
Published in Transactions on Machine Learning Research (02/2025)

A Appendix
A.1 Derivation of Boltzmann Estimator
We provide a full derivation of our Boltzmann estimator, which we use to train our MLFF as part of StABlE
Training. Consider a vector-valued observable g(Γ) of a state Γ, and a reference value of the observable gref.
Training a MLFF Uθ to match gref requires minimizing the loss function,

Lobs(θ)def= ∥EΓ∼Pθ(Γ)[g(Γ)]−gref∥22,

where Pθ(Γ) is the equilibrium distribution induced by the MLFF Uθ. This requires computing the gradient,
∇θLobs, which can be decomposed via the chain rule as follows:

∇θL⊤
obs = ∂Lobs

∂EΓ∼Pθ(Γ)[g(Γ)]

∂EΓ∼Pθ(Γ)[g(Γ)]
∂θ

=2(EΓ∼Pθ(Γ)[g(Γ)]−gref)⊤ ∂EΓ∼Pθ(Γ)[g(Γ)]
∂θ

.

We derive the N-sample estimator, presented in Equation 6 in the main text, of the Jacobian, ∂EΓ∼Pθ(Γ)[g(Γ)]/∂θ.
The estimator is repeated below for convenience.

E(Γ1,...,ΓN)def= N

kBT(N−1)

[
Ê[g(Γ)]Ê[∇θUθ(Γ)]⊤−Ê

[
g(Γ)∇θUθ(Γ)⊤

]]
,

where Ê denotes sample averages. This is an unbiased estimator, that is, EΓ1,...,ΓN ∼Pθ(Γ)[E(Γ1, ... , ΓN)] =
∂EΓ∼Pθ(Γ)[g(Γ)]

∂θ .

Proof. Given Pθ(Γ) def=
exp
(

− 1
kBT Hθ(Γ)

)
C(θ) , where Hθ(Γ)=

∑N
i=1

p2
i

2mi
+Uθ(r), and C(θ) def=

∫
exp(− 1

kBTHθ(Γ′))dΓ′ is
the partition function, we have,

∂EΓ∼Pθ(Γ)[g(Γ)]
∂θ

= ∂

∂θ

∫
g(Γ′)Pθ(Γ′)dΓ′

=
∫

g(Γ′)∇θPθ(Γ′)⊤dΓ′

=
∫

g(Γ′)∇θ(
exp
(
− 1

kBTHθ(Γ)
)

C(θ))⊤dΓ′.

Expanding via the chain rule for Jacobians, and noting that ∇θHθ(Γ) = ∇θUθ(r) (we will write Uθ(Γ) for
convenience) since the kinetic energy is independent of θ, we get,

∂EΓ∼Pθ(Γ)[g(Γ)]
∂θ

=
∫

g(Γ′)
− 1

kBT exp
(
− 1

kBTHθ(Γ′)
)
∇θUθ(Γ′)⊤C(θ)−∇θC(θ)⊤exp

(
− 1

kBTHθ(Γ′)
)

C(θ)2 dΓ′

=
∫

g(Γ′)
[
− 1

kBT
∇θUθ(Γ′)⊤Pθ(Γ′)−∇θC(θ)⊤

C(θ) Pθ(Γ′)
]
dΓ′.

By definition of C(θ), the quotient ∇θC(θ)
C(θ) can be simplified as,

18

Published in Transactions on Machine Learning Research (02/2025)

∇θC(θ)
C(θ) =

−
∫
∇θUθ(Γ′)exp

(
− 1

kBTHθ(Γ′)
)

dΓ′

kBT ·C(θ)

=− 1
kBT

∫
∇θUθ(Γ′)Pθ(Γ′)dΓ′

=− 1
kBT

EΓ[∇θUθ(Γ)].

