
Under review as a conference paper at ICLR 2022

A APPENDIX

This appendix is organized as follows. Section A.1 demonstrates a claim made in section 2 regarding
the fact that the solution of ⌫t = f(⌫t,w0

t,wt) can be obtained using a bisection method. Section
A.2 presents proofs to the two propositions in section 3. Section A.3 presents further details on the
correlation layer in Zhang et al. (2020) and its two deficiencies. Section A.4 presents further details
on the augmented policy network architecture used to accelerate training. Section A.5 presents our
hyper-parameter ranges and final selection. Finally, section A.6 presents a set of additional results.

A.1 SOLVING ⌫ = f(⌫)

In order to apply the bisection method to solve ⌫ = f(⌫), we will make use of the following
proposition.
Proposition A.1. For any 0 < cs < 1 and 0 < cp < 1, the function g(⌫) := ⌫ � f(⌫) is strictly
increasing on [0, 1] with g(0) < 0 and g(1) > 0.

Proof. Recalling that f(⌫,w0,w) := 1� cs
Pm

i=1(w
0i
� ⌫wi)+ � cp

Pm
i=1(⌫w

i
� w0i)+, we first

obtain the two bounds at g(0) and g(1) as follows:

g(0) = 0�

 
1� cs

mX

i=1

(w0i)+ � cp

mX

i=1

(�w0i)+
!

= 0� 1 + cs < 0 ,

since cs < 1, and

g(1) = 1�

 
1� cs

mX

i=1

(w0i
� wi)+ � cp

mX

i=1

(wi
� w0i)+

!
� min(cs, cp)kw

0i
�wi

k1 > 0 ,

since min(cs, cp) > 0. We can further establish the convexity of g(⌫), given that it is the sum of
convex functions. A careful analysis reveals that g(⌫) is supported at 0 by the plane

g(⌫) � g(0) + ⌫

 
1� cs + cp

mX

i=1

1{w0i = 0}wi

!
,

where 1{A} is the indicator function that returns 1 if A is true, and 0 otherwise. Hence, by convexity
of g(⌫), the fact that this supporting plane is strictly increasing implies that g(⌫) is strictly increasing
for all ⌫ � 0.

Given Proposition A.1, we can conclude that a bisection method can be used to find the root of g(⌫),
which effectively solves ⌫ = f(⌫).

A.2 PROOFS OF SECTION 3

We start this section with a lemma that will simplify some of our later derivations.
Lemma A.1. A neural network architecture capturing a set of functions B ✓ {B : Rm⇥h⇥d

!

Rm⇥h0⇥d0
} is permutation invariant in the first coordinate if and only if given any permutation

operator �, we have that {��1
�B�� : B 2 B} ◆ B.

Proof. The “only if” follows straightforwardly from the fact that equality between two sets implies
that each set is a subset of the other.

Regarding the “if” part, we start with the assumption that
8�, {��1

�B�� : B 2 B} ◆ B .

Next, we follow with the fact that for all permutation operator �:
{��1

�B�� : B 2 B} ✓ {��1
�B�� : B 2 {��B0

���1 : B0
2 B}}

= {��1
���B0

���1
�� : B0

2 B} = B ,

where we assumed for simplicity of exposition that h = h0 and d = d0, and exploited the fact that
��1 is also a permutation operator.

11



Under review as a conference paper at ICLR 2022

A.2.1 PROOF OF PROPOSITION 3.1

We first clarify that the correlation layer is associated with the following set of functions (see
Procedure 1):

B := {Bw,b : w 2 R(m+1)⇥d, b 2 R}
where

Bw,b(T )[i, :, 1] :=

0

@T [i, :, :] (~1w>
0 ) +

mX

j=1

T [j, :, :] (~1w>
j )

1

A~1 + b, 8 i = 1, ...,m,

with denoting the Hadamard (element-wise) product.

