
Abstract

In this supplement, we present the detailed proofs for the main theorems in the
paper “Optimal testing using combined test statistics across independent studies”.

A Appendix

The proofs of the main theorems (Theorem 1, 2 and 3) are divided over the subsections as follows. In
Section A.1, the lower bounds of Theorem 1 and 3 are proven. Auxiliary lemmas for the proof of the
lower bounds are proven in A.2. The attainability of the lower bound rates are given in Lemmas 6, 7
and 8 in Section A.4. In Section A.5, Lemmas 1 and 2 are proven.

A.1 Proof of the lower bounds (Theorems 1 and 3)

The proof is based around the following idea. If Cm satisfies the continuity condition of Assumption
2, it implies Cm(S(1), . . . , S(m)) should not change to much if the statistics S(1), . . . , S(m) are
replaced by finite bit approximations. If b is the number of bits used for the approximation of S(j), we
should be able to get an approximation with accuracy of the order 2�b through e.g. binary expansion.
Since Cm and consequently the test based on Cm do not change (much) from passing to a finite bit
approximation, tools and results from testing under bit-constrained communication apply, which
finally yield the theorems.

Proof. We prove the statement for any ↵ 2 (0, 1/10]. Since ↵ 7! ↵ is strictly decreasing, 1/8 <
1/10  ↵ holds for any ↵ 2 (0, 1/10]. Take 0 < ✏ < 1

2 (1/10 � 1/8). Then |x� ↵|  ✏ implies
x � 1/8, which by the definition of the quantile function provides

P0 (|Cm(S)� ↵|  2✏)  1/8. (S.1)

By Lemma 3, there exist B(j)-bit binary approximations S̃(j) such that

|S(j) � S̃(j)| 
✓

✏1/q

L1/qm

◆1/p

(S.2)

and

E0B
(j)  E0 log2(|S(j)|) _ 0� 1

p
log

✓
✏1/q

L1/qm

◆
+ 3. (S.3)

Write S̃ = (S̃(1), . . . , S̃(m)). By combining Assumption 2 with (S.2),

|Cm(S)� Cm(S̃)|  ✏.

Consequently,

R(T↵, H⇢) � P0

⇣
Cm(S̃)� |Cm(S)� Cm(S̃)| � ↵

⌘

+ sup
f2H⇢

Pf

⇣
Cm(S̃)  ↵ � |Cm(S)� Cm(S̃)|

⌘

� P0

⇣
Cm(S̃) � ↵ + ✏

⌘
+ sup

f2H⇢

Pf

⇣
Cm(S̃)  ↵ � ✏

⌘
.

Define the test
T 0
↵
:=

n
Cm(S̃) > ↵ � ✏

o
.

Since

P0

⇣
Cm(S̃) � ↵ + ✏

⌘
= P0

⇣
Cm(S̃) > ↵ � ✏

⌘
� P0

⇣
�✏  Cm(S̃)� ↵  ✏

⌘
,

the second last display can now be written as

R(T 0, H⇢)� P0

⇣
|Cm(S̃)� ↵|  ✏

⌘
.
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Applying (3) again, using the reverse triangle inequality and (S.1), we obtain

P0

⇣
|Cm(S̃)� ↵|  ✏

⌘
 P0 (|Cm(S)� ↵|  2✏)  1/8.

It suffices to show that for ⇢ satisfying (5) in the case of Theorem 1 or ⇢ satisfying (11) in case of
Theorem 3 for a small enough c > 0, we have

R(T 0, H⇢) � 7/8. (S.4)
This follows from Lemma 4, where it is left to verify that

mX

j=1

d ^ E0B
(j) . m(d ^ (1 _ logm)) (S.5)

for a constant independent of d, n,m and c > 0. By (S.3) and E0|S(j)|  M for some constant

M > 0 for j = 1, . . . ,m (following from Assumption 1 or 4), we obtain that
mP
j=1

d ^ E0B(j) is

bounded by

m

✓
d
^✓

log2(1 +M) + 3� 1

p
log

✓
✏1/q

L1/qm

◆◆◆
,

from which (S.5) follows. Putting things together, we now have that for c > 0 small enough we obtain
(S.4), from which we conclude that (S.4) holds and the proof of the theorems is concluded.