Putting it all together, we have,

∂EΓ∼Pθ(Γ)[g(Γ)]
∂θ

=− 1
kBT

∫

g(Γ′)∇θUθ(Γ′)⊤Pθ(Γ′)dΓ′︸ ︷︷ ︸
E[g(Γ)·∇θUθ(Γ)]

−
(∫
·g(Γ′)·Pθ(Γ′)·dΓ′

)
︸ ︷︷ ︸

E[g(Γ)]

E[∇θUθ(Γ)]⊤

=− 1

kBT

(
E
[
g(Γ)·∇θUθ(Γ)⊤]−E[g(Γ)]E[∇θUθ(Γ)]⊤

)
=− 1

kBT
Cov(g(Γ),∇θUθ(Γ)).

In this work, we use the following unbiased estimator for covariance. Given 2 random vectors X,Y , and samples
of these vectors {(X1,Y1),...(Xn,Yn)}, our estimator is given by:

Ĉov(X,Y)= 1
N−1

N∑
i=1

XiYi
⊤− 1

N(N−1)

 N∑
j=1

Xj

(N∑
k=1

Yk
⊤

)
.

We can prove it is unbiased by taking the expectation of the right hand side and applying linearity of
expectation:

Ĉov(X,Y)= 1
N−1

N∑
i=1

E[XiYi
⊤]− 1

N(N−1)

 N∑
i=1

E[XiYi
⊤]+

∑
j≠k

E[XjYk
⊤]

= N

N−1E[XY ⊤]− 1
N(N−1)

(
N ·E[XY ⊤]+N(N−1)·E[X]E[Y]⊤

)
=E[XY ⊤]−E[X]E[Y]⊤ =Cov(X,Y).

Given the samples {Γ1,,...ΓN}, we can then use the estimator above to get,

Ĉov(g(Γ),∇θUθ(Γ))= 1
N−1

N∑
i=1

g(Γi)∇θUθ(Γi)⊤− 1
N(N−1)

 N∑
j=1

g(Γj)

(N∑
k=1
∇θUθ(Γk)

)⊤

= N

N−1

[
Ê
[
g(Γ)∇θUθ(Γ)⊤]−Ê[g(Γ)]Ê[∇θUθ(Γ)]⊤

]
.

The final Boltzmann estimator is thus given as,

E(Γ1,...,ΓN)def= N

kBT(N−1)

[
Ê[g(Γ)]Ê[∇θUθ(Γ)]⊤−Ê

[
g(Γ)∇θUθ(Γ)⊤

]]
.

19

Published in Transactions on Machine Learning Research (02/2025)

We note that a similar estimator is obtained in (Thaler & Zavadlav, 2021) by differentiating through a reweighting
scheme arising from thermodynamic perturbation theory. We have presented an alternative derivation that does
not require reweighting.

A.2 Extension to Other Statistical Ensembles
The Boltzmann Estimator is applicable out-of-the-box to any statistical ensemble where the probability of a
microstate can be written as Pθ(Γ)∝exp

(
− 1

kBT [Hθ(Γ)+X (Γ)]
)

, where X contains state-dependent thermodynamic
variables. For the isothermal-isobaric (NPT) ensemble, X (Γ)=pV (Γ), where p is the simulation pressure and V (Γ)
is the volume of the microstate. For the grand canonical (µV T) ensemble, X (Γ)=µN(Γ), where µ is the chemical
potential and N(Γ) is number of particles in the microstate. For the canonical (NVT) ensemble considered in this
work, X (Γ)=0. Since X (Γ) is independent of the MLFF parameters θ in all cases, it can effectively be absorbed
into the kinetic energy component of the Hamiltonian, which does not affect the computation of the estimator. Our
derivation thus proceeds in the same fashion and yields the same estimator. The Localized Boltzmann Estimator
also holds as before.

A.3 StABlE Training Algorithm
We provide an algorithmic description of our StABlE-Training procedure.

