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Abstract

This paper investigates the problem of bounding counterfactual queries from a1

combination of observational data and qualitative assumptions about the underlying2

data-generating model. These assumptions are usually represented in the form3

of a causal diagram (Pearl, 1995). We show that all counterfactual distributions4

(over finite observed variables) in an arbitrary causal diagram could be generated5

by a special family of structural causal models (SCMs), compatible with the6

same causal diagram, where unobserved (exogenous) variables are discrete, taking7

values in a finite domain. This entails a reduction in which the space where the8

original, arbitrary SCM lives can be mapped to a dual, more well-behaved space9

where the exogenous variables are discrete, and more easily parametrizable. Using10

this reduction, we translate the bounding problem in the original space into an11

equivalent optimization program in the new space. Solving such programs leads to12

optimal bounds over unknown counterfactuals. Finally, we develop effective Monte13

Carlo algorithms to approximate these optimal bounds from a finite number of14

observational data. Our algorithms are validated extensively on synthetic datasets.15

1 Introduction16

This paper studies the problem of inferring counterfactual queries from the combination of non-17

experimental data (e.g., observational studies) and qualitative assumptions about the data-generating18

process. These assumptions are represented in the form of a causal diagram [32], which is a19

directed acyclic graph where arrows indicate the potential existence of functional relationships among20

corresponding variables; some variables are unobserved. This problem arises in diverse fields such21

as artificial intelligence, statistics, cognitive science, economics, and the health and social sciences.22

For example, when investigating the gender discrimination in college admission, one may ask “what23

would the admission outcome be for a female applicant had she been a male?” Such a counterfactual24

query contains conflicting information: in the real world the applicant is female, in the hypothetical25

world she was not. Therefore, it is not immediately clear how to design effective experimental26

procedures for evaluating counterfactuals, let alone how to compute them from observations alone.27

The problem of identifying counterfactual distributions from the combination of data and a causal28

diagram has been studied in the causal inference literature. First, there exist a complete proof system29

for reasoning about counterfactual queries [19]. While such a system, in principle, is sufficient in30

evaluating any identifiable counterfactual expression, it lacks a proof guideline which determines the31

feasibility of such evaluation efficiently. There are algorithms to determine whether a counterfactual32

distribution is inferrable from all possible controlled experiments [41]. There exist also algorithms33

for identifying path-specific effects from experimental data [1] and observational data [42].34

In practice, however, the combination of quantitative knowledge and observed data does not always35

permit one to point-identify the target counterfactual queries. Partial identification methods concern36

with deriving informative bounds over the target counterfactual probability, even when the target37
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Figure 1: DAGs (a-d) containing a treatment X , an outcome Y , an ancestor Z, and exogenous
variables U ; Z in (a) is also referred to as an instrumental variable.

itself is non-identifiable. Several algorithms have been developed to bound counterfactuals from the38

combination of observational and experimental data [30, 36, 3, 4, 14, 35, 23, 24, 16, 25, 49].39

In this work, we build on the approach introduced by Balke & Pearl in [3], which involves direct40

discretization of the exogenous domains, also referred to as the principal stratification [17, 34]. Con-41

sider the causal diagram of Fig. 1a, where X,Y, Z are binary variables in {0, 1}; U is an unobserved42

variable taking values in an arbitrary continuous domain. [3] showed that domains of U could be43

discretized into 16 equivalent classes without changing the original counterfactual distributions and44

the graphical structure in Fig. 1a. For instance, despite it being induced by an arbitrary distribution45

P ∗(u) over a continuous domain of the exogenous variable U , the observational distribution P (x, y|z)46

must be reproduced by a generative model of the form P (x, y|z) =
∑
u P (x|u, z)P (y|x, u)P (u),47

where P (u) is a discrete distribution over a finite exogenous domain {1, . . . , 16}.48

Using the finite-state representation of unobserved variables, [4] derived tight bounds on treatment49

effects under the condition of noncompliance in Fig. 1a. [11, 21] applied the parsimony of finite-state50

representation in a Bayesian framework, to obtain credible intervals for the posterior distribution of51

causal effects in noncompliance settings. Despite their optimal guarantees, these bounds are only52

applicable to the specific noncompliance setting in Fig. 1a. For the most general cases, a systematic53

procedure for bounding counterfactual queries in arbitrary causal diagrams is still missing.54

Our goal in this paper is to overcome these challenges. We investigate the expressive power of discrete55

structural causal models (SCMs) [33] where each unobserved variable is drawn from a discrete56

distribution, takes values in a finite set of states. We show that when inferring about counterfactual57

distributions (over finite observed variables) in an arbitrary causal diagram, one could restrict domains58

of unobserved variables to a finite space without loss of generality. This observation allows us to59

develop novel partial identification algorithms to bound unknown counterfactual probabilities from60

the observational data. More specifically, our contributions are as follows. (1) We introduce a61

special family of discrete SCMs, with finite unobserved domains, and show that it could represent62

all categorical counterfactual distributions in an arbitrary causal diagram. (2) Using this result, we63

translate the original partial identification task into equivalent polynomial programs. Solving such64

programs leads to informative bounds over unknown counterfactual probabilities, which are provably65

optimal. (3) We develop an effective Monte Carlo algorithm to approximate optimal counterfactual66

bounds from a finite number of observational data. Finally, our algorithms are validated extensively67

on synthetic datasets. Given space constraints, all proofs are provided in Appendices A and B.68

1.1 Preliminaries69

We introduce in this section some basic notations and definitions that will be used throughout the70

paper. We use capital letters to denote variables (X), small letters for their values (x) and ΩX for71

their domains. For an arbitrary setX , let |X| be its cardinality. For convenience, we denote by P (x)72

probabilities P (X = x); for an arbitrary subdomain X ⊆ ΩX , P (X ) ≡ P (X ∈ X ). Finally, the73

indicator function 1X=x returns 1 if an eventX = x holds true; otherwise 1X=x = 0.74

The basic semantical framework of our analysis rests on structural causal models (SCMs) [33,75

Ch. 7]. An SCM M is a tuple 〈V ,U ,F , P 〉 where V is a set of endogenous variables and U is76

a set of exogenous variables. F is a set of functions where each fV ∈ F decides values of an77

endogenous variable V ∈ V taking as argument a combination of other variables in the system. That78

is, v ← fV (paV , uV ),PaV ⊆ V , UV ⊆ U . Exogenous variables U ∈ U are mutually independent,79

values of which are drawn from the exogenous distribution P (u). Naturally, M induces a joint80

distribution P (v) over endogenous variables V , called the observational distribution. Each SCM81

is associated with a causal diagram G (e.g., Fig. 1), which is a directed acyclic graph (DAG) where82
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solid nodes represent endogenous variables V , empty nodes represent exogenous variables U and83

arrows represent the arguments PaV , UV of each function fV .84

An intervention on an arbitrary subsetX ⊆ V , denoted by do(x), is an operation where values of85

X are set to constants x, regardless of how they are ordinarily determined. For an SCM M , let86

Mx denote a submodel of M induced by intervention do(x). For any subset Y ⊆ V , the potential87

response Yx(u) is defined as the solution of Y in the submodel Mx given U = u. Drawing values88

of exogenous variables U following the probability measure P induces a counterfactual variable Yx.89

Specifically, the event Yx = y (for short, yx) can be read as “Y would be y hadX been x”. For any90

subsets Y , . . . ,Z,X, . . . ,W ⊆ V , the distribution over counterfactuals Yx, . . . ,Zw is defined as:91

P (yx, . . . ,zw) =

∫
ΩU

1Yx(u)=y ∧ · · · ∧ 1Zw(u)=zdP (u). (1)

Distributions of the form P (yx) is called the interventional distribution; when the treatment set92

X = ∅, P (y) coincides with the observational distribution. Throughout this paper, we assume93

that endogenous variables V are discrete and finite; while exogenous variables U could take any94

(continuous) value. The counterfactual distribution P (yx, . . . ,zw) defined above is thus a categorical95

distribution. For a more detailed survey on SCMs, we refer readers to [33, Ch. 7].96

2 Discretization of Structural Causal Models97

For a DAG G with endogenous V and exogenous variables U , let P ∗ denote the collection of all98

counterfactual distributions over variables V . Formally,99

P ∗ = {P (yx, . . . ,zw) | ∀Y , . . . ,Z,X, . . . ,W ⊆ V } . (2)
Let M be the family of all the SCMs compatible with the causal diagram G, i.e., M =100

{∀M | GM = G}1. Counterfactual distributions in G are defined as the collection {P ∗M : ∀M ∈M }101

that contains all counterfactual probabilities induced by SCMs M in the candidate family M . In this102

section, we will show that counterfactual distributions in any causal diagram G could be generated by103

an alternative family of “generic” SCMs compatible with G, which we will define later.104

Definition 1 (Counterfactual-Equivalence). For a DAG G, let M ,N be two sets of SCMs compatible105

with G. M and N are said to be counterfactually equivalent (for short, ctf-equivalent) if for any106

M ∈M , there exists an alternative N ∈ N such that P ∗M = P ∗N , and vice versa.107

Our analysis rests on a special family of SCMs where values of each exogenous variable are drawn108

from a discrete distribution over a finite set of states.109

Definition 2. An SCM M = 〈V ,U ,F , P 〉 is said to be a discrete SCM if110

1. Values of every U ∈ U are drawn from a discrete distribution P (u) over a domain ΩU ; let111

θu denote the probability P (U = u), for any u ∈ ΩU .112

2. Values of every V ∈ V are decided by function v ← fV (paV , uV ) ≡ ξ(paV ,uV )
V , where for113

∀paV , uV , ξ(paV ,uV )
V is a constant in the finite domain ΩV .114

Given a causal diagram G, our goal is to construct a family of discrete SCMs N that is counter-115

factually equivalent to the original family of SCMs M . Our construction utilizes a special type of116

clustering of nodes in the diagram, called the confounded component [45].117

Definition 3. For an DAG G, a subset C ⊆ V is a c-component if any pair X,Y ∈ C is connected118

in G by a bi-directed path of the form V1 ↔ V2 ↔ · · · ↔ Vn, n = 1, 2, . . . , where (1) V1 = X ,119

Vn = Y ; (2) {V1, . . . , Vn} ⊆ V ; and (3) each Vi ↔ Vj is a sequence Vi ← Uk → Vj and Uk ∈ U .120

A c-component C in G is maximal if there exists no other c-component that contains C. We denote121

by C(G) the collection of all maximal c-components in G. Naturally, c-components in C(G) form a122

partition over endogenous variables V , which, in turn, defines a partition {∪V ∈CUV | ∀C ∈ C(G)}123

over exogenous variables U . Therefore, for every U ∈ U , there must exist a unique c-component124

in C(G), denoted by CU , such that U ∈ ∪V ∈CUUV . For example, exogenous variables U1, U2 in125

Fig. 1a corresponds to c-components CU1
= {Z} and CU2

= {X,Y } respectively; while the causal126

diagram of Fig. 1b only has a single c-component {X,Y, Z}.127

1We will use the subscript M to represent the restriction to a specific SCM M . Therefore, GM represents the
causal diagram associated with SCM M ; so does the collection of counterfactuals P ∗M .
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Theorem 1. For a DAG G, consider the following conditions2: (1) M is the set of all SCMs128

compatible with G; (2) N is the set of all discrete SCMs compatible with G where for every U ∈ U ,129

its cardinality |ΩU | =
∏
V ∈CU |ΩPaV 7→ ΩV |, i.e., the number of functions mapping from PaV to130

V for every variable V in the c-component CU . Then, M and N are counterfactually equivalent.131

Thm. 1 establishes the expressive power of discrete SCMs in representing counterfactual distributions132

in a causal diagram G. It implies that the counterfactual distribution P (yx, . . . ,zw) in any SCM M133

could be generated using a generic model as follows, for dU =
∏
V ∈CU |ΩPaV 7→ ΩV |,134

P (yx, . . . ,zw) =
∑
U∈U

∑
u=1,...,dU

1Yx(u)=y ∧ · · · ∧ 1Zw(u)=z

∏
U∈U

θu. (3)

Among above quantities, θu are parameters of the exogenous distribution P (u) over a finite domain135

{1, . . . , dU}. Counterfactual variables Yx(u) are recursively defined as follows:136

Yx(u) = {Yx(u) | ∀Y ∈ Y } , where Yx(u) =

{
xY if Y ∈X

ξ
({Vx(u)|V ∈PaY },uY )
Y otherwise

(4)

where xY is the value assigned to variable Y in constants x. As an example, consider the causal137

diagram G described in Fig. 1b where X,Y, Z are binary variables in {0, 1}. Since G has a single c-138

component {X,Y, Z}, exogenous variables U1, U2 must share the same cardinality d in the proposed139

family of discrete SCMs N . It follows from Thm. 1 the counterfactual distribution P (z, xz′ , yx′) in140

any SCM compatible with G could be written as follows:141

P (z, xz′ , yx′) =

d∑
u1,u2=1

1
ξ
(u1)
Z =z

∧ 1
ξ
(z′,u1,u2)
X =x

∧ 1
ξ
(x′,u2)
Y =y

θu1
θu2

, (5)

where ξ(u1)
Z , ξ

(z,u1,u2)
X , ξ

(x,u2)
Y are parameters taking values in {0, 1}; θui , i = 1, 2, are probabilities142

of the discrete distribution P (ui) over the finite domain {1, . . . , d}. The cardinality d = |ΩZ | ×143

|ΩZ 7→ ΩX | × |ΩX 7→ ΩY | = 32. The total cardinalities of domains for U1, U2 are thus 2d = 64.144