A.2 Auxiliary lemmas to the lower bound theorems

As a first tool, we introduce finite bit approximations of real numbers through their binary expansion.
Consider the binary expansion of x 2 R; i.e. there exist digits ak(x), . . . , a1(x), a0(x) 2 {0, 1} for
a kx ⌘ k 2 N [ {0} and (bi(x))i2N 2 {0, 1}N such that

x = sign(x)

 
kX

i=0

2iai(x) +
1X

i=1

2�ibi(x)

!
(S.6)

with k the largest element in N [ {0} such that 2k � 1  |x|. We now define x̃B to be the B-bit
binary expansion giving the smallest approximation error in absolute value, where the first bit encodes
sign(x). That is, for B � k + 2, we have

|x� x̃B | 
1X

i=B�k�1

2�ibi(x). (S.7)

The following is well known, we exhibit its proof for completeness.
Lemma 3. Let V be a random variable with a first moment. Given 1 > ✏ > 0, let B✏ ⌘ B denote

the number of bits required such that

|V � ṼB✏ |  ✏. (S.8)
It holds that

EB  Elog2(|V |) _ 0 + 1 + log2(1/✏) + 2.

Proof. If |V | < 1, we have that

|V � ṼB | 
1X

i=B�1

2�ibi(V ).

So in the case that |V |  1, since bi(V ) 2 {0, 1}, for (S.8) to hold it suffices that B � log2(1/✏)+ 2.
Let B0 denote the amount of bits required to obtain |V � ṼB0 |  1. When 2k  |V | < 2k+1, it holds
that B0  k + 1. Using Markov’s inequality,

EB0 = EB0
1X

k=0

�
2k  |V | < 2k+1

 

 E
1X

k=0

(k + 1) {k  log2(|V |) < k + 1}  Elog2(|V |) _ 0 + 1.

In conclusion, EB  Elog2(|V |) _ 0 + 1 + log2(1/✏) + 2.
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For the lemmas below, we introduce the following notation. Let ⇡ be a probability distribution on Rd.
Write P⇡ :=

R
Pfd⇡(f) for the mixture distribution, where Pf denotes the joint distribution on X ,

U and S. Let F denote the draw from ⇡. Let PS̃

f
denote the forward measure induced on the random

variable S̃ and let LS̃

⇡
denote the likelihood ratio of the mixture distribution and P0, ie

LS̃

⇡
=

Z
dPS̃

f

dPS̃

0

d⇡(f). (S.9)

Because of the Markov chain structure of F ! (X,U) ! S and the independence between U and
X , the joint distribution of (X,U, S) under the mixture disintegrates as

dPX,U,S

⇡
(x, u, s) =

Z
dPS|(X,U)(s)dPX

f
(x)dPU (u)d⇡(f) (S.10)

where PU is the marginal distribution of U . For the likelihood ratio conditionally on U = u, we shall
write

LS̃|U=u

⇡
=

Z
dPS̃|U=u

f

dPS̃|U=u

0

d⇡(f). (S.11)

Furthermore, by the independence of the statistics given U ,

dPS|(X,U) =
mO

j=1

dPS
(j)|(X(j)

,U). (S.12)

Let S̃(j) denote the B(j)-bit binary approximations to S(j) such that (S.2) holds. Note that the above
displays are true for the random variable S̃ = (S̃(1), . . . , S̃(m)) in place of S since F ! (X,U) !
S ! S̃ forms a Markov chain as well. The following lemma allows us to bound the chi-square
divergence between the forward measure for S̃, which we will denote by PS̃

⇡
and PS̃

0 .

The following lemma lower bounds the worst-case risk for any test T 0 depending only on S̃, the
binary approximation of S as in (S.2).

Lemma 4. Let T 0
be a test depending only on S̃ taking values in Rm

, satisfying (S.10) and where

S̃(j)
allows for an exact B(j)

-bit binary expansion as in (S.6), with E0B(j) < 1 for j = 1, . . . ,m.

There exists c > 0 independent of n,m and d such that

R(T 0, H⇢) � 7/8

for all n,m, d 2 N whenever

mX

j=1

d ^ E0B
(j) . m(d ^ logm) (S.13)

in addition to

⇢2  c
(
p
m ^ d

log(m) )
p
d

mn
, (S.14)

if S̃ is generated using public randomness, or

⇢2  c
(
p
m ^

q
d

log(m) )
p
d

mn
, (S.15)

in case S̃ is generated using only local randomness.