Algorithm 1 StABlE Training Procedure
1: Initialize:
2: Pre-trained Machine Learning Force Field Uθ

3: Reference energy and forces dataset Dtrain and observables {g(i)
ref}Ni=1

4: Simulation length t, number of parallel replicas R, minimum unstable threshold fmin,
5: maximum unstable threshold fmax, energy and forces loss weight λ, learning rate α
6:
7: Γ̄curr←{Γ1(0),Γ2(0),...ΓR(0)}∼Dtrain
8: Current fraction of unstable replicas funst←0
9: Total simulated time Tfi

←0,∀i=1,...,R
10: Mark all replicas as active for simulation
11: repeat

Simulation Phase

12: while funst <fmax do
13: Simulate active replicas w/ Uθ for t steps starting from Γ̄curr

14: Tfi←Tfi +t, ∀i corresponding to stable replicas
15: Γ̄curr←{Γ1(Tf1),Γ2(Tf2),...ΓR(TfR

)}
16: Update funst and mark unstable replicas inactive
17: end while
18:
19: // Γ̄curr now contains {Γ1(Tf1),Γ2(Tf2),...ΓR(TR)}, where Tfi

’s are per-replica total simulation times. At
least fmax fraction of replicas are unstable at this point

Learning Phase

20: while funst >fmin do
21: Rewind all trajectories by t timesteps: Γ̄curr←{Γ1(Tf1−t),...,ΓR(TfR

−t)}
22: Simulate all replicas w/ Uθ for t steps starting from Γ̄curr

23: Update funst

24: Compute observables {ÊΓ[g(i)(Γ)]}Ni=1 over all length-t trajectories
25: Lobs←

∑N
i=1∥ÊΓ[g(i)(Γ)]−g

(i)
ref∥2

26: LQM← energy and forces loss of Uθ on dataset Dtrain
27: θ←θ−α·∇θ(Lobs+λLQM) // Compute Boltzmann Estimator
28: end while
29: Mark stable replicas active, unstable replicas inactive for next simulation phase
30: // At most fmin fraction of replicas are unstable at this point
31: until Convergence or maximum cycles reached

20

Published in Transactions on Machine Learning Research (02/2025)

A.4 Observables
We provide definitions and details of the observables considered in this work.

The distribution of interatomic distances serves as a low-dimensional description of 3D structure. For a configuration
r′∈RN×3, it is defined as,

h(r)= 1
N(N−1)

N∑
i=1

N∑
j≠i

δ(r−∥ri
′−rj

′∥),

where δ is the Dirac-Delta function. Although the observable need not be differentiable with respect to r for our
Boltzmann learning framework, we compute a differentiable version of h(r) via Gaussian smearing as in (Wang
et al., 2023a) to facilitate comparison with differentiable simulation methods.

The radial distribution function (RDF) captures how density (relative to the bulk) varies as a function of distance
from a reference particle, and thus characterizes the structural/thermodynamic properties of the system. The
RDF is defined as,

RDF(r)= V

N24πr2 h(r).

where V is the volume of the simulation domain, N is the number of particles, r is the radial distance from a
reference particle, and h(r) is a histogram of pairwise distances. As with h(r), we use Gaussian smearing to make
the RDF differentiable.

The velocity autocorrelation function (VACF) is an important dynamical observable. Many fundamental properties,
such as the diffusion coefficient and vibrational spectra, are functions of this observable. Computing the VACF
requires a window of consecutive simulation states to compute. The VACF at a given time lag ∆t is given by,

V ACF(∆t)= 1
S

∑
t0

∑
i

<vi(t0),vi(t0+∆t)>,

where t0 is an initial time, vi(t) is the velocity of the ith atom at timestep t, < ·,·> is an inner product, and
S is the total number of samples considered given the summations over initial times and atoms. In this work,
we compute the VACF over a window of 100 consecutive simulation timesteps, and normalize the values by the
autocorrelation at ∆t=0 to restrict the range to [−1,1].

The diffusivity coefficient is a fundamental transport property with crucial implications on the performance of
energy storage systems, among other applications. Related to the time-derivative of the mean squared displacement,
the diffusivity coefficient is defined as,

D= lim
t→∞

1
6t

1
N

N∑
i=1
|ri(t)−ri(0)|2

, where ri(t) is the coordinate of the ith particle at time t and N is the number of atoms considered. For the
water system considered in this work, we measure the diffusivity of all 64 oxygen atoms.