Comparison with related work One could naïvely apply the discretization procedure in [3] and145

obtain a family of discrete SCMs that are sufficient in representing distributions in an causal diagram.146

However, such parametrization is not necessarily complete. To witness, consider again the causal147

diagram in Fig. 1b with binary X,Y, Z. Applying the discretization in [3] leads to a family of discrete148

SCMs compatible with a different diagram in Fig. 1c where the cardinality of exogenous variable149

U is equal to d = 32 (see Appendix D for details). However, this parametrization fails to capture150

some critical constraints over counterfactual distributions since it does not maintain the original151

structure of the causal diagram. For instance, counterfactual variables Z and Yx in the original152

diagram of Fig. 1b are independent due to independence restrictions [33, Ch. 7.3.2]; while Z and153

Yx in Fig. 1c are generally correlated due to the presence of unobserved confounder U . Compared154

with [3], the discretization method in Thm. 1 captures all constraints over counterfactual distributions155

while requiring only a factor of |U | increase in the cardinality of exogenous domains.156

More recently, [15] proved a special case of Thm. 1 for interventional distributions in a specific157

class of causal diagrams that satisfy the running intersection property. When there is no direct arrow158

between endogenous variables, [38] showed that the observational distribution in a diagram could be159

represented using finite-state exogenous variables. Thm. 1 generalizes these results by showing that,160

for the first time, all counterfactual distributions in an arbitrary causal diagram could be generated161

using discrete exogenous variables taking values from a finite domain, without any loss of generality.162

2.1 Partial identification of Counterfactual Distributions163

To demonstrate the expressive power of discrete SCMs, we investigate the problem of partial iden-164

tification of counterfactual distributions. For an SCM M∗ = 〈V ,U ,F , P 〉, we are interested in165

evaluating an arbitrary counterfactual probability P (yx, . . . ,zw). The detailed parametrization of166

M∗ is unknown. Instead, the learner only has access to the causal diagram G and the observa-167

tional distribution P (v) induced by M∗. Our goal is to derive an informative bound [l, r] from the168

combination of G and P (v) that contains the actual counterfactual probability P (yx, . . . ,zw).169

2For every V ∈ V , ΩPaV 7→ ΩV is the set of all functions mapping from domains ΩPaV to ΩV .
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Let N denote the family of discrete SCMs defined in Thm. 1 which are compatible with the causal170

diagram G. We derive a bound [l, r] over P (yx, . . . ,zw) from the observational data P (v) by solving171

the following optimization problem:172

[l, r] = min /max
{
PN (yx, . . . ,zw) | ∀N ∈ N , PN (v) = P (v)

}
(6)

For instance, consider again the double-bow diagram G in Fig. 1b. The observational distribution173

P (x, y, z) in any discrete SCM in N could be written as:174

P (x, y, z) =

d∑
u1,u2=1

1
ξ
(u1)
Z =z

∧ 1
ξ
(z,u1,u2)
X =x

∧ 1
ξ
(x,u2)
Y =y

θu1θu2 . (7)

One could derive a bound over the counterfactual distribution P (z, xz′ , yx′) from the observational175

data P (x, y, z) by solving polynomial programs which optimize the objective Eq. (5) over parameters176

θu1
, θu2

, ξ
(u1)
Z , ξ

(z,u1,u2)
X , ξ

(x,u2)
Y , subject to the observational constraints Eq. (7).177

As a corollary, it follows immediately from Thm. 1 that the solution [l, r] of the optimization problem178

Eq. (6) is guaranteed to be a valid bound over the unknown counterfactual P (yx, . . . ,zw).179

Corollary 1 (Soundness). Given a DAG G and an observational distribution P (v), let M be the set180

of all SCMs compatible with G and let Mo = {∀M ∈M | PM (v) = P (v)}. For the solution [l, r]181

of Eq. (6), PM (yx, . . . ,zw) ∈ [l, r] for any SCM M ∈Mo.182

Since the underlying SCM M∗ ∈Mo, Corol. 1 implies that the derived bound [l, r] must contain the183

actual counterfactual probability P (yx, . . . ,zw). Our next result shows that such a bound [l, r] is184

provably tight, i.e., it cannot be improved without additional assumptions.185

Corollary 2 (Tightness). Given a DAG G and an observational distribution P (v), let M be the set186

of all SCMs compatible with G and let Mo = {∀M ∈M | PM (v) = P (v)}. For the solution [l, r]187

of Eq. (6), there exist SCMs M1,M2 ∈Mo such that PM1
(yx, . . . ,zw) = l, PM2

(yx, . . . ,zw) = r.188

Corol. 2 confirms the tightness of the bound [l, r] obtained from Eq. (6). Suppose there exists a valid189

bound [l′, r′] strictly contained in [l, r]. One could construct from Corol. 2 an SCM M compatible190

with the causal diagram G and the observational distribution P (v), but its counterfactual probability191

P (yx, . . . ,zw) lies outside [l′, r′], which is a contradiction.192

The optimization problem of Eq. (6) is reducible to equivalent polynomial programs (see Appendix E).193

Despite the soundness and tightness of derived bounds, solving such programs may take exponentially194

long in the most general case [29]. Our focus here is upon the causal inference aspect of the problem195

and like earlier discussions we do not specify which solvers are used [3, 4]. In some cases of196

interest, effective approximate planning methods for polynomial programs do exist. Investigating197

these methods is an ongoing subject of research [26, 31, 48, 28, 27].198

3 Bayesian Approach for Partial Identification199

This section describes an effective algorithm to approximate the optimal counterfactual bound in200

Eq. (6), provided with finite samples v̄ =
{
v(n)

}N
n=1

drawn from the observational distribution201

P (v), and prior distributions over parameters θu and ξ(paV ,uV )
V (possibly uninformative).202

We first introduce Markov Chain Monte Carlo (MCMC) algorithms that sample the posterior distribu-203

tion P (θctf | v̄) over a counterfactual probability θctf = P (yx, . . . ,zw). More specifically, for every204

V ∈ V , ∀paV , uV , parameters ξ(paV ,uV )
V are drawn uniformly over the finite domain ΩV . For every205

U ∈ U , exogenous probabilities θu are drawn from a generalized Dirichlet distribution [12]. We will206

take the view of a stick-breaking construction [40] which successively breaks pieces off a unit-length207

stick with size proportional to random draws from a Beta distribution. Parameters θu are proportions208

of each of the pieces relative to its original size. Formally,209

∀u = 1, 2, . . . , dU , θu = µu

u−1∏
i=1

(1− µi), µu ∼ Beta
(
α

(u)
U , β

(u)
U

)
, (8)
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Figure 2: The data-generating process for the observational data
{
X(n), Y (n), Z(n)

}N
n=1

in an SCM
associated with the causal diagram in Fig. 1b. For every exogenous variable U ∈ U , θU = {θu | ∀u}.
For every endogenous variable V ∈ V , ξV =

{
ξ

(paV ,uV )
V | ∀paV , uV

}
.

where dU =
∏
V ∈CU |ΩPaV 7→ ΩV | and α(u)

U , β
(u)
U > 0 are hyperparameters. Finally, we truncate210

this construction by setting µdU = 1. Note from Eq. (8) that all parameters θu for u > dU are equal211

to zero. As an example, Fig. 2 shows a graphical representation of the data-generating process over212

parameters θu and ξ(paV ,uV )
V associated with SCMs in Fig. 1b, spanning over N observations.213

Gibbs sampling is a well-known MCMC algorithm that allows one to sample posterior distributions.214

For convenience, we introduce the following notations. Let parameters θ = {θu | ∀U ∈ U ,∀u}215

and ξ =
{
ξ

(paV ,uV )
V | ∀V ∈ V ,∀paV , uV

}
. The set Ū =

{
U (n)

}N
n=1

are exogenous variables216

affecting N observations V̄ =
{
V (n)

}N
n=1

; we use ū to represent their realizations. Our blocked217

Gibbs sampler works by iteratively drawing values from the conditional distributions of variables as218

follows [22]. Detailed derivations of complete conditional distributions are shown in Appendix F.219

Sampling P (ū | v̄,θ, ξ). Exogenous variables U (n), n = 1, . . . , N , are mutually independent220

given parameters θ, ξ. We could draw each
(
U (n) | θ, ξ, V̄

)
corresponding to the nth observation221

independently. The complete conditional for U (n) is given by222

P
(
u(n) | v(n),θ, ξ

)
∝
∏
V ∈V

1
ξ
(pa

(n)
V ,u

(n)
V )

V =v(n)

∏
U∈U

θu. (9)

Sampling P (ξ,θ | v̄, ū). Parameters ξ,θ are independent given V̄ , Ū . Therefore, we will derive223

complete conditional ξ,θ separately. Note that in discrete SCMs, the nth observation of variable224

V ∈ V is decided by v(n) ← ξ
(paV ,uV )
V given pa

(n)
V = paV , u(n)

V = uV . Thus, draw values of each225

ξ
(paV ,uV )
V ∈ ξ from the complete conditional defined as:226

P
(
ξ

(paV ,uV )
V | v̄, ū

)
=

{
1
ξ
(paV ,uV )
V =v(i)

if ∃i, s.t. pa(i)
V = paV , u

(i)
V = uV ,

1/|ΩV | otherwise.
. (10)

Let nu =
∑N
n=1 1u(n)=u records the number of values in u(n) that are equal to u. By the conjugacy227

of the generalized Dirichlet distribution, the complete conditional of θu is given by, for every U ∈ U ,228

∀u = 1, 2, . . . dU , θu = µu

u−1∏
i=1

(1− µi), µu ∼ Beta

(
α

(u)
U + nu, β

(u)
U +

dU∑
k=u+1

nk

)
. (11)

Doing so eventually produces values drawn from the posterior distribution over
(
θ, ξ, Ū | V̄

)
. Given229

parameters θ, ξ, we compute the counterfactual probability θctf = P (yx, . . . ,zw) following the230

three-step algorithm in [33] which consists of abduction, action, and prediction. Thus computing θctf231

from each draw θ, ξ, Ū eventually gives us the draw from the posterior distribution P (θctf | v̄).232

3.1 Collapsed Gibbs Sampling233

We also describe an alternative sampler that applies to stick-breaking priors with a known Pólya234

urn characterization. Formally, consider stick-breaking priors in Eq. (8) with hyperparameters235
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α
(u)
U = αU/dU and β(u)

U = (dU − u)αU/dU for some real αU > 0. Let Ū−n denote the set236

difference Ū \U (n); so does V̄−n = V̄ \ V (n). Our collapsed Gibbs sampler first iteratively draws237

values from the conditional distribution of
(
U (n) | Ū−n, V̄

)
, n = 1, . . . , N , as follows.238

Sampling P
(
u(n) | v̄, ū−n

)
. At each iteration, draw U (n) from the conditional given by239

P
(
u(n) | v̄, ū−n

)
∝
∏
V ∈V

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

) ∏
U∈U

P
(
u(n) | v̄−n, ū−n

)
. (12)

Among quantities in the above equation, for every V ∈ V ,240

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
=

{
1v(n)=v(i) if ∃i 6= n, pa

(i)
V = pa

(n)
V , u

(i)
V = u

(n)
V ,

1/|ΩV | otherwise.
. (13)

For every U ∈ U , let ū−n be a set of exogenous samples
{
u(1), . . . , u(n−1), u(n+1), . . . , u(N)

}
. Let241

{u∗1, . . . , u∗K} denote K unique values that samples in ū−n take on.242

P
(
u(n) | v̄−n, ū−n

)
=


n∗k + αU/dU
αU +N − 1

if u(n) = u∗k, for k = 1, . . . ,K

αU (1−K/dU )

αU +N − 1
if u(n) 6∈ {u∗1, . . . , u∗K}

. (14)

where n∗k =
∑
i 6=n 1u(i)=u∗k

records the number of values in u(i) ∈ ū−n that are equal to u∗k.243

Doing so eventually produces exogenous variables drawn from the posterior distribution of
(
Ū | V̄

)
.244

We then sample parameters from the posterior distribution of
(
θ, ξ | Ū , V̄

)
; the complete conditional245

P (ξ,θ | v̄, ū) are given in Eqs. (10) and (11). Finally, computing θctf from each sample θ, ξ gives246

us a draw from the posterior distribution P (θctf | v̄).247

When the cardinality dU of exogenous domains is high, the collapsed Gibbs sampler described here is248

more computational efficient than the blocked sampler, since it does not iteratively draw parameters249

θ, ξ in the high-dimensional space. Instead, the collapsed sampler only draws θ, ξ once after samples250

drawn from the distribution of
(
Ū | V̄

)
converge. On the other hand, when the cardinality dU is251

reasonably low, the blocked Gibbs sampler is preferable since it exhibits better convergence [22].252