Proof. Consider a probability distribution ⇡ on Rd and LS̃

⇡
as in (S.9). Consider the set

D :=

8
<

:u :
mX

j=1

d ^ E0[B
(j)|U = u]  64

mX

j=1

d ^ E0B
(j)

9
=

; ,
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whose complement, Dc, has PU -mass less than or equal to 1/64 by Markov’s inequality and EU (d ^
E0[B(j)|U ])  d ^ E0B(j). By conditioning on U (writing P|U=u

0 := P0(·|U = u)),

R(T 0, H⇢) � P0T
0 + P⇡(1� T 0)� ⇡(f /2 H⇢)

�
Z ⇣

P|U=u

0 (T 0) + P|U=u

⇡
(1� T 0)

⌘
D(u)dPU (u)� ⇡(f /2 H⇢).

Since 0  T 0  1 and LS̃

⇡
� 0, for all 0 < � < 1,

P|U=u

0 (T 0) + P|U=u

⇡
(1� T 0) � P|U=u

0

⇣
�T 0 + LS̃|U=u

⇡
(1� T 0)

n
LS̃|U=u

⇡
> �

o⌘

� �P|U=u

0

⇣
LS̃|U=u

⇡
> �

⌘

� �
�
1� P|U=u

0 (|LS̃|U=u

⇡
� 1| � 1� �)

�
.

The probability on the right hand side of the above display can be bounded by applying Chebyshev’s
inequality and bounding the resulting chi-square divergence using the tools of [40], in particular
using Lemma 10.1 from the aforementioned paper. This lemma applies if S̃ takes values in a space of
finite, fixed cardinality.

Define B⇤ =
mP
j=1

64E0|B(j)| and the event

A :=

8
<

:

mX

j=1

B(j)  B⇤

9
=

; ,

so that Ac by Markov’s inequality occurs with P0-probability less than 1/64.

Let S̆(j) be the B̆(j) := B(j) ^ B⇤ binary approximation of S̃(j) and note that on the event A,
S̆(j) = S̃(j). We have

Z
P|U=u

0

⇣
|LS̃|U=u

⇡
� 1| � 1� �

⌘
D(u)dPU (u) 

Z
P|U=u

0

⇣n
|LS̃|U=u

⇡
� 1| � 1� �

o
\A

⌘
D(u)dPU (u) + P0(A

c) 
Z

P|U=u

0

⇣
|LS̆|U=u

⇡
� 1| � 1� �

⌘
D(u)dPU (u) + 1/64,

where S̆ = (S̆(1), . . . , S̆(m)). Using (S.10) and Chebyshev’s inequality, it suffices to show that on
the event D, E|U=u

0 |LS̆|U=u

⇡ � 1|2 is smaller than 1
32 (1 � �)2 for c small enough when ⇢ satisfies

(S.14) or (S.15), some � � 5/6 for a specific choice of ⇡. By Lemma 5, such a distribution ⇡ exists,
satisfying ⇡(f /2 H⇢)  1/32, as long as Tr(⌅u) can be sufficiently bounded, which can be done in
terms of (S.3), as we will show next.

Let S(j)(b, u) be the space in which S̆(j)|[B(j) = b, U = u] takes values. Write

Vs,u = E0


X(j)

����S̆
(j) = s, U = u

�
.

We have

⌅j

u
=
X

s

Vs,uV
>
s,u

P0(S̆
(j) = s|U = u)

=
X

b2N
P0(B̆

(j) = b|U = u)
X

s=Sj(b,u)

P0(S̆
(j) = s|B̆(j) = b, U = u)Vs,uV

>
s,u

.

By Lemma A.3 in [40], the trace of the matrix
X

s2Sj(b,u)

P0

⇣
S̆(j) = s|B̆(j) = b, U = u

⌘
Vs,uV

>
s,u
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is bounded by
�
2 log(2) b

d

V
1
�

d

n
. By linearity of the trace operation,

Trace(⌅j

u
) =

X

b2N
P0

⇣
B̆(j) = b|U = u

⌘✓
2 log(2)

b

d

^
1

◆
d

n

 2 log(2)
d ^ E0[B̆(j)|U = u]

n

and consequently, since B̆(j)  B(j) and u 2 D,

Trace(
mX

j=1

⌅j

u
)  2 log(2)n�1

mX

j=1

d ^ E0

h
B̆(j)|U = u

i

 128 log(2)n�1
mX

j=1

d ^ E0

h
B(j)

i
.

The result follows after using that ⇢2 satisfies (S.15) and (S.14) in the case of local or shared
randomness protocols, respectively.