A.5 Stability Criteria
We provide definitions and details on the stability criteria considered in this work.

Adapted from (Fu et al., 2022), the maximum bond length deviation metric captures unphysical bond stretching or
collapse in small flexible molecules. According to this criterion, a simulation becomes unstable at time T if,

max
(i,j)∈B

|(∥ri(T)−rj(T)∥−bi,j)|>∆,

where B is the set of all bonds, i,j are the two endpoint atoms of the bond, and bi,j is the equilibrium bond length
computed from the reference simulation. Following (Fu et al., 2022), we set ∆=0.5A for final stability evaluation.
However, we adopt a more conservative value of ∆=0.25A during training in order to detect and correct instability
earlier. We use this criterion for the MD17 and MD22 datasets.

21

Published in Transactions on Machine Learning Research (02/2025)

The minimum intermolecular distance metric is used to detect unphysical coordination structures or collisions between
molecules in the water system. According to this criterion, a simulation becomes unstable at time T if,

min
(i,j)/∈B

∥ri(T)−rj(T)∥<∆,

where B is the set of all bonds, and i,j are the endpoint indices of two non-bonded atoms. We set ∆=1.2A to
detect instability during training.

The minimum intermolecular distance metric is appropriate at train-time to detect local instability early before
it cascades to the rest of the system. However, it is too sensitive to use for evaluation, as realistic simulation
can still be achieved for some time after the occurrence of a highly localized instability. Therefore, following (Fu
et al., 2022), we adopt an instability metric based on the radial distribution function, defined as,∫ ∞

r=0

∥∥∥RDFref(r)−
〈
RDF t(r)

〉T+τ

t=T

∥∥∥dr>∆,

where ⟨·⟩ is the averaging operator, τ is a short time window, and ∆ is the stability threshold. We use τ =10
ps and ∆=3.0 for water. The stability criterion is triggered if any of the three element-conditioned water RDFs
(H-H, O-O, or H-O) exceeds the threshold.

A.6 Architecture and Training Details
We provide details on the model architectures and training procedures used in this work. MD simulations and
MLFFs are written in the PyTorch framework and are built upon the MDsim (Fu et al., 2022) and Atomic Simulation
Environment (Larsen et al., 2017) packages. All training is performed on a single NVIDIA A100 GPU.

Supplementary Table 1 provides details on the MLFF architectures. rmax is the cutoff distance used to construct
the radius graph. lmax denotes the level of E(3) equivariance used in the network.

Symmetry Parameter rmax lmax

Principle Count (A)
SchNet (Schütt et al., 2018) E(3)-invariant 0.12M 5.0 -
NequIP (Batzner et al., 2022) E(3)-equivariant 0.12M 5.0 1
GemNet-T (Gasteiger et al., 2021) SE(3)-equivariant 1.89M 5.0 -

Table 1: MLFF Architecture Details.

For energy and forces pre-training, we follow the protocols in (Fu et al., 2022). In order to isolate the effect of
observable-based learning, we begin StABlE Training only after pre-training has fully converged (that is, when
LQM has reached a plateau). This means that any improvements in stability or accuracy as a result of StABlE
Training can be attributed to the learning signal from the reference observable, as opposed to the regularization
from the QM energy and forces data.

We include relevant settings used for StABlE Training in Supplementary Table 2. α is the learning rate, λ is
the strength of energy and forces regularization, t is the number of simulation timesteps per epoch, and R is the
number of parallel replicas. We note that in practice, we compute the outer products and empirical means in
the Boltzmann estimator in batched fashion. Thus, to limit memory usage, we compute N

B separate Boltzmann
estimators from minibatches of B<N states and subsequently average them to produce a final estimator.