3.2 Credible Intervals over Counterfactual Probabilities253

Given a MCMC sampler, one could bound the counterfactual probability θctf by computing credible254

intervals from the posterior distribution P (θctf | v̄).255

Definition 4. Fix α ∈ [0, 1). A 100(1− α)% credible interval [lα, rα] for θctf is given by256

lα = sup {x | P (θctf ≤ x | v̄) = α/2} , rα = inf {x | P (θctf ≤ x | v̄) = 1− α/2} . (15)

For a 100(1− α)% credible interval [lα, rα], any counterfactual probability θctf that is compatible257

with observational data v̄ lies between the interval lα and rα with probability 1 − α. Credible258

intervals have been widely applied for computing bounds over counterfactuals provided with finite259

observations [20, 47, 37, 8, 46]. As the number of observational data N grows (to infinite), the 100%260

credible interval [l0, r0] eventually converges to the optimal asymptotic bound [l, r] in Eq. (6) [11].261

Let
{
θ(t)
}T
t=1

be T samples drawn from P (θctf | v̄). One could compute the 100(1− α)% credible262

interval for θctf using the following consistent estimators [39]:263

l̂α(T ) = θ(d(α/2)Te), r̂α(T ) = θ(d(1−α/2)Te), (16)

where θ(d(α/2)Te), θ(d(1−α/2)Te) are the d(α/2)T eth smallest and the d(1 − α/2)T eth smallest of264 {
θ(t)
}

3. Our next results establish non-asymptotic deviation bounds for the empirical estimates of265

credible intervals defined in Eq. (16) for finite samples.266

Lemma 1. Fix T > 0 and δ ∈ (0, 1). Let function f(T, δ) =
√

2T−1 ln(4/δ). With probability at267

least 1− δ, estimators l̂α(T ), r̂α(T ) for any α ∈ [0, 1) is bounded by268

l̂α(T ) ∈
[
lα−f(T,δ), lα+f(T,δ)

]
, r̂α(T ) ∈

[
rα+f(T,δ), rα−f(T,δ)

]
. (17)

3For any realα ∈ R, dαe denotes the smallest integer n ∈ Z larger thanα, i.e., dαe = min{n ∈ Z | n ≥ α}.
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Algorithm 1: CREDIBLEINTERVAL

1: Input: Credible level α, tolerance level δ, ε.
2: Output: An credible interval [lα, hα] for θctf.
3: Let T = d2ε−2 ln(4/δ)e.
4: Draw samples

{
θ(1), . . . , θ(T )

}
from the

posterior distribution P (θctf | v̄).
5: Return interval

[
l̂α(T ), r̂α(T )

]
(Eq. (16)).

We summarize our algorithm, CREDIBLEIN-269

TERVAL, in Alg. 1. It takes a credible level270

α and tolerance levels δ, ε as inputs. In par-271

ticular, CREDIBLEINTERVAL repeatedly draw272

T ≥ d2ε−2 ln(4/δ)e samples from P (θctf | v̄).273

It then computes estimates l̂α(T ), ĥα(T ) from274

drawn samples following Eq. (16) and return275

them as the output. It follows immediately from276

Lem. 1 that such a procedure efficiently approx-277

imates a 100(1− α)% credible interval.278

Corollary 3. Fix δ ∈ (0, 1) and ε > 0. With probability at least 1 − δ, the interval [l̂, r̂] =279

CREDIBLEINTERVAL(α, δ, ε) for any α ∈ [0, 1) is bounded by l̂ ∈ [lα−ε, lα+ε] and r̂ ∈ [rα+ε, rα−ε].280

Corol. 3 implies that any counterfactual parameter θctf compatible with observational data v̄ falls281

between [l̂, r̂] = CREDIBLEINTERVAL(α, δ, ε) with probability P
(
θctf ∈ [l̂, r̂] | v̄

)
≈ 1−α± ε. As282

the tolerance rate ε→ 0, [l̂, r̂] converges to a 100(1− α)% credible interval with high probability.283

4 Simulations and Experiments284

We demonstrate our algorithms on various simulated SCM instances and a real world patient dataset285

collected from the International Stroke Trial (IST) [10]. Overall, we found that simulation results sup-286

port our findings and the proposed bounding strategy consistently dominates state-of-art algorithms.287

When target distributions are identifiable (Experiment 1), our bounds collapse to the actual, unknown288

counterfactual probabilities. For non-identifiable settings, our algorithm obtains sharp asymptotic289

bounds when closed-form solutions already exist (Experiments 2 & 3); and improves over state-of-art290

bounds in other more general cases where the optimal strategy is unknown (Experiment 4).291

In all experiments, we evaluate our proposed bounding strategy based on credible intervals (ci). In292

particular, we draw 4 × 103 samples from the posterior distribution over the target counterfactual293 (
θctf | V̄

)
. This allows us to compute 100% credible interval over θctf within error ε = 0.05, with294

probability at least 1−δ = 0.95. As the baseline, we also include the actual counterfactual probability295

θ∗. For details on simulation setups and additional experiments, we refer readers to Appendix C.296

X W Y

U1 U2

Figure 3: Frontdoor

Experiment 1: Frontdoor Graph This experiment evaluates our sam-297

pling algorithm on interventional probabilities that are identifiable from298

the observational data. Consider the “Frontdoor” graph described in299

Fig. 3 where X,Y,W are binary variables in {0, 1}; U1, U2 ∈ R. In this300

case, the interventional distribution P (yx) is identifiable from P (x,w, y)301

through the frontdoor adjustment [33, Thm. 3.3.4]. We collect N = 104302

observational samples V̄ = {X(n), Y (n),W (n)}Nn=1 from a randomly303

generated SCM. Fig. 4a shows samples drawn from the posterior distribution of the target probability304 (
P (Yx=0 = 1) | V̄

)
. The analysis reveals that these samples collapse to the actual interventional305

probability P (Yx=0 = 1) = 0.5085, which confirms the identifiability of P (yx) in Fig. 3.306

Experiment 2: Instrumental Variables (IV) This experiment evaluates our bounding strategy in307

non-identifiable settings, while closed-form solutions for the optimal bounds over target probabilities308

already exist. Consider first the “IV” diagram in Fig. 1a where X,Y, Z ∈ {0, 1} and U1, U2 ∈ R.309

The non-identifiability of P (yx) from the observational data P (x, y, z) with the instrument Z and the310

unobserved confounding between X and Y has been acknowledged in [5]. For binary X,Y, Z, [2]311

derived closed-form, sharp bounds over P (yx) (labelled as opt). We collect N = 104 observational312

samples V̄ = {X(n), Y (n), Z(n)}Nn=1 from a randomly generated SCM instance. Fig. 4b shows313

samples drawn from the posterior distribution of
(
P (Yx=0 = 1) | V̄

)
. As a baseline, we also include314

the optimal bound opt, and posterior samples obtained from the Gibbs sampler of [11], which utilizes315

the canonical partitions of exogenous domains in [2] (bp). The analysis reveals that our algorithm316

derives the valid bound over the actual probability P (Yx=0 = 1) = 0.3954; the 100% credible317

interval converges to the optimal IV bound l = 0.1468, r = 0.6617.318
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(a) Frontdoor (b) IV (c) PNS (d) IST

Figure 4: Histogram plots for samples drawn from the posterior distribution over target counterfactual
probabilities. For all plots (a - d), ci represents our proposed algorithms; bp stands for Gibbs samplers
using the representation of canonical partitions [2]; θ∗ is the actual counterfactual probability. (b, c)
opt represents the optimal asymptotic bound, if exists. (d) nb stands for the natural bounds [30].

Experiment 3: Probability of Necessity and Sufficiency (PNS) We now study the problem of319

evaluating the probability of necessity and sufficiency P (Yx=1 = 1, Yx=0 = 0) from the observational320

data P (x, y) in the “Bow” diagram of Fig. 1d where X,Y ∈ {0, 1} and U ∈ R. The sharp bound for321

P (Yx=1 = 1, Yx=0 = 0) from P (x, y) was introduced in [44] (labelled as opt). We collect N = 104322

observational samples V̄ = {X(n), Y (n)}Nn=1 from an SCM instance. Fig. 4c shows samples drawn323

from the posterior distribution of
(
P (Yx=1 = 1, Yx=0 = 0) | V̄

)
. As a baseline, we also include the324

optimal bound opt, and posterior samples obtained from the Gibbs sampler which discretizes the325

exogenous domains using canonical partitions [2] (bp). The analysis reveals that our 100% credible326

interval (ci) matches the optimal PNS bound l = 0, r = 0.6775, i.e., the proposed strategy achieves327

the sharp bound over the counterfactual probability P (Yx=1 = 1, Yx=0 = 0) = 0.1867.328

Experiment 4: International Stroke Trials (IST) IST was a large, randomized, open trial of up329

to 14 days of antithrombotic therapy after stroke onset [10]. In particular, the treatment X is a pair330

(i, j) where i = 0 stands for no aspirin allocation, 1 otherwise; j = 0 stands for no heparin allocation,331

1 for median-dosage, and 2 for high-dosage. The primary outcome Y ∈ {0, . . . , 3} is the health332

of the patient 6 months after the treatment, where 0 stands for death, 1 for being dependent on the333

family, 2 for the partial recovery, and 3 for the full recovery.334

To emulate the presence of unobserved confounding, we filter the experimental data with selection335

rules f (Z)
X , Z ∈ {0, . . . , 9}, following a procedure in [49]. Doing so allows us to obtain N = 3×103336

synthetic observational samples V̄ = {X(n), Y (n), Z(n)}Nn=1 that are compatible with the “Double337

bow” diagram of Fig. 1b. We are interested in evaluating the treatment effect E[Yx=(1,0)] for338

only assigning aspirin X = (1, 0). Fig. 4d shows samples drawn from the posterior distribution339

of
(
E[Yx=(1,0)] | V̄

)
. As a baseline, we also include a naïve generalization of the discretization340

procedure (bp) [2] (see Appendix D) and the natural bounds [36, 30] estimated at the 95% confidence341

level (nb) [49]. Posterior samples of ci and bp are drawn using our proposed collapsed sampler342

due to the high-dimensional latent space. The analysis reveals that all algorithms achieve bounds343

that contain the actual, target causal effect E[Yx=(1,0)] = 1.3418. Our bounding strategy obtains a344

100% credible interval lci = 1.2604, rci = 1.4687, which consistently improves over all the other345

algorithms (lbp = 1.1121, rbp = 1.8073, lnb = 1.1195, rnb = 1.6221).346

5 Conclusion347

This paper investigated the problem of partial identification of counterfactual distributions, which348

concerns with bounding unknown counterfactual probabilities from the combination of the obser-349

vational data and qualitative assumptions of the data-generating process, represented in the form of350

a directed acyclic causal diagram. We studied a special family of SCMs with discrete exogenous351

variables, taking values from a finite set of unobserved states, and showed that it could represent all352

counterfactual distributions (over finite observed variables) in an arbitrary causal diagram. That is,353

this new family of discrete SCMs is counterfactual equivalent to the original family of candidate354

SCMs compatible with the causal diagram. Using this result, we developed a novel algorithm to355

derive bounds over counterfactual probabilities from finite observations, which are provably tight.356
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A On the Expressive Power of Discrete Structural Causal Models515

In this section, we provide a detailed proof for Thm. 1 which establishes the expressive power516

of discrete SCMs in representing counterfactual distributions over finite observed domains. For517

convenience, we will focus on the following equivalent definition of discrete SCMs which will518

facilitate the understanding of the proof.519

Definition 5. An SCM M = 〈V ,U ,F , P 〉 is said to be a discrete SCM if520

1. For each exogenous U ∈ U , its domain ΩU is discrete and at most countable;521

2. For each endogenous V ∈ V , its domain ΩV is discrete and finite;522

3. Values of each endogenous V ∈ V are given by v ← huV (paV ) where huV is a function523

mapping from finite domains of PaV to V .524

For every V ∈ V , we denote by HV a hypothesis class containing all function mapping from525

domains of PaV to V , i.e., HV = ΩPaV 7→ ΩV .526

The main challenge in our proof is to show that given an arbitrary SCM M with arbitrary exogenous527

domains, one could construct a discrete SCM N , with bounded cardinality of exogenous domains,528

such thatN andM induces the same counterfactual distributions and the causal diagram. To illustrate529

this idea, consider the sample “Bow” graph in Fig. 1d where X,Y are binary variables in {0, 1}.530

Since Y is not a descendant of X , counterfactual variable Xy = X for any y ∈ ΩY , i.e., intervening531

on Y has no causal effect on X [18]. It is thus sufficient to consider the counterfactual distribution532

P (x, yx=0, yx=1). Let functions in the hypothesis class HX be ordered by h(1)
X = 0 and h(2)

X = 1;533

and let functions in the hypothesis classHY be ordered by:534

h
(1)
Y (x) = 0, h

(2)
Y (x) = x, h

(3)
Y (x) = ¬x, h

(4)
Y (x) = 1. (18)

Let M be the set of all SCMs compatible with G and let N be the set of all discrete SCMs compatible535

with G and discrete exogenous domain |ΩU | ≤ 8. To prove the counterfactual equivalence between536

M and N , it suffices to show that for any M ∈ M, one could construct an N ∈ N so that537