Let � (associated with the bijection ⇡) be an first coordinate (i.e. asset) permutation operator. For
any correlation layer function Bw,b 2 B, one can construct a new set of parameters w0

0 := w0,
w0

j := w⇡(j), for all j = 1, . . . ,m, and b0 := b such that for all input tensor T , we have that for all i:

Bw0,b0(�(T ))[i, :, 1] =

0

@�(T )[i, :, :] (~1w>
0 ) +

mX

j=1

�(T )[j, :, :] (~1w>
⇡(j))

1

A~1 + b (A.4)

=

0

@T [⇡(i), :, :] (~1w>
0 ) +

mX

j=1

T [⇡(j), :, :] (~1w>
⇡(j))

1

A~1 + b (A.5)

=

0

@T [⇡(i), :, :] (~1w>
0 ) +

mX

j0=1

T [j0, :, :] (~1w>
j0)

1

A~1 + b. (A.6)

Hence,

��1(Bw0,b0(�(T )))[i, :, 1] =

0

@T [i, :, :] (~1w>
0 ) +

mX

j=1

T [j, :, :] (~1w>
j )

1

A~1 + b = Bw,b(T )[i, :, 1] .

We can therefore conclude that {��1
�B�� : B 2 B} ◆ B. Based on Lemma A.1, we conclude that

B is permutation invariant in the first coordinate.

A.2.2 PROOF OF PROPOSITION 3.2

To prove Proposition 3.2, we demonstrate that all blocks used in the WaveCorr architecture are
permutation invariant in the first coordinate (Steps 1 to 3). We then show that permutation invariance
in the first coordinate is preserved under composition (Step 4). Finally, we can conclude in Step 5
that WaveCorr is asset permutation invariant.

Step 1 - Dilated convolution, Causal convolution, Sum, and 1 ⇥ 1 convolution are permuta-

tion invariant in the first coordinate: The functional class of a dilated convolution, a causal
convolution, a sum, and a 1⇥ 1 convolution block all have the form:

B := {Bg : g 2 G},

where
Bg(T )[i, :, :] := g(T (i, :, :)), 8 i = 1, ...,m,

for some set of functions G ✓ {G : R1⇥h⇥d
! R1⇥h⇥d0

}. In particular, in the case of dilated, causal,
and 1⇥ 1 convolutions, this property follows from the use of 1⇥ 3, 1⇥ [h� 28], and 1⇥ 1 kernels
respectively. Hence, for any g 2 G, we have that:

��1(Bg(�(T ))) = ��1(�(Bg(T ))) = Bg(T ) ,

which implies that {��1
�B�� : B 2 B} = B.

12



Under review as a conference paper at ICLR 2022

Step 2 - Relu and dropout are permutation invariant in all coordinates: We first clarify that
Relu and dropout on a tensor in Rm⇥h⇥d are singleton sets of functions:

B := {Bg}

where g : R ! R and Bg(T )[i, j, k] := g(T [i, j, k]). In particular, in the case of Relu, we have:

Bg(T )[i, j, k] := max(0, T [i, j, k]) ,

while, for dropout we have:
Bg(T )[i, j, k] := T [i, j, k] ,

since a dropout block acts as a feed through operator. Hence, we naturally have that:

��1(Bg(�(T ))) = ��1(�(Bg(T ))) = Bg(T ) ,

which again implies that {��1
�B�� : B 2 B} = B.

Step 3 - Softmax is permutation invariant in the first coordinate: We first clarify that softmax
on a vector in Rm⇥h⇥1 is a singleton set of functions:

B := {B}

where
B(T )[i, j, 1] :=

exp(T [i, j, 1])Pm
i0=1 exp(T [i0, j, 1])

.

Hence, we have that:

B(�(T ))[i, j, 1] :=
exp(T [⇡(i), j, 1])Pm

i0=1 exp(T [⇡(i0), j, 1])
=

exp(T [⇡(i), j, 1])Pm
i0=1 exp(T [i0, j, 1])

.

This allows us to conclude that:

��1(B(�(T )))[i, j, 1] = B(T )[i, j, 1] .

Hence, we conclude that {��1
�B�� : B 2 B} = B.

Step 4 - Permutation invariance in the first coordinate is preserved under composition: Given
two asset permutation invariant blocks representing the set of functions B1 and B2, one can define
the composition block as:

B := {B1�B2 : B1 2 B1, B2 2 B2} .