Lemma 5. Let LS̆

⇡
be as defined through (S.9), with S̆ = (S̆(1), . . . , S̆(m)) taking values in a space

of finite cardinality. Let ⌅u =
P

m

j=1 ⌅
j

u
with

⌅j

u
:= E|U=u

0 E0


X(j)

����S̆
(j), U = u

�
E0


X(j)

����S̆
(j), U = u

�>
. (S.16)

Let ⇢2 satisfy (S.14) or (S.15). For c > 0 small enough (in (S.14) or (S.15)) there exists a probability

distribution ⇡ on Rd
such that

⇡(f /2 H⇢)  1/32 (S.17)
and

E|U=u

0 |LS̆|U=u

⇡
� 1|2  exp

✓
C(

mn2⇢4

cd
+

mn3⇢4

d2c
Tr (⌅u)

◆
� 1, (S.18)

for a constant C > 0 that does not depend on d, n,m or c. Furthermore, in case of private coin

randomness (U is degenerate), there exists a probability distribution ⇡ on Rd
such that (S.17) is

satisfied and (the sharper bound)

E0|LS̆

⇡
� 1|2  exp

✓
C(

mn2⇢4

cd
+

n4⇢4

d3c
Tr (⌅u)

2
◆
� 1 (S.19)

holds for c > 0 small enough.

Proof. This follows from the proof of Theorem 3.1 in [40] (where it is important to note that in the
notation of [40], “n” equals “nm” in this article). For completeness, we highlight the main steps here.
We start by noting that

E|U=u

0 |LS̆|U=u

⇡
� 1|2 = D�2(PS̆|U=u

0 ;PS̆|U=u

⇡
).

Let ⇡ be a N(0,�)-distribution with � 2 Rd⇥d. In view of the Markov chain structure (ie (S.10) and
(S.12)), the Gaussianity of ⇡ and the fact that B̆(j) is bounded for j = 1, . . . ,m, we obtain through
following the steps corresponding to displays (34) up until (42) in Section 9 of [40] that the above
display is bounded by

m

⇧
j=1

EX
j |U=u

0

h
L⇡

�
Xj

�2i ·
Z

e
n2

m2 f
> Pm

j=1 ⌅j
ugd(⇡ ⇥ ⇡)(f, g)� 1, (S.20)

where L⇡

�
Xj

�
=
R dPX(j)

f

dPX
(j)
0

d⇡(f) and we note that Lemma 10.1 applies by the boundedness of B̆(j)

and Gaussianity of ⇡. Taking � 2 Rd⇥d equal to
⇢

c1/4
p
d
�̄
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for a symmetric idempotent d⇥ d matrix �̄ with rank (proportional to) d, we obtain (S.17) for c > 0
small enough (Lemma A.13 in [40]). Following the second step of the proof of Section 9 in [40], in
particular the steps corresponding to displays (43) and (44), we obtain that (S.20) is bounded by

exp

✓
C(

mn2⇢4

cd
+

n4⇢4

d2c
Tr
⇣
(
p
�̄⌅u

p
�̄)2

⌘◆
� 1

for some fixed constant C > 0 independent of d, n,m and ⇢. The shared randomness bound of
(S.18) now follows by choosing of �̄ = Id and using that Tr(A>A)  kAkTr(A) where kAk is
the operator norm of A, as well as by the fact that ⌅u  m

n
Id (see Lemma A.2 in [40]). In case

of private randomness, we can assume that U is degenerate, so ⌅u = ⌅ for PU -almost every u.
The matrix ⌅ is positive definite and symmetric, therefore it possesses a spectral decomposition
V >Diag(⇠1, . . . , ⇠d)V . Assuming that ⇠1 � ⇠2 � . . . � ⇠d with corresponding eigenvectors
V = (v1 . . . vd), let V̌ denote the d⇥ dd/2e matrix

�
vbd/2c+1 . . . vd

�
. The bound of (S.19)

now follows by setting �̄ = V̌ V̌ >, for a detailed computation, see page 23 of [40].

A.3 Theorem concerning necessity of signs

The theorem below tells us that in order to attain the rate of d

nm
, the statistics S(j) need to contain

at least some information on the signs of X(j), in the sense that
p
d/(

p
mn) is the rate that can be

attained at best when S(j) is measurable with respect to the absolute values of the coordinates of
X(j). This is in particular the case for statistics based on e.g. the norm kX(j)k2 or rotation invariant
statistics such as the worst-case growth rate optimal e-values (see e.g. [22]), which consequently
attain the rate

p
dp

mn
at best and are thus suboptimal when d is small compared to m.