PM (x, yx=0, yx=1) = PN (x, yx=0, yx=1). The construction procedure is described as follows. Let538

the exogenous U in N be a pair (UX , UY ) where UX ∈ {1, 2} and UY ∈ {1, . . . , 4}; values of X539

are given by x← h
(uX)
X ; values of Y are given by y ← h

(uY )
Y (x). It is verifiable that in such N , the540

counterfactual distribution P (x, yx=0, yx=1) equates to, for all i, j, k ∈ {0, 1},541

PN (X = i, Yx=0 = j, Yx=1 = k) = PN (UX = i+ 1, UY = 2j + k + 1). (19)
For any SCM M ∈M, let the exogenous distribution PN (uX , uY ) be, for all i, j, k ∈ {0, 1},542

PN (UX = i+ 1, UY = 2j + k + 1) = PM (X = i, Yx=0 = j, Yx=1 = k). (20)
It follows from Eqs. (19) and (20) that M and N coincide in the counterfactual distribution543

P (x, yx=0, yx=1). That is, when inferring counterfactual distributions in Fig. 1d with binary X,Y ,544

we could assume that the exogenous variable U is finite and discrete, without any loss of generality.545

For the remainder of this section, we will generalize the construction described above to arbi-546

trary causal diagrams. Our analysis rests on the framework of structural causal models and the547

measure-theoretic probability theory. Formally, each U ∈ U is associated with a probability space548

〈ΩU ,FU , PU 〉 where ΩU is a sample space containing all possible outcomes; FU is an event space549

containing subsets of ΩU ; and PU is a probability measure mapping from events FU to reals in [0, 1].550

Values of exogenous variables U are drawn following the product measure P ≡ ⊗U∈UPU . We refer551

readers to [6, 7] for a detailed introduction to the measure-theoretic probability theory.552

A.1 Canonical Partitions of Exogenous Domains553

Our proof for Thm. 1 relies on a family of canonical models which any SCM could be reduced to554

while maintaining counterfactual distributions and the network structure encoded in the induced555

causal diagram. Fix an endogenous V ∈ V . Given any configuration UV = uV , the induced556

function fV (·, uV ) must correspond to a unique element in the hypothesis class HV . Naturally, such557

a mapping leads to a finite partition over the exogenous domain ΩUV .558

Definition 6. For an SCM M = 〈V ,U ,F , P 〉, for each V ∈ V , let functions in HV be ordered by559

{h(i)
V }i∈IV where IV = {1, . . . ,mV },mV = |HV |. A collection

{
U (i)
V

}
i∈IV

is said to be canonical560

partitions of (exogenous domains of) V if for all i ∈ IV , U (i)
V =

{
∀uV | fV (·, uV ) = h

(i)
V

}
.561
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Figure 5: Canonical partitions of exogenous domains of X,Y and Z. In (a), each canonical partition
U (i)
X is covered by a finite set of (almost) disjoint cells (e.g., [2, 3]× [0, 1]).

As UV varies along its domain, regardless of how complex the variation is, its only effect is to switch562

the functional relationship between PaV and V among elements in the class HV . Formally,563

Lemma 2. For an SCM M = 〈V ,U ,F , P 〉, for each V ∈ V , fV ∈ F could be decomposed as:564

fV (paV , uV ) =
∑
i∈IV

h
(i)
V (paV )1

uV ∈U(i)
V
. (21)

Proof. By the definition of the canonical partitions U (i)
V , i = 1, . . . ,mV , for any uV ∈ U (rV )

V ,565

fV (·, uV ) = h
(rV )
V (·). Fix PaV = paV . We have fV (paV , uV ) = h

(rV )
V (paV ). Since U (i)

V ,566

i = 1, . . . ,mV , form a partition over domains ΩUV , given the same paV , uV , the r.h.s. of Eq. (21)567

must equate to h(rV )
V (paV ), which completes the proof.568

As an example, consider an SCM M associated with the “Double bow” graph of Fig. 1b where569

X,Y, Z are binary variables in {0, 1}; U1, U2 are continuous values in [0, 3]. More specifically,570

Ui ∼ Unif(0, 3), i = 1, 2, z ← fZ(u1) = 1u1≤1.5,

x← fX(z, u1, u2) = 1z≤u1≤z+2 ⊕ 1z≤u2≤z+2, y ← fY (x, u2) = 1x≤u2≤x+2,
(22)

where ⊕ is the “xor” operator. We show in Fig. 5 the canonical partitions induced by functions571

fX , fY and fZ respectively. To illustrate, Table 1 describes how the functional mapping between X572

and Y switches amongHY as values of U2 move across canonical partitions.573

0 ≤ U2 < 1 1 ≤ U2 ≤ 2 2 < U2 ≤ 3
X = 0 Y = 1 Y = 1 Y = 0
X = 1 Y = 0 Y = 1 Y = 1

Table 1: Output of fY (x, u2) in Eq. (22). For any u2, fY (x, u2) never equates to h(1)
Y (x) = 0.

The decomposition of Lem. 2 implies that function fY could be written as follows:574

fY (x, u2) = 1u2∈[0,1)x+ 1u2∈[1,2]¬x+ 1u2∈(2,3]1. (23)

A natural question as this point is whether one could (1) discretize the exogenous domains of U1, U2575

following canonical partitions ofX,Y, Z and (2) replace the originalU1, U2 with a discrete exogenous576

variable U with cardinality of 2 × 4 × 4 = 32. Fig. 1c shows the causal diagram of the modified577

discrete SCM. However, such a discretization procedure does not maintain the network structure578
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of the original causal diagram in Fig. 1b, thus failing to encoding some critical constraints over579

counterfactual distributions. For instance, variables Z and Yx are independent since they are solutions580

of exogenous variables U1 and U2 respectively; U1, U2 are mutually independent. On the other hand,581

for any discrete SCM of Fig. 1c, such an independence relationship does not necessarily hold: Z and582

Yx could be correlated since they are solutions of the same exogenous variable U .583

A.2 Decomposing Canonical Partitions584

Previous example calls for a more fine-grained decomposition of canonical partitions. To begin the585

discussion, we introduce a special type of subdomains called cells.586

Definition 7 (Cell). For an SCM M = 〈V ,U ,F , P 〉, for each V ∈ V , RV is said to be a cell in587

domain ΩUV ifRV = "U∈UVRV,U whereRV,U ⊆ ΩU , for every U ∈ U .588

By definition, for |UV | = 1, any subset of ΩUV is a cell (e.g., see Fig. 5). However, it is not589

always the case when |UV | ≥ 2. For instance, U (4)
Y in Fig. 5a is not a cell. To see this, let590

RY,U1
= RY,U2

= [0, 1) ∪ (2, 3]. It is verifiable that U (4)
Y 6= RY,U1

×RY,U2
sinceRY,U1

×RY,U2
591

consists of subsets [0, 1)2 and (2, 3]2 which is contained in U (1)
Y

4.592

Arbitrary subsetsA,B of an event space are said to be almost disjoint if their intersection has measure593

zero, i.e., P (A ∩B) = 0. Our next result shows that each canonical partition could be decomposed594

into a countable union of almost disjoint cells.595

Definition 8 (Covering). For an SCM M = 〈V ,U ,F , P 〉, for any V ∈ V , let UV be an arbitrary596

subset of ΩUV . A countable set of cells
{
R(j)
V

}
j∈JV

is said to be a covering of UV if (1) for any597

i 6= j,R(i)
V andR(j)

V are almost disjoint; (2) UV ⊆ ∪j∈JVR
(j)
V ; (3) P (UV ) =

∑
j∈JV P

(
R(j)
V

)
.598

Lemma 3. For an SCMM = 〈V ,U ,F , P 〉, there exists a covering
{
R(j)
V

}
j∈JV

for each canonical599

partition U (i)
V , for any i ∈ IV , any V ∈ V .600

Proof. We now consider a stronger statement showing that any subset UV ⊆ ΩUV has a covering.601

For any A ⊆ ΩUV , define a set of countable collections C(A) with cellsRV ∈ ΩUV :602

C(A) = {C ⊆ FUV | C is at most countable and A ⊆ ∪RV ∈CRV } . (24)

By definition of product measure P [6, Theorem 9.2], we have:603

P (UV ) = inf

{ ∑
RV ∈C

P (RV ) | ∀C ∈ C (UV )

}
. (25)

We could thus obtain a countable set C of cellsRV ∈ ΩUV such that604

UV ⊆ ∪RV ∈CRV , P (UV ) =
∑
RV ∈C

P (RV ) . (26)

What remains is to show that every pair R(i)
V ,R(j)

V ∈ C are almost disjoint. This is equivalent to605

proving the following statement:606

P (∪RV ∈CRV ) =
∑
RV ∈C

P (RV ) . (27)

It is sufficient to show that607

P (∪RV ∈CRV ) ≥
∑
RV ∈C

P (RV ) . (28)

Suppose now the above equating does not hold. There must exist a set C′ ∈ C (∪RV ∈CRV ) such that608

P (∪RV ∈CRV ) =
∑
RV ∈C′

P (RV ) <
∑
RV ∈C

P (RV ) . (29)

4For convenience, we use [a, b]2 to represent the Cartesian product of intervals [a, b]× [a, b].
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By the definition of C (UV ) in Eq. (24), we also have C′ ∈ C (UV ). This means that609

P (UV ) ≤
∑
RV ∈C′

P (RV ) <
∑
RV ∈C

P (RV ) , (30)

which is a contradiction to Eq. (26). This means that set C forms a covering
{
R(j)
V

}
j∈JV

over610

domains of UV , where JV is a countable indexing set.611

Consider the partition U (1)
X in Fig. 5. Let cells R(j)

X = [j − 1, j]2, j = 1, 2, 3. It is verifiable that612

U (1)
X ⊆ ∪j=1,2,3R(j)

X . Since finite points in ΩU1
× ΩU2

(e.g., u1 = u2 = 1) has measure zero,613

P
(
U (1)
X

)
= P

(
(U1, U2) ∈ [0, 1)2 ∪ [1, 2]2 ∪ (2, 3]2

)
=

∑
j=1,2,3

P
(
R(j)
X

)
. (31)

By Def. 8,
{
R(1)
X ,R(2)

X ,R(3)
X

}
is thus a covering of U (1)

X . The characterization of canonical partitions614

and coverings permits us to decompose counterfactual distributions in the canonical form as follows.615

Lemma 4. For an SCM M = 〈V ,U ,F , P 〉, let I = "V ∈V IV . For Y , . . . ,Z,X, . . . ,W ⊆ V 5,616

P (yx, . . . ,zw) =
∑
i

1Yx(i)=y ∧ · · · ∧ 1Zw(i)=zP

( ∧
V ∈V

U (i)
V

)
, (32)

where variables of the form Yx(i) is defined as:617

Yx(i) = {Yx(i) | ∀Y ∈ Y } where Yx(i) =

{
xY if Y ∈X

h
(i)
Y ({Vx(i) | V ∈ PaY }) otherwise

Moreover, let
{
R(j)
V

}
j∈JV

is a covering of each canonical partition U (i)
V ; and let J = ×V ∈V JV .618

The above equation could be further written as, for any i ∈ I ,619

P

( ∧
V ∈V

U (i)
V

)
=
∑
j∈J

P

( ∧
V ∈V

R(j)
V

)
=
∑
j∈J

∏
U∈U

P

 ∧
V ∈ch(U)

R(j)
V,U

 , (33)

where ch(U) are child nodes of U in DAG G, i.e., ch(U) = {∀V ∈ V | U ∈ UV }.620

Proof. We first show that for any Y ,X ⊆ V , given any u,x, ∗y,621

1Yx(u)=y =
∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V
. (34)

Let GX be a subgraph obtained from the causal diagram G by removing all incoming arrows ofX .622

For any Y ∈ Y , let An(Y )G be the set of ancestor nodes of Y in a DAG G, including Y itself. We623

will prove Eq. (34) by induction on n = maxY ∈Y
∣∣An(Y )GX

∣∣.624

Base Case n = 1. In this case, for Y ∈ X ∩ Y , 1Yx(u)=y = 1y=xY where xY be the values625

assigned to Y in x. For Y ∈ Y \X , we must have PaY = ∅. This implies626

1Yx(u)=y = 1fY (uY )=y (35)

= 1
y=
∑
i∈IY

h
(i)
Y 1

uY ∈U
(i)
Y

# By Lem. 2 (36)

=
∑
i∈IY

1
h
(i)
Y =y

1
uY ∈U(i)

Y
(37)

5For any index sequence i ∈ I , we use iV to represent the element in i with restriction to V ∈ V . We omit
the subscript V when it is obvious; therefore, U (i)

V = U (iV )
V , h(i)

V = h
(iV )
V . The same applies to j ∈ J .
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The above equation implies627

1Yx(u)=y =
∏

Y ∈Y ∩X

1y=xY

∏
Y ∈(Y \X)

∑
i∈IY

1
h
(i)
Y =y

1
uY ∈U(i)

Y
(38)

=
∑
i∈I

∏
Y ∈Y ∩X

1y=xY

∏
Y ∈(Y \X)

1
h
(i)
Y =y

∏
V ∈V

1
uV ∈U(i)

V
(39)

=
∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V
. (40)

The last step follows from the definition of variables Yx(i) given index i ∈ I .628