General Guidelines for Choosing Hyperparameters. t should be chosen large enough that the deviation of
ensemble averages computed within the window from ground truth values are primarily attributable to systematic
error/physical instability rather than sampling error. If t is chosen too large, the frequency of gradient updates
reduces, slowing down learning. Generally, a frequency of 1 picosecond should be sufficient for structural observables
of small molecular systems, and may need to be larger (10-100 ps) for larger-scale or coarse-grained systems. The
number of replicas R should be chosen so as to maximize MLFF inference throughput (samples/second) while
remaining within GPU memory. Since we perform simulations in parallel by vectorizing over the batch dimension,

22

Published in Transactions on Machine Learning Research (02/2025)

we see steady improvements in throughput until GPU memory saturates, at which point performance plateaus or
degrades. The minibatch size B should also be chosen as large as possible to minimize variance in the Boltzmann
Estimator, while remaining within GPU memory limits.

MLFF Stability Training Estimator α λ t R B
Criterion, Threshold Observable Type

Aspirin SchNet Bond Len. Dev., 0.25 A h(r) Global 0.001 10 2000 128 40
Ac-Ala3-NHMe NequIP Bond Len. Dev., 0.25 A h(r) Global 0.001 10 2000 128 40

Water GemNet-T IMD, 1.2 A O-H Bond Length Local 0.003 0 1000 8 4

Table 2: StABlE Training Settings.

Wall Clock Time of StABlE Training. In Supplementary Table 3, we provide the total wall clock time
spent on QM pre-training, as well as the subsequent StABlE Training. All runtimes were measured on an NVIDIA
A100 GPU. We note that especially for Ac-Ala3-NHMe and Water, StABlE Training incurs a relatively small
marginal computational cost beyond that of QM pre-training.

QM pre-training StABlE Training
Aspirin 2 4
Ac-Ala3-NHMe 16 4.7
Water 31 3.5

Table 3: Wall clock time, in hours, of QM pre-training and StABlE Training.

A.7 Simulation Details
We provide MD simulation details in Supplementary Table 4. During training, all systems are simulated with
a Nose-Hoover thermostat. During evaluation, either a Nose-Hoover or Langevin thermostat is used based on
whichever one yields better stability. Thermostat parameters are chosen to be consistent with prior literature
(Chmiela et al., 2017; 2022; Fu et al., 2022): for Nose-Hoover simulations, the temperature coupling constant
is set to 20 fs, and for Langevin simulations, the friction coefficient is set to 0.1 ps−1.

Temperature Timestep Periodic Boundary Simulation
(K) (fs) Conditions Thermostat

Aspirin 500 0.5 No Langevin
Ac-Ala3-NHMe 500 0.5 No Nose-Hoover
Water 300 1 Yes Nose-Hoover

Table 4: Simulation Settings.

For simulating water in the NPT ensemble at 300K and 1 atm, we employ the Berendsen barostat with temperature
and pressure coupling times of 20 fs and 2 ps respectively. We limit the per-timestep change in momentum
and volume to 10% and 1% respectively to prevent instabilities resulting from large fluctuations. We found the
Berendsen barostat to be more stable than combined Parinello-Rahman and Nose-Hoover dynamics, which would
be the more conventional choice for NPT simulations with standard potentials. We speculate that this may be due
to qualitative differences in the behavior of ML potentials compared to classical or ab-initio potentials, and these
differences warrant further investigation in the future.

A.8 Evaluation Details
We provide further details on the protocol used to evaluate the MLFFs considered in this work. Our evaluation
protocol is centered around MD simulations. To facilitate direct comparison between StABlE-trained MLFFs and
those trained only on energy and forces reference data, for a given molecular system we perform MD simulations
starting from the same initial configurations for all models. We choose the number of parallel replicas and total

23

Published in Transactions on Machine Learning Research (02/2025)

simulation time on a per-system basis so as to saturate GPU memory usage while remaining within a reasonable
computational budget. Simulation conditions are the same as described in Section A.7 except for the temperature
generalization experiment, in which the temperature of simulation is varied. Supplementary Table 5 summarizes
the relevant evaluation parameters for each system.