We have that for all B1 2 B1 and B2 2 B2:

B = B1�B2

= (��1
�B0

1��)�(�
�1

�B0
2��)

= ��1
�B0

1�B
0
2��

= ��1
�B0

�� ,

where B0
1 2 B1 and B0

2 2 B2 come from the definition of asset permutation invariance, and where
B0 := B0

1�B
0
2 2 B. We therefore have that {��1

�B�� : B 2 B} ◆ B. Finally, Lemma A.1 allows
us to conclude that B is asset permutation invariant.

Step 5 - WaveCorr is asset permutation invariant: Combing Step 1 to 4 with Proposition 3.1,
we arrive at the conclusion that the architecture presented in Figure 2 is asset permutation invariant
since it is composed of a sequence of blocks that are permutation invariant in the first coordinate.

A.3 CORRELATION LAYER IN ZHANG ET AL. (2020) VIOLATES ASSET PERMUTATION
INVARIANCE

Assuming for simplicity that m is odd, the “correlational convolution layer” proposed in Zhang et al.
(2020) takes the form of the following set of functions:

B := {Bw,b : W 2 Rm⇥d⇥d, b 2 R}

13



Under review as a conference paper at ICLR 2022

where

Bw,b(T )[i, j, k] :=
mX

`=1

dX

k0=1

T [i� (m+ 1)/2 + `, j, k0]W[`, k, k0] + b,
8 i = 1, . . . ,m
8j = 1, . . . , h
8k = 1, . . . , d

,

where T [i0, :, :] := 0 for all i0 62 {1, . . . ,m} to represent a zero padding. Figure A.6 presents an
example of this layer when m = 5, h = 1, and d = 1. One can already observe in this figure
that correlation information is only partially extracted for some of the assets, e.g. the convolution
associated to asset one (cf. first row in the figure) disregards the influence of the fifth asset. While
this could perhaps be addressed by using a larger kernel, a more important issue arises with this
architecture, namely that the block does not satisfy asset permutation invariance.

Figure A.6: An example of the correlation layer in Zhang et al. (2020)’s work over 5 assets

Proposition A.2. The architecture of the correlational convolution layer block used in Zhang et al.
(2020) violates permutation invariance in the first coordinate already when m = 5, h = 1, and
d = 1.

Proof. When m = 5, h = 1, and d = 1, we first clarify that the correlational convolution layer from
Zhang et al. (2020) is associated with the following set of functions:

B := {Bw,b : w 2 R5, b 2 R}
where

Bw,b(T )[i] :=

8
>>><

>>>:

w3T [1] + w4T [2] + w5T [3] + b if i = 1
w2T [1] + w3T [2] + w4T [3] + w5T [4] + b if i = 2
w1T [1] + w2T [2] + w3T [3] + w4T [4] + w5T [5] + b if i = 3
w1T [2] + w2T [3] + w3T [4] + w4T [5] + b if i = 4
w1T [3] + w2T [4] + w3T [5] + b if i = 5

,

where we shortened the notation T [i, 1, 1] to T [i]. Let’s consider the asset permutation operator that
inverts the order of the first two assets: ⇡(1) = 2, ⇡(2) = 1, and ⇡(i) = i for all i � 3. We will
prove our claim by contradiction. Assuming that B is permutation invariant in the first coordinate,
it must be that for any fixed values w̄ such that w̄4 6= w̄1, there exists an associated pair of values
(w0, b0) that makes Bw0,b0 ⌘ ��1

�Bw̄,0��. In particular, the two functions should return the same
values for the following three “tensors”: T0[i] := 0, T1[i] := 1{i = 1}, and at T2[i] := 1{i = 2}.
The first implies that b0 = 0 since

b0 = Bw0,b0(T0)[1] = ��1(Bw̄,0(�(T0)))[1] = 0 .

However, it also implies that:
w0

2 = Bw0,0(T1)[2] = ��1(Bw̄,0(�(T1)))[2] = Bw̄,0(T2)[1] = w̄4

and that
w0

2 = Bw0,0(T2)[3] = ��1(Bw̄,0(�(T2)))[3] = Bw̄,0(T1)[3] = w̄1 .

