < ¢, we have

L(f) = L(f) (39)
< QRmn(}")+2Rn(]-')+3\/%+3\/@+e (40)
which finishes the proof.

B VISUALIZATION

We provide more examples of synthetic images conditioned on novel domain knowledge from LLM.
We present in Figure[6|the synthetic images of VLCS datasets.

C PITFALL OF TEXT-TO-IMAGE GENERATION MODELS

Text-to-image generation models are by nature noisy as no strict control can be achieved. We present
some pitfalls (commonly reported by the community) that will insert noise and influence the training
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ambiguous
classification
class: horse class: horse class: house class: guitar
domain: castle domain: castle domain: street domain: beach
grounds grounds markets
missing
object
of interest
class: car class: car class: car class: dog
domain: airport  domain: luxury domain: night domain: art deco
estate club
distorted
torso
class: giraffe class: scissors class: scissors Class: horse
domain: ancient domain: domain: chalk art  domain: castle
minimalism grounds

distorted or
more/less
limps or
fingers

class: horse class: elephant class: person class: person
domain: arctic domain: cubistic domain: cityview domain: office

Figure 7: Examples of pitfalls of synthetic images.

of a generalizable model. We show in Figure[7| where each row is a type of problem and below each
image is the corresponding class and domain.
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