Num. Parallel Replicas Max. Simulation Time (ps) Stability Criterion, Threshold
Aspirin 256 1000 Bond Length Deviation, 0.5 A
Ac-Ala3-NHMe 48 300 Bond Length Deviation, 0.5 A
Water 5 1000 RDF MAE, 3.0

Table 5: StABlE Evaluation Settings.

Justification of Chosen Stability Thresholds. Following (Fu et al., 2022), we choose stability thresholds
such that a realistic, high-fidelity simulation at the chosen temperature would virtually never cross the threshold.
This means that if a simulation does cross the threshold, this is indicative of catastrophic failure. Thresholds are
set more conservatively during training in order to facilitate early detection of potential collapse. Supplementary
Figure 7 shows the distribution of values of the stability criterion over high-fidelity reference simulations for the
three systems considered in this work, along with thresholds chosen to denote instability for training and evaluation.
As a rough guideline for new systems, we suggest setting the threshold at 4 standard deviations beyond mean
fluctuations for training, and 5 standard deviations for evaluation.

(a) (b) (c)

Figure 7: Distribution of stability criterion over reference simulations. Instability thresholds are chosen
to be very relaxed, such that crossing of the threshold signifies catastrophic, unrecoverable instability.

A.9 Temperature-Reweighting of Observables
We provide further details on the reweighting process used to estimate the reference distribution of interatomic
distances at 350K and 700K. This was used in the temperature generalization experiments described in Section
4.2.

Under the canonical ensemble, microstates follow a Boltzmann distribution Pθ(Γ)def=
exp
(

− 1
kBT Hθ(Γ)

)
C(θ) . Consider

states Γ1,...,ΓN sampled at temperature T1. Define a reweighting factor for each sample as follows,

wi =
Pθ(Γ;T1)
Pθ(Γ;T2)∑N

i=1
Pθ(Γi;T1)
Pθ(Γi;T2)

=
exp(−Hθ(Γi)

kB
(1

T2
− 1

T1
))∑N

i=1exp(−Hθ(Γi)
kB

(1
T2
− 1

T1
))

.

We can then compute a reweighted Monte Carlo estimate of the observable at T2 as follows (Thaler & Zavadlav,
2021).

gtrue,T2 =
N∑

i=1
wig(Γ(i))

The statistical error of the reweighted Monte Carlo estimate is captured by the effective sample size,
Neff≈e−

∑N

i=1
wiln(wi) (Carmichael & Shell, 2012). A small effective sample size indicates that a few samples with

24

Published in Transactions on Machine Learning Research (02/2025)

Figure 8: Boltzmann-reweighting of aspirin samples. The effective sample size (Neff) as a function of
reweighting temperature for aspirin dataset. Neff is maximized when the reweighting temperature is equal to
the original temperature (500K). Using a minimum sample size of 1000, we choose upper and lower temperatures
of 700K and 350K at which to perform temperature generalization experiments.

high weights dominate the average; this occurs for large differences between T1 and T2. To select lower and upper
temperatures at which to perform the temperature generalization experiment, we set a minimum Neff =1000,
leading us to choose 350K and 700K (Figure 8).

A.10 StABlE Training in the Isothermal-Isobaric Ensemble

We repeat StABlE Training on the all-atom water system, and this time simulate in the isothermal-isobaric
(NPT) ensemble with a temperature of 300K and a pressure of 1 atm. We use the same training settings outlined
in Supplementary Table 2. We find similar results to when we simulate in the canonical (NVT) ensemble:
StABlE Training yields clear stability improvements, increasing the median stable simulation time from 51 to
165 picoseconds. The stability and quality of estimated observables is slightly lower than in NVT simulations,
including some unphysical collisions in the short-range region of the element-conditioned RDFs. This may be
due to the distribution shift induced by the continuously changing box size in NPT simulations, which was not
seen during pretraining of the GemNet-T potential.

25

Published in Transactions on Machine Learning Research (02/2025)

(a) (b)

Reference

Reference

(d)(c)

Figure 9: Results of StABlE Training a GemNet-T model for all-atom water simulation in the
isothermal-isobaric (NPT) ensemble. StABlE Training yields considerable improvements in stable simulation
time, and maintains or slightly improves the accuracy of recovered observables.