Theorem 4. Suppose that S(j) = fj(X(j), U) is such that S(j)
is measurable with respect to

�(U, (|X(j)
1 |, . . . , |X(j)

d
|)) for j = 1, . . . ,m. Then, for any ↵ 2 (0, 0.1] there exists c > 0 such that

sup
f2H⇢

Pf (T↵ = 0) � 3/4. (S.21)

whenever

⇢2  c

p
dp
mn

. (S.22)

Proof. In view of Lemma 4 and the proof of the main theorems in A.1, it suffices to bound the trace
of ⌅u in (S.19) and (S.18) in Lemma 5 (the first term in the exponent is controlled by (S.22)). By
assumption on S(j), we have

�(S(j), U, (|X(j)
1 |, . . . , |X(j)

d
|) = �(U, (|X(j)

1 |, . . . , |X(j)
d

|)), (S.23)

which implies that the sign(X(j)
i

) is independent of �(S(j), U, (|X(j)
1 |, . . . , |X(j)

d
|). Writing X(j)

i
=

sign(X(j)
i

)|(X(j)
i

)|, we obtain that

E0


X(j)

����S
(j), U = u

�
=

✓
E0


sign(X(j)

i
)|(X(j)

i
)|
����S

(j), U = u

�◆

1id

=

✓
E0sign(X(j)

i
)E0


|(X(j)

i
)|
����S

(j), U = u

�◆

1id

= 0,

where the second last inequality follows from the fact that sign(X(j)
i

) is independent of the sigma
algebra in (S.23) and the final equality by the symmetry of the Gaussian distribution around the mean.
Following the proof of Theorem 1 with ⌅u = 0, we obtain that the testing risk is bounded from below
whenever ⇢2 .

p
dp

mn
.

A.4 Lemmas related to rate attainability

Lemma 6. Let T↵ correspond to a test of level ↵ based on Edginton’s method based for p-values

p(j) = �2
d
(k
p
nX(j)k22) or simply the sum of k

p
nX(j)k22. For all ↵,� 2 (0, 1) if

⇢2 � C↵,�

p
dp
mn

(S.24)
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we have

sup
f2H⇢

Pf (T↵ = 0)  �

for d � C↵,�m a large enough constant C↵,� depending only on ↵,� 2 (0, 1). The above result

holds for Fisher’s method also, under the additional assumption that log(m) .
p
d.

Proof. The test in (7) has level ↵ under the null hypothesis. Under the alternative hypothesis,

k
p
nX(j)k22

d
= nkfk22 + 2

p
n(Z(j))>f + kZ(j)k22,

where Z(j) ⇠ N(0, Id). Rearranging, the test T↵ of (7) can be seen to equal
8
><

>:
2

p
np
d

0

@m�1/2
mX

j=1

Z(j)

1

A
>

f +
1p
md

mX

j=1

⇣
kZ(j)k22 � d

⌘
� ⌘d,m �

p
mnp
d

kfk22

9
>=

>;
(S.25)

in distribution under Pf , with

⌘d,m :=
1p
dm

⇣
F�1
�
2
dm

(1� ↵)�md
⌘
.

By Lemma 9, ⌘d,m ! ��1(1 � ↵) as both or either d,m ! 1, so ⌘d,m is bounded in d and m.
Consequently, Pf (1� T↵) equals

Pr
✓
(1 +

p
np
d
kfk2)OP (1)  ⌘d,m �

p
mnp
d

kfk22
◆

as the left hand side of the test in (S.25) is mean 0 and has constant variance. Since kfk22 � C↵,�

p
dp

mn
,

the latter display can be bounded from above by

Pr
✓
(1 +

p
np
d
kfk2)OP (1)  �

p
mn

2
p
d
kfk22

◆

for a large enough C↵,� . The latter display is smaller than � for C↵,� > 0 large enough depending
only on ↵ and �.

For Edgington’s method, one can take p(j) = 1� F�
2
d
(k
p
nX(j)k22) and compute the test

T↵ :=

8
<

:m�1/2⇣↵,m

mX

j=1

(p(j) � 1

2
) � 12�1/2��1(1� ↵)

9
=

; , (S.26)

where ⇣↵,m ! 1 in m is such that P0T↵ = ↵, by Lemma 9.