We therefore have a contradiction since w̄4 = w0
2 = w̄1 6= w̄4 is impossible. We must therefore

conclude that B was not permutation invariant.

We close this section by noting that this important issue cannot simply be fixed by using a different
type of padding, or a larger kernel in the convolution. Regarding the former, our demonstration
made no use of how padding is done. For the latter, our proof would still hold given that the fixed
parameterization (w̄, 0) that we used would still identify a member of the set of functions obtained
with a larger kernel.

14



Under review as a conference paper at ICLR 2022

A.4 AUGMENTED POLICY NETWORK TO ACCELERATE TRAINING

We detail in this section how the structure of the portfolio management problem (2) can be exploited
for a more efficient implementation of a policy network, both in terms of computation time and
hardware memory. This applies not only to the implementation of WaveCorr policy network but also
policy networks in Jiang et al. (2017) and Zhang et al. (2020). In particular, given a a multiperiod
objective as in (2), calculating the gradient r✓SR involves the step of generating a sequence
of actions a0, a1, ..., aT�1 from a sample trajectory of states s0, s1, ..., sT�1 2 Rm⇥h⇥d over a
planning horizon T , where m : the number of assets, h : the size of a lookback window, d : the
number of features. The common way of implementing this is to create a tensor T of dimension
m ⇥ h ⇥ d ⇥ T from s0, ..., sT�1 and apply a policy network µ✓(s) to each state st in the tensor
T so as to generate each action at. Assuming for simplicity of exposition that the state is entirely
exogenous, this procedure is demonstrated in Figure A.7(a), where a standard causal convolution
with d = 1 and kernel size of 2 is applied. In this procedure, the memory used to store the tensor
T and the computation time taken to generate all actions a0, ..., aT�1 grow linearly in T , which
become significant for large T . It is possible to apply the policy network µ✓(s) to generate all the
actions a0, ..., aT�1 more efficiently than the procedure described in Figure A.7(a). Namely, in our
implementation, we exploit the sequential and overlapping nature of sample states s0, ..., sT�1 used
to generate the actions a0, ..., aT�1, which naturally arises in the consideration of a multiperiod
objective. Recall firstly that each sample state st 2 Rm⇥h⇥d, t 2 {0, ..., T � 1}, is obtained from a
sample trajectory, denoted by S 2 Rm⇥(h+T�1)⇥d, where st = S[:, t+1 : t+ h, :], t = 0, ..., T � 1.
Thus, between any st and st+1, the last h � 1 columns in st overlap with the first h � 1 columns
in st+1. The fact that there is a significant overlap between any two consecutive states st, st+1

hints already that processing each state st+1 separately from st, as shown in Figure A.7(a), would
invoke a large number of identical calculations in the network as those that were already done in
processing st, which is wasteful and inefficient. To avoid such an issue, we take an augmented
approach to apply the policy network. The idea is to use a sample trajectory S directly as input to
an augmented policy network ~µ✓ : Rm⇥(h+T�1)⇥d

! Rm⇥T , which reduces to exactly the same
architecture as the policy network µ✓(st) when generating only the t-th action. Figure A.7(b) presents
this augmented policy network ~µ✓(S) for our example, and how it can be applied to a trajectory S

to generate all actions a0, ..., aT�1 at once. One can observe that the use of an augmented policy
network allows the intermediate calculations done for each state st (for generating an action at) to
be reused by the calculations needed for the other states (and generating other actions). With the
exact same architecture as the policy network µ✓(s), the augmented policy network ~µ✓(S), which
takes a trajectory with width h+ T � 1 (thus including T many states), would by design generate
T output, each corresponds to an action at. This not only speeds up the generation of actions
a0, ..., aT�1 significantly but also requires far less memory to store the input data, i.e. the use of
a tensor with dimension (m ⇥ (h + T ) ⇥ d) instead of m ⇥ h ⇥ d ⇥ T . The only sacrifice that is
made with this approach is regarding the type of features that can be integrated. For instance, we
cannot include features that are normalized with respect to the most recent history (as done in Jiang
et al. (2017)) given that this breaks the data redundancy between two consecutive time period. Our
numerical results however seemed to indicate that such restrictions did not come at a price in terms
of performance.