A.11 Analysis of Energy and Forces Errors
We study the effect of two hyperparameters of StABlE Training, the learning rate α and the strength of QM regular-
ization λ, on the energy and forces errors of a SchNet MLFF on a held-out test set of aspirin structures. We perform
StABlE Training for learning rates ranging from 10−5 to 10−3 and QM regularization coefficients ranging from 100

to 102. We perform evaluation of each trained model via MD simulation of 256 parallel replicas at 500K.

(a) (b) (c)

Figure 10: Effect of training hyperparameters on stability and force error improvements. (a) Models
trained with higher learning rate and lower QM loss coefficient achieve better stability gains relative to a baseline
model trained only on QM reference data. (b) Models trained with higher learning rate and lower QM loss
coefficient incur higher increases in force mean absolute error (MAE) on a held-out test dataset relative to the
baseline model. (c) A Pareto frontier of Stability vs Force MAE arises. Some choices of learning rate and loss
coefficient are Pareto-suboptimal, while choosing others moves along the Pareto frontier.

26

Published in Transactions on Machine Learning Research (02/2025)

Training runs with high learning rate and low QM loss coefficient achieve greater improvements in stable simulation
time relative to a baseline model trained only on QM reference data (Supplementary Figure 10a). However,
these training runs also incur a greater increase in the Mean Absolute Error (MAE) of force prediction on
a held out test dataset (Supplementary Figure 10b). Due to training on a single structural observable, the
observable-matching component of the StABlE objective is ill-posed: a MLFF which collapses simulations onto
a sparse set of states exactly matching the reference observable would globally minimize the observable-matching
loss and yield indefinitely stable simulations, while incurring a large QM/force error. As the learning rate of the
StABlE Training procedure is increased, the optimization is increasingly pushed towards this degenerate mode.
Increasing the weight of the QM objective counteracts this tendency. Consequently, a Pareto frontier arises between
stability and force prediction accuracy (Supplementary Figure 10c). Some settings of learning rate and QM loss
coefficient are Pareto suboptimal, while choosing among the remaining combinations causes one to move along
the frontier. Incorporating additional training observables, particularly those which are dynamical in nature (e.g.,
velocity autocorrelation functions), could counteract the degeneracy and push the Pareto frontier outwards.

Finally, we note that the observed energy MAE increase on aspirin for our chosen combination of learning rate
(α = 0.001) and loss coefficient (λ = 10) is from 0.87 to 1.4 kcalmol−1, while DFT error for energies on MD17
can be as high as 2.3 kcalmol−1 (Faber et al., 2017). Thus, some of the error in the MLFF predictions could
be attributable to inaccuracies in the underlying DFT data.

As rough guidelines for new systems, if Force MAE is prioritized, then the learning rate should be smaller and the
QM loss coefficient should be set higher. If stability improvements are prioritized over Force MAE, such as in cases
where the reference energy/force data is known to be unreliable, the opposite is true.

A.12 Effect of Simulation Timestep on Stability
We perform 100 ps simulations with 32 replicates, using various timesteps for the aspirin and Ac-Ala3-NHMe
tetrapeptide systems, using a SchNet and NequIP potential respectively (Supplementary Figure 11).

Aspirin Ac-Ala3-NHMe(a) (b)

Figure 11: Effect of reducing timestep on simulation stability. Reducing the timestep does not completely
eliminate instability, and can sometimes worsen stability.

We observe that instability is not completely eliminated as the timestep is reduced. For the tetrapeptide system,
stability consistently decreases as the timestep is reduced. Similar behavior has been observed in neural network
based solvers for ordinary differential equations (Krishnapriyan et al., 2023). For the aspirin system, stability
improves as the timestep is reduced, but does so very slowly (simulations are not completely stable even with
a timestep of 0.05 fs , which is 10 times lower than the original timestep).