Under the alternative, Efp(j) = Pr(k
p
nf + Z(j)k22  �2

d
). Therefore, by Lemma 4 in [39],

Efp
(j) � 1

2
+

1

40

✓
d�1/2nkfk22

^ 1

2

◆
,

where we note that we can take d larger than an arbitrary constant as the rate
p
d/(

p
mn) being

optimal (
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where the OP (1) term in last equality follows from the fact that ⇣m,↵ is bounded and the central limit
theorem (the p(j)’s are bounded and independent still under Pf ). If the minimum is taken in 1/2, the
result follows for large enough m. If the minimum is taken in the first argument,
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so for large enough C↵,� , we obtain that Pf (1� T↵)  �.

For Fisher’s method, the test of level ↵ is given by
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for the p-value p(j) := 1 � F�
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nX(j)k22) (or equivalently Pearson’s method for the p-value
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where the right-hand side tends to �(5) in d by the central limit theorem. As �(5) > e�2, we
obtain � log p(j) � 2. Since Z(1), . . . , Z(m) are independent, by binomial concentration, there are
at least (3/4)m indexes j = 1, . . . ,m such that kZ(j)k22 � d � 5

p
d whilst also satisfying (S.28)

with probability 1 � e�⌧m �me�
p
d/2 for some constant ⌧ > 0. Using that we can without loss

of generality take m � M↵,� for a constant M↵,� > 0 (otherwise the separation rate is effectively
the same the one for m = 1) and since we consider d & m, we obtain that the event the joint event
occurs has mass less than 1� �. Furthermore, on this event, we have 1� T↵ = 0 for M↵,� > 0 large
enough, since
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for a fixed constant C > 0. If the claim holds,
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where the inequality holds under the assumption nkfk22  20
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Putting the above lower bounds together, we obtain (S.29).

Lemma 7. Let T↵ correspond to a test of level ↵ considered in (8) or (9). For all ↵,� 2 (0, 1) if
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Proof. The proof follows a similar line of reasoning as e.g. the proof of Lemma A.8 in [40]. Starting
with (8), note that
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with constant variance (i.e. not depending on d,m, n) and is thus OP (1). Similarly, ⇠ has constant
order variance and expectation. By Jensen’s inequality

Ef (�(
p
nfi + Z(j)

i
)� �(Z(j)

i
))2 � (�(2�1/2pnfi)� �(0))2

where it is used that

Ef�(
p
nfi + Z(j)

i
) = Pr

�p
nfi + Z � Z 0� = �(2�1/2pnfi).

By Lemma A.11 in [40], the RHS of the second last display is lower bounded by 1
12 min{ 1

2nf
2
i
, 1}.

By the independence of Z(j)
i

and Z(k)
i

when j 6= k, it also holds that

Ef (�(
p
nfi + Z(j)

i
)� �(Z(j)

i
))(�(

p
nfi + Z(k)

i
)� �(Z(k)

i
)) = (�(2�1/2pnfi)� �(0))2.

23



Therefore,

Ef

d

m

⇣X

j2Ji

(�(
p
nfi + Z(j)

i
)� �(Z(j)

i
))
⌘2

� m

12d
min{1

2
nf2

i
, 1}.

Adding and subtracting the above expectation and noting that

1p
d

dX

i=1

d

m

⇣X

j2Ji

(�(
p
nfi + Z(j)

i
)� �(Z(j)

i
))
⌘2

has constant variance by the independence of Z(j)
i

and Z(k)
i

when j 6= k, we obtain that (S.31) is
bounded above by

Pf

 
OP (1) +

m

12d
p
d

dX

i=1

min{1
2
nf2

i
, 1}  c↵�1/2

!
.

If the minimum is taken by 1 for any i = 1, . . . , d, the proof is completed by noting that m & d2 by
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Proof. The proof follows a similar line of reasoning as e.g. the proof of Lemma A.7 in [40]. For any
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This concludes the proof of the lemma.

The following fact is well known and included for completeness. For a random variable V , let FV

denote its CDF.
Lemma 9. Let W1, . . . ,Wm be random variables and let Vm =
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where � is the standard Gaussian CDF.
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Proof. The quantile function
F�1
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(↵) = inf {x 2 R : Pr (Vm  x) � ↵}
satisfies z(F�1
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z(Vm�y)(↵). The result now follows by e.g. Lemma 21.2 in [44].