Induction Case n = k + 1. Assume that Eq. (34) hols for n = k. We will prove for the case629

n = K + 1. For Y ∈X ∩ Y , 1Yx(u)=y = 1y=xY . For Y ∈ Y \X , the decomposition in Lem. 2630

implies:631

1Yx(u)=y = 1fY ({Vx(u)|V ∈PaY },uY )=y (41)

= 1
y=
∑
i∈IY

h
(i)
Y ({Vx(u)|V ∈PaY })1

uY ∈U
(i)
Y

(42)

=
∑
i∈IY

∑
paY

1
h
(i)
Y (paY )=y

1{Vx(u)|V ∈PaY }=paY
1
uY ∈U(i)

Y
. (43)

Since Eq. (34) holds for Case n = k, the above equation could be further written as632

1Yx(u)=y =
∑
i∈IY

∑
paY

1
h
(i)
Y (paY )=y

1
uY ∈U(i)

Y

∑
i∈I

1{Vx(i)|V ∈PaY }=paY

∏
V ∈V

1
uV ∈U(i)

V
(44)

=
∑
i∈I

∑
paY

1
h
(i)
Y (paY )=y

1{Vx(i)|V ∈PaY }=paY

∏
V ∈V

1
uV ∈U(i)

V
(45)

=
∑
i∈I

1
h
(i)
Y ({Vx(i)|V ∈PaY })=y

∏
V ∈V

1
uV ∈U(i)

V
. (46)

We thus have633

1Yx(u)=y =
∏

Y ∈Y ∩X

1y=xY

∏
Y ∈(Y \X)

∑
i∈I

1
h
(i)
Y ({Vx(i)|V ∈PaY })=y

∏
V ∈V

1
uV ∈U(i)

V
(47)

=
∑
i∈I

∏
Y ∈Y ∩X

1y=xY

∏
Y ∈(Y \X)

1
h
(i)
Y ({Vx(i)|V ∈PaY })=y

∏
V ∈V

1
uV ∈U(i)

V
(48)

=
∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V
. (49)

The last step follows from the definition of variables Yx(i) given index i ∈ I .634

We now consider the proof of Eq. (32). The statement of Eq. (34) implies that for any635

Y , . . . ,Z,X, . . . ,W ⊆ V ,636

P (yx, . . . ,zw) =

∫
ΩU

1Yx(u)=y ∧ · · · ∧ 1Zw(u)=zdP (u) (50)

=

∫
ΩU

(∑
i∈I

1Yx(i)=y

∏
V ∈V

1
uV ∈U(i)

V

)
∧ · · · ∧

(∑
i∈I

1Zw(i)=z

∏
V ∈V

1
uV ∈U(i)

V

)
dP (u) (51)

=

∫
ΩU

∑
i∈I

1Yx(i)=y ∧ · · · ∧ 1Zw(i)=z

∏
V ∈V

1
uV ∈U(i)

V
dP (u) (52)

=
∑
i∈I

1Yx(i)=y ∧ · · · ∧ 1Zw(i)=z

∫
ΩU

∏
V ∈V

1
uV ∈U(i)

V
dP (u) (53)

=
∑
i∈I

1Yx(i)=y ∧ · · · ∧ 1Zw(i)=zP

( ∧
V ∈V

U (i)
V

)
. (54)
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What remains is to prove Eq. (33). We first show that, for any A ∈ F ,637

P
(
U (i)
V ∧ A

)
=
∑
j∈JV

P
(
R(i)
V ∧ A

)
. (55)

LetA{ = Ω\A. Since
{
R(j)
V

}
j∈JV

is a covering of U (i)
V , we have U (i)

V ⊆ ∪j∈JVR
(j)
V . This implies638

P
(
U (i)
V ∧ A

)
≤
∑
j∈JV

P
(
R(j)
V ∧ A

)
, P

(
U (i)
V ∧ A

{
)
≤
∑
j∈JV

P
(
R(j)
V ∧ A

{
)
. (56)

We will next show that the above inequality relationships are both tight. Suppose say, the inequality639

in Eq. (55) is strict. We must have640

P
(
U (i)
V

)
= P

(
U (i)
V ∧ A

)
+ P

(
U (i)
V ∧ A

{
)

(57)

<
∑
j∈JV

P
(
R(j)
V ∧ A

)
+
∑
j∈JV

P
(
R(j)
V ∧ A

{
)
. (58)

The above equation implies641

P
(
U (i)
V

)
<
∑
j∈JV

P
(
R(j)
V

)
, (59)

which is a contradiction. The property of Eq. (55) implies, for any i ∈ I ,642

P

( ∧
V ∈V

U (i)
V

)
=
∑
j∈J

P

( ∧
V ∈V

R(j)
V

)
. (60)

Since each cellR(j)
V is a Cartesian product of subsets "U∈UVR

(j)
V,U of each exogenous domains and643

exogenous variables in U are mutually independent, we must have, for any j ∈ J ,644

P

( ∧
V ∈V

R(j)
V

)
=
∏
U∈U

P

 ∧
V ∈ch(U)

R(j)
V,U

 . (61)

The above equations together prove Eq. (33).645

Consider again the SCM M described in Eq. (22). Note that the only function in the hypothesis class646

HZ compatible with event Z = 1 is h(2)
Z = 1. Similarly, event Xz=0 = 0, Xz=1 = 0 corresponds to647

the function h(1)
X (z) = 0 inHX . Applying the decomposition of Eq. (32) gives:648

P (Z = 1, Xz=0 = 0, Xz=1 = 0) =
∑

i=1,...,4

P
(
U (2)
Z ∧ U (1)

X ∧ U (i)
Y

)
= P

(
U (2)
Z ∧ U (1)

X

)
. (62)

Among above quantities, the canonical partition U (2)
Z = {u1 ∈ [0, 1.5]} is a cell. U (1)

X has a covering649

of
{

(u1, u2) ∈ R(j)
X | j = 1, 2, 3

}
whereR(j)

X = [j − 1, j]2. Eq. (33) implies650

P
(
U (2)
Z ∧ U (1)

X

)
=

∑
j=1,2,3

P
(
U1 ∈ [0, 1.5] ∧ (U1, U2) ∈ [j − 1, j]2

)
= P (U1 ∈ [0, 1])P (U2 ∈ [0, 1]) + P (U1 ∈ [1, 1.5])P (U2 ∈ [1, 2]) . (63)

Computing Eqs. (62) and (63) gives P (Z = 1, Xz=0 = 0, Xz=1 = 0) = 1/6. One could verify this651

answer from the parametrization of SCM M in Eq. (22) using the three-step algorithm introduced in652

[33] which consists of abduction, action, and prediction.653
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A.3 Bounding Cardinalities of Exogenous Domains654

The decomposition in Lem. 4 implies a discretization procedure that could reproduce all counterfactual655

distributions in any SCM M = 〈V ,U ,F , P 〉. First, we decompose the exogenous domain ΩUV for656

each V ∈ V into the canonical partitions. Second, we further decompose each canonical partition657

using its covering. By doing so, we obtain a partition over the exogenous domain ΩUV which consists658

of countably many (almost) disjoint cells; each cell is assigned with a function (say, hV ) in the659

hypothesis class HV . Finally, for each configuration UV = uV , we find the cell partition containing660

uV and generate values of V using the associated function hV . We formalize this data-generating661

process using a canonical family of SCMs described as follows.662

Definition 9. An SCM M = 〈V ,U ,F , P 〉 is said to be a canonical SCM if for each V ∈ V , let663 {
R(j)
V

}
j∈JV

be a covering of ΩUV ; function fV ∈ F is given by, for ij ∈ {1, . . . ,mV }, j ∈ JV ,664

fV (paV , uV ) =
∑
j∈JV

h
(ij)
V (paV )1

uV ∈R(j)
V
. (64)

Consider the SCM M described in Eq. (22) as an example. Let N be a canonical SCM compatible665

with the DAG of Fig. 1b; its covering cells (e.g., R(j)
X ) and corresponding functions (h(ji)

X (z))666

associated with X,Y, Z are graphically described in Fig. 5 respectively. It immediately follows from667

Lem. 4 that M and N generate the same collection of counterfactual distributions P ∗.668

Lemma 5. For a DAG G, let M be an arbitrary SCM compatible with G. There exists a canonical669

SCM N compatible with G such that P ∗M = P ∗N , i.e., they coincide in all counterfactual distributions.670

Proof. For each V ∈ V in SCM M , let
{
R(j)
V

}
j∈J(i)

V

denote a covering for a canonical partition671

U (i)
V , i ∈ IV . Since {U (i)

V }i∈IV forms a partition over the exogenous domain ΩUV . The collec-672

tion
{
R(j)
V | j ∈ J

(i)
V , V ∈ V

}
forms a covering over ΩUV . Let JV be the union of indexing set673

∪i∈IV J
(i)
V . Naturally, any element j ∈ JV must belong to a subset J (i)

V ; let ij denote such index674

i. We construct a canonical SCM N using coverings
{
R(j)
V

}
j∈JV

and index ij described previ-675

ously. Let J = "V ∈V JV . For any Y , . . . ,Z,X, . . . ,W ⊆ V , the counterfactual distribution676

P (yx, . . . ,zw) in the canonical SCM N is equal to677

P (yx, . . . ,zw) =
∑
j∈J

1Yx(ij)=y ∧ · · · ∧ 1Zw(ij)=zP

( ∧
V ∈V

R(j)
V

)
, (65)

where ij is the indexing sequence (ij)j∈j . Lem. 4, together with some reordering over indices in ij ,678

implies that M and N induce the same collection of counterfactual distributions.679

Given a canonical SCM, one could immediately obtain a discrete SCM by discretizing exogenous680

domains following the covering cells. Since each cell is a Caresian product of subsets (Def. 7), the681

resulting discrete model must induce a causal diagram with the same network structure.682

Lemma 6. For a DAG G, consider the following conditions: (1) M is the set of all SCMs com-683

patible with G; (2) N is the set of all discrete SCMs compatible with G. Then, M and N are684

counterfactually equivalent.685

Proof. For any cell R(j)
V = "U∈UVR

(j)
V,U , we call R(j)

V,U the projection of R(j)
V to domains of U .686

We will describe a discretization procedure that discretize domains of each U ∈ U following the687

intersections of projections ∩V ∈ch(U)R
(j)
V,U , ∀j ∈ JV . For each V ∈ ch(U), for any infinite binary688

sequence rV,U ∈ {0, 1}JV , let an event A
r
(j)
V,U
∈ FUk be, for j ∈ JV ,689

A
r
(j)
V,U

=

{
R(j)
V,U if r(j)

V,U = 1

ΩU \ R(j)
V,U if r(j)

V,U = 0.
(66)
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For any rU = {rV,U : V ∈ ch(U)}, let a subset ArU ∈ ΩU be690

ArU =
⋂

V ∈ch(U)

⋂
j∈JV

A
r
(j)
V,U

. (67)

Since ArV,U , ∀rU , enumerates all possible intersections of projections R(j)
V,U , we could obtain691

probabilities over any intervention ∩V ∈ch(U)R
(j)
V,U using the join probability P (ArU ).692

It now suffices to show that distribution P (ArU ) has countable support, i.e., the set AU =693

{ArU : P (ArU ) > 0} has at most countably elements. Since P is a probability measurable,694

P (Ark) ∈ [0, 1]. By the construction of Eq. (66), we must have
∑
rU
P (ArU ) = 1. If the695

sum over an uncountable set of reals is finite, then there exist at most countable number of events696

ArU such that P (ArU ) > 0, i.e, the set AU is countable.697

Lem. 6 implies that one could represent all counterfactual distributions in a causal diagram using698

a countably infinite number of exogenous states. To prove Thm. 1, what remains is to bound the699

cardinality of the exogenous domain. More specifically, we will show that any discrete SCM M with700

cardinality |ΩU | >
∏
V ∈CU |HV |, ∀U ∈ U , CU is the c-component that contains all child nodes of701

U , can be modified into a discrete SCM N with |ΩU | ≤
∏
V ∈CU |HV |, ∀U ∈ U , while maintaining702

all counterfactual distributions P ∗ and the same network structure in the causal diagram.703

Theorem 1. For a DAG G, consider the following conditions6: (1) M is the set of all SCMs704

compatible with G; (2) N is the set of all discrete SCMs compatible with G where for every U ∈ U ,705

its cardinality |ΩU | =
∏
V ∈CU |ΩPaV 7→ ΩV |, i.e., the number of functions mapping from PaV to706

V for every variable V in the c-component CU . Then, M and N are counterfactually equivalent.707

Proof. Lem. 4 implies that it suffices to prove that for any discrete SCM M ∈ M, there exists a708

finite SCM N ∈ N such that M and N coincide in the joint distribution over canonical partitions709

P
(∧

V ∈V U
(i)
V

)
. C-components in C(G) implies the following decomposition710

P

( ∧
V ∈V

U (i)
V

)
=

∏
C∈C(G)

P

( ∧
V ∈C

U (i)
V

)
. (68)

We now focus on the consistency for the joint probability P
(∧

V ∈C U
(i)
V

)
for each C ∈ C(G).711

Fix a c-component C. Let ~P be a vector representing probabilities of
(
P
(∧

V ∈C U
(i)
V

))
i∈I

, which712

could be seen as a point in d− 1-dimensional real space where d =
∏
V ∈C |HV |7. Let UC denote713

the collection ∪V ∈CUV . Fix an exogenous U ∈ UC . Let Pu
(∧

V ∈C U
(i)
V

)
denote joint distributions714

over canonical partitions when U is fixed as a constant u ∈ ΩU . More specifically,715