27

Published in Transactions on Machine Learning Research (02/2025)

We also investigate the effect of increasing beyond the original timestep of 0.5 fs on simulation stability for Aspirin
and Ac-Ala3-NHMe. We again perform 100 ps simulations with 32 independent replicates, now with timesteps
of 1, 2, 5, and 10 fs. We observe that StABlE Training yields stability improvements at larger timesteps up to
2 fs, but after this point, neither the pretrained nor StABlE-trained potential are able to simulate stably for an
appreciable amount of time (Supplementary Figure 12). We emphasize that we cutoff the simulations at 100
ps, so the aspirin simulation with the StABlE-trained model using a timestep of 1 fs would likely simulate stably
for considerably longer if not cut off.

Aspirin Ac-Ala3-NHMe(a) (b)

Figure 12: Effect of increasing timestep on simulation stability. StABlE Training improves simulation
stability for timesteps up to 2 fs, after which stability rapidly deteriorates.

A.13 Comparison of Boltzmann Estimator to Alternative Differentiation Strategies

We compare our Boltzmann estimator with two alternative differentiation strategies, namely direct backpropagation
through the unrolled MD simulation, and the adjoint method described in (Chen et al., 2019). As in (Wang et al.,
2023a), we consider a system with 32 particles governed by a Lennard-Jones potential acting on the pairwise
particle distances. We initialize the simulations with a prior potential capturing only the repulsive term of the
potential, and seek to learn a correction term, parameterized by a multi-layer perceptron with 5 hidden layers of
size 128, so as to reproduce the behavior of the full potential. We utilize supervision from the ground truth radial
distribution function. We measure the loss gradient norms, memory footprint, and runtime of all approaches as
a function of the simulation length, showing results in Figure 13. As expected, direct backpropagation quickly runs
out of memory because it needs to store intermediate network activations after every forward pass. The adjoint
method eliminates this memory requirement by performing a backwards ODE solve to calculate the loss gradients.
However, as reported in (Wang et al., 2023a), the adjoint dynamics are highly unstable over long rollouts and
lead to exploding gradient norms. Meanwhile, our Boltzmann estimator achieves roughly constant gradient norms
as the simulation length increases due to the decoupling of the gradient computation from the dynamics, and
also has a favorably low memory and compute footprint.

28

Published in Transactions on Machine Learning Research (02/2025)

(a) (b) (c)

Figure 13: Comparison of Boltzmann Estimator to direct backpropagation and adjoint method on
a toy Lennard-Jones system . The Boltzmann Estimator achieves stable gradient norms and favorable memory
and runtime footprints as the simulation length is increased. Direct backpropagation is memory prohibitive, and
the adjoint method suffers from unstable dynamics, eventually causing gradient norms to explode.

A.14 Velocity Autocorrelation Function of Aspirin
We show the aspirin velocity autocorrelation function (VACF) corresponding to the trajectory with the median
stability improvement between conventional and StABlE Training. A StABlE-trained model produces a similar
VACF relative to a conventionally trained model. This suggests that the StABlE procedure does not significantly
interfere with dynamic properties of the simulation, despite only training with a structural observable (h(r)).

Figure 14: Velocity autocorrelation function of aspirin.

29

	Introduction
	Preliminaries
	Methods
	Boltzmann Estimator
	Stability-Aware Boltzmann Estimator (StABlE) Training

	Results
	Aspirin Molecule
	Temperature generalization
	Ac-Ala3-NHMe Tetrapeptide
	Water

	Conclusion and Future Work
	Appendix
	Derivation of Boltzmann Estimator
	Extension to Other Statistical Ensembles
	StABlE Training Algorithm
	Observables
	Stability Criteria
	Architecture and Training Details
	Simulation Details
	Evaluation Details
	Temperature-Reweighting of Observables
	StABlE Training in the Isothermal-Isobaric Ensemble
	Analysis of Energy and Forces Errors
	Effect of Simulation Timestep on Stability
	Comparison of Boltzmann Estimator to Alternative Differentiation Strategies
	Velocity Autocorrelation Function of Aspirin