A.5 Proof Lemma 1 and Lemma 2

Proof of Lemma 1. The lemma directly follows from Theorem 1 and Theorem 3 after verifying the
corresponding conditions. Assumption 1 is satisfied if p(j) is generated using only local randomness,
while in case of shared randomness, the same conclusion holds for Assumption 4. Below, we prove
Assumptions 2 and 3 for the examples listed in the lemmas.

1. Fisher’s method: let S(j) = �2 log p(j) ⇠H0 �2
2 and consider the test of level ↵ as
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In view of the CLT, see Lemma 9, the sequence ⌘↵,m converges to one, hence it is
bounded. Furthermore, note that the corresponding combination function Cm(s) :=
(⌘↵,m/

p
m)

P
m

j=1(sj � 1) with s = (sj) 2 Rm satisfies Assumption 2 (e.g. with
p = q = 1). This in turn implies the moment condition for S(j), concluding the proof.

2. Mudholkar and George’s method: The corresponding combination function Cm(s) :=
|m�1/2

P
m

j=1 sj |, by triangle inequality, satisfies Assumption 4. Since S(j) :=

� log(p(j)(1� p(j))), the moment conditions are also satisfied.

3. Pearson’s and Edgington’s methods: the proofs follow the same reasoning as above with an
additional application of the reverse triangle inequality in case of a two sided test.

4. Tippett’s method: when small p-values are expected under the alternative hypothesis, a test
of level ↵ 2 (0, 1) is given by

T↵ =
n
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1�min{p(1), . . . , p(m)}
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,

where 1 � (1 � min{p(1), . . . , p(m)})m is uniformly distributed under the null (see e.g.
[42]). Observe that it is equivalent to
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.

For j = 1, . . . ,m, take S(j) = � log(1�p(j)) ⇠H0 Exp(1). The threshold ↵ 7! log(1�↵)
is strictly decreasing and the combination function Cm(s) = �mmin sj satisfies
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|.

Consequently, Assumptions 3 and 2 are satisfied.

5. Generalized averages: The case where r = �1 corresponds to Tippett’s method above.
Similarly, r = 1 corresponds to the maximum of p-values, for which the proof follows
by similar steps. For r 2 [ 1

m�1 ,1), ar,m can be chosen such that the test T↵ in defined
in Section 3.1 has precise level: P0T↵ = ↵, see Proposition 2 and 3 in [48]. For such
ar,m, the set {ar,m : r 2 [ 1

m�1 ,1)} is bounded (see Table 1 in the aforementioned paper).
This test can easily be seen to be of the form (3) and for the generalized average, we have
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so Assumption 2 is satisfied since ar,m is bounded.
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Proof of Lemma 2. Product of e-values: The e-value test T↵ for the combination function (ej) 7!
m

⇧
j=1

ej can be written as

T↵ =
n mX

j=1

logE(j) � log(1/↵)
o
.

For S(j) := logE(j) and Cm(s) =
P

m

j=1 sj note that E0| logE(j)| < 1 and Cm satisfies (3). Since
↵ 7! log(1/↵) is strictly decreasing on (0, 1), the assumptions of Theorems 1 and 3 are met.

Average of e-values: Since E(j) is nonnegative, the moment condition is satisfied. The map
(ej) 7! m�1

P
m

j=1 ej satisfies (3), while the map ↵ 7! ↵�1 is strictly decreasing and independent of
m. Hence the conditions of Theorems 1 and 3 are satisfied.

A.6 Additional simulations

Figure A.6 shows the further improvement of the combined chi-square tests compared to the direc-
tional methods as d grows with respect to the number of trials, for signals that are around the detection
threshold. Figure A.6 shows the further worsening of performance of the combined chi-square tests
compared method as m grows with respect to the dimension, for signals that are around the detection
threshold. For each of these simulations, 10, 000 repitions for every value ↵ 2 {0.01, 0.02, . . . , 0.99}
of the level of the tests are considered.

Figure 2: ROC curves for different values of d, whilst keeping m = 20, n = 30, ⇢2 = 9
p
d/(16n).

From left to right, top to bottom: d = 30, d = 60, d = 90, d = 120. The uncoordinated directional
test requires m � d and is therefore has TPR set to 0.
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Figure 3: ROC curves for different values of m, whilst keeping d = 5, n = 30, ⇢2 = 9d/(16nm).
From left to right, top to bottom: m = 30, m = 60, m = 100, m = 200.
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