Pu

( ∧
V ∈C

U (i)
V

)
=
∑
u\u

∏
V ∈C

1
uv∈U(i)

V

∏
U ′∈(U\U)

P (u′). (69)

Similarly, let ~Pu be a vector in Rd−1 representing probabilities of Pu
(∧

V ∈C U
(i)
V

)
. By basic716

probabilistic operations, we must have ~P =
∑
u
~PuP (u). That is, ~P ∈ Rd−1 is a point lies in the717

convex hull of a set
{
~Pu | ∀u ∈ ΩU

}
. The Carathéodory theorem [9, 13] implies that we could write718

~P as a convex combination of at most d points in
{
~Pu | ∀u ∈ ΩU

}
. That is, for d distinct values719

{u1, . . . , ud} in ΩU ,720

~P =

d∑
k=1

wd ~Puk , where wk > 0,∀k = 1, . . . , d, and
∑
k

wk = 1. (70)

6For every V ∈ V , ΩPaV 7→ ΩV is the set of all functions mapping from domains ΩPaV to ΩV .
7By definition, ~P is a vector with d =

∏
V ∈C |HV | elements. Since

∑
i P

(∧
V ∈C U

(i)
V

)
= 1, it only

takes a vector with d− 1 dimensions to uniquely determine ~P .
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We could replace P (u) with a distribution P ′(uk) = wk over a finite discrete domain Ω′U =721

{u1, . . . , ud} and obtain a discrete SCM N that reproduce all counterfactual distributions in M with722

cardinality |ΩU | ≤
∏
V ∈CU |HV | for a fixed U ∈ U . Finally, we complete the proof by repeatedly723

applying this replacement for every U ∈ U .724

A.4 Partial identification of Counterfactual Distributions725

To demonstrate the expressive power of discrete SCMs, we investigate the problem of partial iden-726

tification of counterfactual distributions. For an SCM M∗ = 〈V ,U ,F , P 〉, we are interested in727

evaluating an arbitrary counterfactual probability P (yx, . . . ,zw). The detailed parametrization of728

M∗ is unknown. Instead, the learner only has access to the causal diagram G and the observa-729

tional distribution P (v) induced by M∗. Our goal is to derive an informative bound [l, r] from the730

combination of G and P (v) that contains the actual counterfactual probability P (yx, . . . ,zw).731

Let N denote the family of discrete SCMs defined in Thm. 1 which are compatible with the causal732

diagram G. We derive a bound [l, r] over P (yx, . . . ,zw) from the observational data P (v) by solving733

the optimization problem in Eq. (6). It follows immediately from Thm. 1 that the solution [l, r] of734

the optimization problem Eq. (6) is guaranteed to be a tight bound over the unknown counterfactual735

P (yx, . . . ,zw).736

Corollary 1 (Soundness). Given a DAG G and an observational distribution P (v), let M be the set737

of all SCMs compatible with G and let Mo = {∀M ∈M | PM (v) = P (v)}. For the solution [l, r]738

of Eq. (6), PM (yx, . . . ,zw) ∈ [l, r] for any SCM M ∈Mo.739

Proof. Without loss of generality, we assume Mo 6= ∅, i.e., G and P (v) are compatible. For any740

M ∈ Mo, Thm. 1 implies that there exists a discrete N ∈ N such that PN (v) = PM (v) =741

P (v) and PN (yx, . . . ,zw) = PM (yx, . . . ,zw). The optimization problem of Eq. (6) ensures742

PN (yx, . . . ,zw) ∈ [l, r], which completes the proof.743

Corollary 2 (Tightness). Given a DAG G and an observational distribution P (v), let M be the set744

of all SCMs compatible with G and let Mo = {∀M ∈M | PM (v) = P (v)}. For the solution [l, r]745

of Eq. (6), there exist SCMs M1,M2 ∈Mo such that PM1
(yx, . . . ,zw) = l, PM2

(yx, . . . ,zw) = r.746

Proof. Let No = {∀N ∈ N | PN (v) = P (v)}. The optimization problem of Eq. (6) ensures that747

there exist discrete SCMsN1, N2 ∈ No such that PN1
(yx, . . . ,zw) = l, PN2

(yx, . . . ,zw) = r. For748

anyNi, i = 1, 2, Thm. 1 implies that one could find an SCMMi ∈Mo such that PMi
(yx, . . . ,zw) =749

PNi(yx, . . . ,zw). This completes the proof.750

A.5 Acyclic Directed Mixed Graphs751

In the causal inference literature [43, 45], a causal diagram could also be represented by an acyclic752

directed mixed graph (ADMG), where exogenous variables are not explicitly shown. Formally, an753

ADMG associated with an SCM M = 〈V ,U ,F , P 〉 is an augmented DAG where nodes represent754

V ; arrows represent arguments PaV of each function fV ; and a bi-directed arrow between nodes755

Vi and Vj indicates the presence of unobserved confounders (UCs) affecting both Vi and Vj , i.e.,756

UVi ∩ UVj 6= ∅8. For instance, Fig. 6b shows an ADMG compatible with SCMs described in Fig. 6a.757

Similarly, it is also compatible with SCMs graphically described in Fig. 6c. That is, an ADMG758

describes an equivalence class of DAGs (more than 1). [43, Def. 5] introduce an algorithm to project759

a DAG to an ADMG which maintains the same causal relationships over endogenous variables.760

We will study an inverse algorithm that translates an ADMG into a DAG while maintaining all761

counterfactual distributions. Our construction rests on a novel object called the confounded clique.762

Definition 10 (c-clique). For an ADMG G, a subset C ⊆ V is a c-clique if any pair Vi, Vj ∈ C is763

connected by a bi-directed arrow in G, i.e., Vi ↔ Vj ∈ G.764

8The definition of ADMG used here differs from the one studied in [15]. According to [15], the ADMG in
Fig. 6b uniquely corresponds to the DAG in Fig. 6a; the ADMG for the DAG of Fig. 6c is not defined.
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Figure 6: DAGs (a, c) containing a treatment X , an outcome Y , and a covariate Z; and (b) their
corresponding ADMG; (d) an ADMG that is counterfactually equivalent to the DAG in Fig. 1b.

Algorithm 2: INVERSEPROJECT

1: Input: An ADMG G
2: Output: A DAGH.
3: LetH = G.
4: for each c-clique C in c(G) do
5: For every pair Vi, Vj ∈ C, remove

Vi ↔ Vj fromH.
6: Add an exogenous node U inH.
7: For every V ∈ C, add U → V inH.
8: end for

A c-clique C in G is maximal if there exists765

no other c-clique that contains C. We denote766

by c(G) the set of all maximal c-cliques in767

an ADMG G. For instance, the ADMG of768

Fig. 6c has a single c-clique C = {X,Y, Z}.769

Fig. 6d contains two c-cliques C1 = {X,Z}770

and C2 = {X,Y }; while it only contains a sin-771

gle c-component {X,Y, Z}.772

Our algorithm INVERSEPROJECT, described in773

Alg. 2, translates an ADMG into a DAG by re-774

placing bi-directed arrows in each c-clique with775

arrows from a new exogenous variable. As an776

example, Fig. 6c shows an DAG obtained from the ADMG of Fig. 6b where exogenous variable777

U corresponds to the c-clique C = {X,Y, Z}. Fig. 1b shows a DAG obtained from applying IN-778

VERSEPROJECT to the ADMG of Fig. 6d. The following proposition shows that INVERSEPROJECT779

constructs a DAG that generates the same counterfactual distributions in the given ADMG.780

Lemma 7. For an ADMG G, let H be a DAG obtained from INVERSEPROJECT(G), consider the781

following conditions: (1) M is the set of all SCMs associated with G; (2) N is the set of all SCMs782

associated withH. Then M and N are counterfactually equivalent.783

Proof. By the definition of ADMGs, a backdoor path Vi ← Uk → Vj ∈ H indicates the presence784

of a bi-directed arrow Vi ↔ Vj ∈ G. Therefore, any SCM N compatible with the DAG H is also785

compatible with the ADMG G. That is, N ∈ N implies N ∈M .786

It suffices to show that for any SCM M compatible with the ADMG G, there exists an SCM787

N compatible the DAG H such that for any X ⊂ V , PM (v|do(x)) = PN (v|do(x)). Let c2-788

components c(G) = {C1, . . . ,Cn}. We will construct a partition Ũ1, . . . , Ũn over exogenous789

variables U in M . Let Ũ1 = ∪V ∈CiUV and Ũi = ∪V ∈CiUV \
(
∪j<iŨi

)
for i = 2, . . . , n. By790

construction, we must have Ũi ⊆ ∪V ∈CiUV . Finally, we obtain an SCM N compatible with DAGH791

by (1) simply grouping exogenous variablesU inM into the partition Ũ = {Ũ1, . . . , Ũn} and (2) use792

Ũ as the exogenous variables in the modified model N . Since structural functions F and exogenous793

distribution P remain the same, M and N must coincide in all counterfactual distributions.794

To characterize counterfactual distributions in an ADMG G, we could apply procedure INVERSEPRO-795

JECT to obtain a DAGH. Lem. 7 and Thm. 1 imply that one could assume exogenous variables in G796

to be exogenous variables inH with finite domains, without loss of generality.797
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B Monte Carlo Estimation of Credible Intervals798

In this section, we provide proofs for the large deviation bounds for empirical estimates of 100(1−799

α)% credible intervals introduced in Sec. 3.2.800

Lemma 1. Fix T > 0 and δ ∈ (0, 1). Let function f(T, δ) =
√

2T−1 ln(4/δ). With probability at801

least 1− δ, estimators l̂α(T ), r̂α(T ) for any α ∈ [0, 1) is bounded by802

l̂α(T ) ∈
[
lα−f(T,δ), lα+f(T,δ)

]
, r̂α(T ) ∈

[
rα+f(T,δ), rα−f(T,δ)

]
. (17)

Proof. Fix ε > 0. If l̂α(T ) > lα+ε, this means that there are at most d(α/2)T e − 1 instances in803 {
θ

(t)
ctf

}T
t=1

that are smaller than or equal to lα+ε. That is,804

P
(
l̂α(T ) > lα+ε

)
≤ P

(
T∑
t=1

1
θ
(t)
ctf ≤lα+ε

≤ d(α/2)T e − 1

)
(71)

≤ P

(
T∑
t=1

1
θ
(t)
ctf ≤lα+ε

≤ (α/2)T

)
(72)

≤ P

(
1

T

T∑
t=1

1
θ
(t)
ctf ≤lα+ε

≤ α+ ε

2
− ε

2

)
(73)

≤ exp

(
−Tε

2

2

)
. (74)

The last step in the above equation follows from the standard Hoeffding’s inequality.805

If l̂α(T ) < lα−ε, this implies that there are at least d(α/2)T e instances in
{
θ

(t)
ctf

}T
t=1

that are larger806

than or equal to lα+ε. That is,807

P
(
l̂α(T ) < lα−ε

)
≤ P

(
T∑
t=1

1
θ
(t)
ctf ≤lα−ε

≥ d(α/2)T e

)
(75)

≤ P

(
T∑
t=1

1
θ
(t)
ctf ≤lα−ε

≥ (α/2)T

)
(76)

≤ P

(
1

T

T∑
t=1

1
θ
(t)
ctf ≤lα−ε

≥ α− ε
2

+
ε

2

)
(77)

≤ exp

(
−Tε

2

2

)
. (78)

The last step follows from the standard Hoeffding’s inequality. Similarly, we could also show that808

P
(
ĥα(T ) < hα+ε

)
≤ exp

(
−Tε

2

2

)
, P

(
ĥα(T ) > hα−ε

)
≤ exp

(
−Tε

2

2

)
. (79)

Finally, bounding the error rate by δ/4 gives:809

exp

(
−Tε

2

2

)
=
δ

4
⇒ ε =

√
2T−1 ln(4/δ). (80)

Replacing the error rate ε with f(T, δ) =
√

2T−1 ln(4/δ) completes the proof.810

Corollary 3. Fix δ ∈ (0, 1) and ε > 0. With probability at least 1 − δ, the interval [l̂, r̂] =811

CREDIBLEINTERVAL(α, δ, ε) for any α ∈ [0, 1) is bounded by l̂ ∈ [lα−ε, lα+ε] and r̂ ∈ [rα+ε, rα−ε].812

Proof. The statement follows immediately from Lem. 1 by setting
√

2T−1 ln(4/δ) ≤ ε.813
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C Simulation Setups and Additional Experiments814

In this section, we will provide details on the simulation setups and preprocessing of datasets. We815

also conduct additional experiments on other more involved causal diagrams and using skewed816

hyperparameters for prior distributions. For all experiments, we will focus on stick-breaking priors in817

Eq. (8) with hyperparameters α(u)
U = αU/dU and β(u)

U = (dU − u)αU/dU for some real αU > 0.818

This is equivalent to drawing probabilities θU = {θu | ∀u} from a Dirichlet distribution defined as:819

θU ∼ Dirichlet
(
α1

dU
, · · · , αdU

dU

)
, where αi = αU ,∀i = 1, . . . , dU . (81)

All experiments were performed on a computer with 32GB memory, implemented in MATLAB. We820

are in the process of translating the source code to other open-source platforms (e.g., Julia). We will821

release them if the paper is accepted.822

Experiment 1: Frontdoor We collect N = 104 observational data V̄ = {X(n), Y (n),W (n)}Nn=1823

from an SCM compatible with the “Frontdoor” graph in Fig. 3, defined as follows:824

U1 ∼ Unif(0, 1), U2 ∼ N (0, 1),

X ∼ Binomial(1, pX), where pW = U1,

W ∼ Binomial(1, pW ), where pW =
1

1 + exp(−X − U2)
,

Y ∼ Binomial(1, pY ), where pY =
1

1 + exp(W − U1)
.