15



Under review as a conference paper at ICLR 2022

(a) µ✓(s) applied to each state separately (b) ~µ✓(S) applied to the full trajectory

Figure A.7: Comparison between the use of policy network µ✓(s) and of the augmented policy
network ~µ✓(S)

A.5 HYPER-PARAMETERS SELECTION

Table A.6: List of Selected Hyper-parameters.

Hyper-parameter Search range WaveCorr CS-PPN EIIE

Learning rate {5⇥ 10�5, 10�4, 10�3, 5⇥ 10�3
} 5⇥ 10�5 5⇥ 10�5 10�4

Decay rate {0.9999, 0.99999, 1} 0.99999 0.99999 1
Minimum rate { 10�6, 10�5

} 10�5 10�5 10�5

Planning horizon T {32, 64} 32 32 32
Look back window size h {32, 64} 32 32 32
Number of epochs [0, 1) 5000 5000 5000

16



Under review as a conference paper at ICLR 2022

A.6 ADDITIONAL RESULTS

A.6.1 COMPARATIVE STUDY

(a) Can-data

(b) US-data

(c) Covid-data

Figure A.8: Average (solid curve) and range (shaded region) of out-of-sample wealth accumulated by
WaveCorr, CS-PPN, EIIE, and EW over 10 experiments using Can-data, US-data, and Covid-data.

17



Under review as a conference paper at ICLR 2022

A.6.2 SENSITIVITY TO NUMBER OF ASSETS

(a) WaveCorr (b) CS-PPN

Figure A.9: Average (solid curve) and range (shaded region) of the out-of-sample wealth accumulated,
on 10 experiments using Can-data, by WaveCorr and CS-PPN when increasing the number of assets.

A.6.3 PERFORMANCE COMPARISON UNDER MAXIMUM HOLDING CONSTRAINT

In practice, it is often required that the portfolio limits the amount of wealth invested in a single asset.
This can be integrated to the risk-averse DRL formulation:

J̄F (µ✓) := E s0⇠F
st+1⇠P (·|st,µ✓(st))

[SR(r0(s0, µ✓(s0), s1), ...)]�
M

T

T�1X

t=0

mX

i=1

max(0, wi
t � wmax)

where wmax is the maximum weight allowed in any asset, and M is a large constant. This new
objective function penalizes any allocation that goes beyond wmax, which will encourage µ✓ to
respects the maximum weight allocation condition. The commission rates are considered to be
cs = cp = 0.5%, and the experiments here are done over Can-data using the full set of 70 stocks, with
a maximum holding of 20%. The results are summarized in Table A.7 and illustrated in Figure A.10.
As noted before, we observe that WaveCorr outperforms CS-PPN with respect to all performance
metrics.

(a) Out-of-sample cumulative returns

Figure A.10: Average (solid curve) and range (shaded region) of the out-of-sample wealth accu-
mulated, on 10 experiments using Can-data, by WaveCorr and CS-PPN under maximum holding
constraint.

Table A.7: The average (and standard dev.) performances when imposing a maximum holding
constraints over 10 random initial NN weights in Can-data.

Annual return Annual vol SR MDD Daily hit rate Turnover

WaveCorr 20% (2%) 13% (0%) 1.55 (0.18) 14% (1%) 53% (1%) 0.17 (0.01)
CS-PPN 13% (1%) 13% (1%) 1.00 (0.15) 15% (2%) 50% (1%) 0.22 (0.03)

18


	Introduction
	Problem statement
	Portfolio management problem
	Risk-averse Reinforcement Learning Formulation

	The New Permutation Invariant WaveCorr Architecture
	Experimental results
	Experimental set-up
	Comparative Evaluation of WaveCorr
	Sensitivity Analysis

	Appendix
	Solving = f()
	Proofs of Section 3
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Correlation Layer in zhang2020cost Violates Asset Permutation Invariance
	Augmented policy network to accelerate training
	Hyper-parameters Selection
	Additional results
	Comparative Study
	Sensitivity to number of assets
	Performance comparison under maximum holding constraint