(82)

In this experiment, we set hyperparameters αU1
= dU1

= 8 and αU1
= dU2

= 4.825

Experiment 2: Instrumental Variables (IV) We collect N = 104 observational samples V̄ =826

{X(n), Y (n), Z(n)}Nn=1 from an SCM compatible with the “IV” graph in Fig. 1a, defined as follows:827

U1 ∼ N (0, 1), U2 ∼ N (0, 1),

Z ∼ Binomial(1, pZ), where pZ =
1

1 + exp(−U1)
,

X ∼ Binomial(1, pX), where pX =
1

1 + exp(−Z − U2)
,

Y ∼ Binomial(1, pY ), where pY =
1

1 + exp(X − U2 + 0.5)
.

(83)

In this experiment, we set hyperparameters αU1
= dU1

= 2 and αU1
= dU2

= 16.828

Experiment 3: Probability of Necessity and Sufficiency (PNS) We collect N = 104 observa-829

tional samples V̄ = {X(n), Y (n)}Nn=1 from an SCM compatible with the “Bow” graph in Fig. 1d,830

defined as follows:831

U ∼ N (0, 1), E ∼ Logistic(0, 1)

X ∼ Binomial(1, pX), where pX =
1

1 + exp(U)
,

Y ← 1X−U+E+0.1>0.

(84)

In this experiment, we set hyperparameters αU = dU = 8.832

Experiment 4: International Stroke Trials (IST) IST was a large, randomized, open trial of833

up to 14 days of antithrombotic therapy after stroke onset [10]. The aim was to provide reliable834

evidence on the efficacy of aspirin and of heparin. The dataset is released under Open Data Commons835

Attribution License (ODC-By). In particular, the treatment X is a pair (i, j) where i = 0 stands for836

no aspirin allocation, 1 otherwise; j = 0 stands for no heparin allocation, 1 for median-dosage, and 2837

for high-dosage. The primary outcome Y ∈ {0, . . . , 3} is the health of the patient 6 months after the838

treatment, where 0 stands for death, 1 for being dependent on the family, 2 for the partial recovery,839

and 3 for the full recovery.840
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Figure 7: DAGs for Experiment 5 (a), Experiment 7 (b), and Experiment 8 (d), containing a treatment
X , an outcome Y , ancestors Z,W , and exogenous variables U .

To emulate the presence of unobserved confounding, we filter the experimental data with selection841

rules f (Z)
X , Z ∈ {0, . . . , 9}, following a procedure in [49]. More specifically, given a collection842

of IST samples {X(n), Y (n), U
(n)
2 }Nn=1 where U (n)

2 is the age of the nth patient. For each data843

point
(
X(n), Y (n), U

(n)
2

)
, we introduce an instrumental variable Z(n) ∈ {0, . . . , 9}. Values of the844

instrument Z(n) for nth patient are decided by845

Z(n) = b10× U1c, where U (n)
1 ∼ Unif(0, 1). (85)

We then check if X(n) satisfies the following condition846

X(n) = b6× pXc, where pX =
1

1 + exp
(
−U (n)

1 × U (n)
2 /100− Z(n)/10

) (86)

If the above condition is satisfied, we keep the data point
(
X(n), Y (n), Z(n), U

(n)
1 , U

(n)
2

)
in the847

dataset; otherwise, the data point is dropped. After this data selection process is complete, we hide848

columns of variables U (n)
1 , U

(n)
2 . Doing so allows us to obtain N = 3× 103 synthetic observational849

samples V̄ =
{
X(n), Y (n), Z(n)

}N
n=1

that are compatible with the “Double bow” diagram of Fig. 1b.850

In this experiment, we set hyperparameters αU1
= 10 and αU2

= 10. As a baseline, we estimate the851

treatment effect E[Yx=(1,0)] = 1.3418 for only assigning aspirin X = (1, 0) from the randomized852

trial data containing 1.9285× 104 subjects.853

C.1 Additional Simulations on Other Causal Diagrams854

We also evaluate our algorithms on various simulated SCM instances in other more involved causal855

diagrams. Overall, we found that simulation results match the findings in the manuscript. For856

identifiable settings (Experiment 5), our algorithms are able to recover the actual, unknown counter-857

factual probabilities. For other more general cases where the target distribution is non-identifiable858

(Experiments 6, 7 and 8), our algorithms consistently dominate state-of-art bounding strategies.859

Experiment 5: Napkin Graph This experiment evaluates our sampling algorithm on interventional860

probabilities that are identifiable from the observational data. In this case, the bounds over the target861

probability should collapse to a point estimate. Consider the “Napkin” graph in Fig. 10a where862

X,Y, Z,W are binary variables in {0, 1}; U1, U2, U3 take values in real R. The identifiability of863

the interventional distribution P (yx) from the observational data P (x, y, w, z) could be derived864

by iteratively applying inference rules of “do-calculus” [33, Thm. 4.3.1]. We collect N = 104865

observational samples V̄ = {X(n), Y (n), Z(n),W (n)}Nn=1 from an SCM defined as follows:866

U1 ∼ N (0, 1), U2 ∼ N (0, 1), U3 ∼ N (0, 1)

W ∼ Binomial(1, pW ), where pW =
1

1 + exp(U1 − U2)
,

Z ∼ Binomial(1, pZ), where pZ =
1

1 + exp(W − U3)
,

X ∼ Binomial(1, pX), where pX =
1

1 + exp(−Z − U1)
,

Y ∼ Binomial(1, pY ), where pY =
1

1 + exp(X − U2 − 0.5)
.

(87)
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(a) Napkin (b) Double bow (c) Triple bow (d) M+BD Graph

Figure 8: Histogram plots for samples drawn from the posterior distribution over target counterfactual
probabilities. For all plots (a - d), ci represents our proposed algorithms; bp stands for Gibbs samplers
using the representation of canonical partitions [2]; θ∗ is the actual counterfactual probability; nb
stands for the natural bounds [30].

In this experiment, we set hyperparameters αU1
= dU1

= 32, αU2
= dU1

= 32, and αU3
=867

dU3
= 4. Fig. 8a shows a histogram containing samples drawn from the posterior distribution of868 (

P (Yx=0 = 1) | V̄
)
. Our analysis reveals that these samples converges to the actual interventional869

probability P (Yx=0 = 1) = 0.6098, which confirms the identifiability of P (yx) in the napkin graph.870

Experiment 6: Double Bow This experiment evaluates our bounding strategy in non-identifiable871

settings where the optimal bounding strategy does not exist. In this case, our proposed algorithm872

should improve over state-of-art bounds. Consider again the “Double Bow” diagram in Fig. 1b873

where X,Y, Z ∈ {0, 1} and U1, U2 ∈ R. We collect N = 104 observational samples V̄ =874

{X(n), Y (n), Z(n)}Nn=1 from an SCM instance defined as follows:875

U1 ∼ N (0, 1), U2 ∼ N (0, 1),

Z ∼ Binomial(1, pZ), where pZ =
1

1 + exp(−U1)
,

X ∼ Binomial(1, pX), where pX =
1

1 + exp(−Z − U1 − U2)
,

Y ∼ Binomial(1, pY ), where pY =
1

1 + exp(X − U2 + 0.5)
.

(88)

In this experiment, we set hyperparameters αU1 = dU1 = 32 and αU2 = dU1 = 32. Fig. 8b shows876

samples drawn from the posterior distribution of
(
P (Yx=0 = 1) | V̄

)
. As a baseline, we also include877

the natural bounds [36, 30] (nb), and posterior samples obtained from the Gibbs sampler using a naïve878

generalization of the discretization procedure (bp) in [2]. Our analysis reveals that all algorithms879

achieve bounds that contain the actual, target causal effect P (Yx=0 = 1) = 0.3954. Our algorithm880

obtains a 100% credible interval lci = 0.3054, rci = 0.4456, which dominates all the other algorithms881

(lbp = 0.1778, rbp = 0.6923, lnb = 0.1949, rnb = 0.6061).882

Experiment 7: Triple Bow Consider the “Triple Bow” diagram in Fig. 10b whereX,Y, Z ∈ {0, 1}883

and U1, U2, U3 ∈ R. We collect N = 104 observational samples V̄ = {X(n), Y (n), Z(n)}Nn=1 from884

an SCM defined as follows:885

U1 ∼ N (0, 1), U2 ∼ N (0, 1), U3 ∼ N (0, 1),

Z ∼ Binomial(1, pZ), where pZ =
1

1 + exp(−U1)
,

W ∼ Binomial(1, pW ), where pW =
1

1 + exp(−Z − U1 − U2)
,

X ∼ Binomial(1, pX), where pX =
1

1 + exp(−W − U2 − U3)
,

Y ∼ Binomial(1, pY ), where pY =
1

1 + exp(X − U3 − 0.5)
.

(89)

In this experiment, we set hyperparameters αU1 = 0.001× dU1 = 0.032 and αU2 = 0.001× dU1 =886

0.032. Fig. 8c shows samples drawn from the posterior distribution of
(
P (Yx=0 = 1) | V̄

)
. As a887
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(a) Flat (b) Skewed (c) Flat (d) Skewed

Figure 9: Prior distributions for (a, b) Experiment 9 and (c, d) Experiment 10.

baseline, we also include the natural bounds [36, 30] (nb), and posterior samples obtained from888

the Gibbs sampler using a naïve generalization of the discretization procedure (bp) in [2]. Our889

analysis reveals that while all algorithms achieve valid bounds (lbp = 0.1964, rbp = 0.8148, lnb =890

0.3179, rnb = 0.7105), our algorithm obtains a 100% credible interval lci = 0.5608, rci = 0.6515,891

which is the tightest bound over the target probability P (Yx=0 = 1) = 0.6098.892

Experiment 8: M+BD Graph Consider the “M+BD” graph in Fig. 10c where X,Y, Z ∈ {0, 1}893

and U1, U2 ∈ R. In this case, the counterfactual distribution P (yx) is non-identifiable due to the894

presence of the collider path X ← U1 → Z ← U2 → Y . We collect N = 104 observational samples895

V̄ = {X(n), Y (n), Z(n)}Nn=1 from an SCM instance defined as follows:896

U1 ∼ N (0, 1), U2 ∼ N (0, 1),

Z ∼ Binomial(1, pZ), where pZ =
1

1 + exp(−U1)
,

X ∼ Binomial(1, pX), where pX =
1

1 + exp(−Z − U1 − U2)
,

Y ∼ Binomial(1, pY ), where pY =
1

1 + exp(X − Z − U2)
.

(90)

In this experiment, we set hyperparameters αU1 = 0.01×dU1 = 0.32 and αU2 = 0.01×dU1 = 0.32.897

Fig. 8d shows samples drawn from the posterior distribution of
(
P (Yx=0 = 1) | V̄

)
. As a baseline,898

we also include the natural bounds [36, 30] (nb), and posterior samples obtained from the Gibbs899

sampler using a naïve generalization of the discretization procedure (bp) in [2]. Our analysis reveals900

that all algorithms achieve bounds that contain the actual, target causal effect P (Yx=0 = 1) = 0.5910.901

Our algorithm obtains a 100% credible interval lci = 0.4247, rci = 0.6345, which dominates all the902

other algorithms (lbp = 0.2140, rbp = 0.8344, lnb = 0.2230, rnb = 0.8296).903

C.2 The Effect of Sample Size and Prior Distributions904

We will evaluate our algorithms using skewed prior distributions. We found that increasing the size905

of observational samples was able to wash away the bias introduced by prior distributions. That is,906

despite the influence of prior distributions, our algorithms eventually converge to sharp bounds over907

unknown counterfactual probabilities as the number of observational sample grows (to infinite).908

Experiment 9: Frontdoor Consider first the “Frontdoor” graph in Fig. 3 where the counterfactual909

distribution P (yx) is identifiable from the observational data P (x, y, w). The detailed parametrization910

of the underlying SCM is described in Eq. (82). We present our results using two different priors. The911

first is a flat (uniform) distribution over probabilities of U1 and U2 respectively, i.e., αU1 = dU1 = 8912

and αU1 = dU2 = 4. The second is skewed to present a strong preference on the deterministic913

relationships between X and Y ; in this case, α1 = 300 × dUi , i = 1, 2, for prior distributions914

associated with both U1 and U2. Figs. 9a and 9b shows the distribution of P (Yx=0) induced by these915

two priors (in the absence of any observational data). We see that the skewed prior of Fig. 9b assigns916

almost all weights to deterministic probabilities P (Yx=0 = 1) = 1 or P (Yx=0 = 0) = 1.917

Fig. 10 shows posterior samples obtained by our Gibbs sampler when applied to observational data of918

various sizes, using both the flat prior (Figs. 10a to 10d) and the skewed prior (Figs. 10e to 10h). Both919

priors eventually collapse to the actual, unknown probability P (Yx=0 = 1) = 0.5085. As expected,920

more observational data are needed for the skewed prior before the posterior distribution converges,921

since the skewed prior is concentrated further away from the value 0.5085 than the uniform prior.922
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(a) N = 10 (b) N = 102 (c) N = 103 (d) N = 104

(e) N = 10 (f) N = 102 (g) N = 103 (h) N = 104

Figure 10: Histogram plots for samples drawn from the posterior distribution over probability
P (Yx=0 = 0) in “Frontdoor” graph of Fig. 3 using two priors. (a - d) shows the posteriors using
the flat prior and observational data of size N = 10, 102, 103 and 104 respectively; (e - h) shows the
posetriors using the skewed prior and the same respective observational datasets.

(a) N = 10 (b) N = 102 (c) N = 103 (d) N = 104

(e) N = 10 (f) N = 102 (g) N = 103 (h) N = 104

Figure 11: Histogram plots for samples drawn from the posterior distribution over probability
P (Yx=0 = 0) in “IV” graph of Fig. 1a using two priors. (a - d) shows the posteriors using the
flat prior and observational data of size N = 10, 102, 103 and 104 respectively; (e - h) shows the
posetriors using the skewed prior and the same respective observational datasets.

Experiment 10: IV Consider the “IV” graph in Fig. 1b where X,Y, Z are binary variables in923

{0, 1}. The detailed parametrization of the underlying SCM is described in Eq. (83). In this case,924

the counterfactual distribution P (yx) is not identifiable from the observational data P (x, y, z) [5].925

Sharp bounds over P (yx) from P (x, y, z) were derived in [2] (labelled as opt). We present our926

results using two different priors. The first is a flat (uniform) distribution over probabilities of U1927

and U2 respectively, i.e., αU1 = dU1 = 2 and αU1 = dU2 = 16. The second is skewed to present a928

strong preference on the deterministic relationships between X and Y ; in this case, α1 = 300× dUi ,929

i = 1, 2, for prior distributions associated with both U1 and U2. Figs. 9c and 9d shows the distribution930

of P (Yx=0) induced by these two prior distributions (in the absence of any observational data).931

We see that the skewed prior of Fig. 9d assigns almost all weights to deterministic probabilities932

P (Yx=0 = 1) = 1 or P (Yx=0 = 0) = 1.933

Fig. 11 shows posterior samples obtained by our Gibbs sampler when applied to observational data of934

various sizes, using both the flat prior (Figs. 11a to 11d) and the skewed prior (Figs. 11e to 11h). Our935

analysis reveals that 100% credible intervals of both priors eventually converge to the sharp IV bound936

l = 0.1468, r = 0.6617 over the unknown counterfactual probability P (Yx=0 = 1) = 0.3954. It is937

interesting to note that, in this experiment, while the choice of prior distribution does not influence938

the final counterfactual bound, it still has an effect on the shape of posterior distributions.939
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D Naïve Generalization of (Balke and Pearl, 1995)940

In this section, we will describe a naïve generalization of the canonical partitioning approach in [3]941

to the causal diagram of Fig. 1b. In particular, given any SCM M compatible with Fig. 1b, we will942

construct a discrete SCM N compatible with the diagram of Fig. 1c such that M and N coincide in943

all counterfactual distributions P ∗.944

We first introduce some useful notations. Let fZ , fX , fY denote functions associated with Z,X, Y945

in SCM M . Let constants h(1)
Z = 0 and h(2)

Z = 1. Note that given any U1 = u1, fZ(u1) must946

equate to a binary value in {0, 1}. We define a partition U (i)
Z , i = 1, 2, over domains of U1 such that947

u1 ∈ U (i)
Z if and only if fZ(u1) = h

(i)
Z . Given any u1, u2, fX(·, u1, u2) defines a function mapping948

from domains of Z to X . Let functions in the hypothesis class ΩZ 7→ ΩX be ordered by949

h
(1)
X (z) = 0, h

(2)
X (z) = z, h

(3)
X (z) = ¬z, h

(4)
X (z) = 1. (91)

Similarly, we define a partition U (i)
X , i = 1, 2, 3, 4 over the domain ΩU1

× ΩU2
such that (u1, u2) ∈950

U (i)
X if and only if the induced function fX(·, u1, u2) = h

(i)
X . Finally, let functions mapping from951

domains of X to Y be ordered by952

h
(1)
Y (x) = 0, h

(2)
Y (x) = x, h

(3)
Y (x) = ¬x, h

(4)
Y (x) = 1. (92)

For any u2, the induced function fY (·, u2) must coincide with only of the above elements. Let953

U (i)
Y , i = 1, 2, 3, 4 be a partition over ΩU2 such that u2 ∈ U (i)

Y if any only if fY (·, u2) = h
(i)
Y .954

We now construct a discrete SCM N compatible with the casusal diagram of Fig. 1c. Let the955

exogenous variable U in N be a tuple (UZ , UX , UY ), where UZ ∈ {1, 2}, UX ∈ {1, 2, 3, 4} and956

UY ∈ {1, 2, 3, 4}. For any uZ , values of Z are decided by h(uZ)
Z where h(1)

Z = 0, h(2)
Z = 1. Given957

input z, uX , values of X are given by958

x← ξ
(z,uX)
X = h

(uX)
X (z), (93)

where h(i)
X (z), i = 1, 2, 3, 4, are functions defined in Eq. (91). Similarly, given input x, uY , values of959

Y are given by960

y ← ξ
(x,uY )
Y = h

(uY )
Y (x), (94)

where h(i)
Y (x), i = 1, 2, 3, 4, are functions defined in Eq. (92). Finally, we define the exogenous961

probability P (uZ , uX , uY ) in N as the joint probability over partitions U (i)
Z ,U (j)

X ,U (k)
Y , i = 1, 2,962

j = 1, 2, 3, 4, k = 1, 2, 3, 4. That is,963

PN (UZ = i, UX = j, UY = k) = PM

(
(U1, U2) ∈ U (i)

Z ∧ U
(j)
X ∧ U

(k)
Y

)
. (95)

It follows from the decomposition in Lem. 4 that N and M must coincide in all counterfactual964

distributions over binary X,Y, Z. The total cardinality of the exogenous domains in N is |ΩUZ ×965

ΩUX × ΩUY | = 2× 4× 4 = 32.966

However, the construction for the reverse direction does not hold true. That is, given an arbitrary967

discrete N compatible with the causal diagram in Fig. 1c, one could not construct an SCM M com-968

patible with the “Double bow” diagram in Fig. 1b such that M and N coincide in all counterfactual969

distributions. To witness, consider a discrete SCM N where P (UZ = UY ) = 1, i.e., variables970

UZ and UY are always the same, taking values in {1, 2}. Since in SCM N , values of Z(uZ) and971

Yx=1(uY ) are given by972

Z(uZ) = h
(uZ)
Z = 0× 1uZ=1 + 1× 1uZ=2,

Yx=1(uY ) = h
(uY )
Y (1) = 0× 1uY =1 + 1× 1uY =2.

This means that counterfactual variables Z and Yx=0 must coincide, i.e., P (Z = Yx=1) = 1.973

However, for any SCM M compatible with Fig. 1b, counterfactual variables Z and Yx must be974

independent due to the independence restriction [33, Ch. 7.3.2], which is a contradiction.975
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E Polynomial Optimization for Bounding Counterfactual Probabilities976

In this section, we demonstrate how the optimization problem in Eq. (6) could be reduced to an977

equivalent polynomial program. The main challenge here is to write the counterfactual distribution978

P (yx, . . . ,zw) in discrete SCMs as a polynomial function of parameters ξ(paV ,uV )
V , θu. Since for979

binary a, b ∈ {0, 1}, a ∧ b = ab, this means that counterfactual distributions P (yx, . . . ,zw) in a980

discrete SCM could be written as:981

P (yx, . . . ,zw) =
∑
U∈U

∑
u=1,...,dU

1Yx(u)=y . . .1Zw(u)=z

∏
U∈U

θu. (96)

For convenience, we will represent parameters ξ(paV ,uV )
V , for every V ∈ V , any paV , uV , as a binary982

sequence
{
ξ

(paV ,uV )
v | ∀v ∈ ΩV

}
such that ξ(paV ,uV )

v ∈ {0, 1} and
∑
v∈DV ξ

(paV ,uV )
v = 1. The983

following proposition translates indicator functions of the form 1Yx(u)=y into a polynomial function984

with regard to parameters ξ(paV ,uV )
v , θu.985

Lemma 8. For a discrete SCM M = 〈V ,U ,F , P 〉, for anyX,Y ⊆ V , fix x,y,u. The indicator986

function 1Yx(u)=y could be written as987

1Yx(u)=y =
∏
Y ∈Y

1Yx(u)=y, (97)

where 1Yx(u)=y =


1y=xY if Y ∈X∑
paY

ξ(paY ,uY )
y 1{Vx(u)|∀V ∈PaY }=paY

otherwise (98)

Proof. By the basic property of indicator function, we must have, for any Y ,X ⊆ V ,988

1Yx(u)=y =
∏
Y ∈Y

1Yx(u)=y. (99)

Among quantities in the above equation, if Y ⊆ X , 1Yx(u)=y is equal to 1xY =y where xY is the989

assignment to variable Y in constants x. Otherwise, for Y 6∈X , Eq. (4) implies990

1Yx(u)=y = 1
ξ
({Vx(u)|V∈PaY },uY )
Y =y

(100)

The indicator 1Yx(u)=y could be further written as:991

1Yx(u)=y = ξ({Vx(u)|V ∈PaY },uY )
y =

∑
paY ∈ΩPaY

ξ(paY ,uY )
y 1{Vx(u)|∀V ∈PaY }=paY

(101)

The last step follows from the fact that values of counterfactual variables {Vx(u) | ∀V ∈ PaY }992

given U = u must equate to an element in the domain ΩPaY .993

Recursively applying Lem. 8 to indicator functions 1Yx(u)=y, . . . ,1Zw(u)=z in Eq. (96) allows us994

to write any counterfactual distribution P (yx, . . . ,zw) as a polynomial function w.r.t. parameters995

θu, ξ
(paV ,uV )
v . Therefore, the optimization problem in Eq. (6) is reducible to a series of polynomial996

programs which maximizes the objective P (yx, . . . ,zw) subject to the observational constraints in997

P (v) and other basic parameter constraints over θu, ξ
(paV ,uV )
v . We will illustrate our algorithm using998

various examples, summarized as follows.999

Example 1: Double Bow Consider again the “Double bow” diagram in Fig. 1b. We could derive a1000

tight bound [l, r] over the counterfactual probability P (z, xz′ , yx′) from the observational distribution1001
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P (x, y, z) by solving the following polynomial program:1002

min /max P (z, xz′ , yx′) =

d∑
u1,u2=1

ξ(u1)
z ξ(z′,u1,u2)

x ξ(x′,u2)
y θu1θu2

subject to P (x, y, z) =

d∑
u1,u2=1

ξ(u1)
z ξ(z,u1,u2)

x ξ(x,u2)
y θu1θu2

∀z, u1, ξ(u1)
z

(
1− ξ(u1)

z

)
= 0,

∑
z

ξ(u1)
z = 1,

∀x, z, u1, u2, ξ(z,u1,u2)
x

(
1− ξ(z,u1,u2)

x

)
= 0,

∑
x

ξ(z,u1,u2)
x = 1,

∀y, x, u2, ξ(x,u2)
y

(
1− ξ(x,u2)

y

)
= 0,

∑
y

ξ(x,u2)
y = 1,

∀u1, 0 ≤ θu1 ≤ 1,
∑
u1

θu1 = 1,

∀u2, 0 ≤ θu2
≤ 1,

∑
u2

θu2
= 1.

(102)

where the cardinality d = |ΩZ | × |ΩZ 7→ ΩX | × |ΩX 7→ ΩY |.1003

Example 2: IV Consider the “IV” diagram in Fig. 1a. We could derive a tight bound [l, r] over1004

the counterfactual probability P (y′x′ , x, y) ≡ P (Yx=x′ = y′, X = x, Y = y) from the observational1005

distribution P (x, y, z) by solving the following polynomial program:1006

min /max P (y′x′ , x, y) =

d1∑
u1=1

d2∑
u2=1

ξ
(x′,u2)
y′ ξ(x,u2)

y

∑
z

ξ(z,u2)
x ξ(u1)

z θu1θu2

subject to P (x, y, z) =

d1∑
u1=1

d2∑
u2=1

ξ(u1)
z ξ(z,u2)

x ξ(x,u2)
y θu1θu2

∀z, u1, ξ(u1)
z

(
1− ξ(u1)

z

)
= 0,

∑
z

ξ(u1)
z = 1,

∀x, z, u2, ξ(z,u2)
x

(
1− ξ(z,u2)

x

)
= 0,

∑
x

ξ(z,u2)
x = 1,

∀y, x, u2, ξ(x,u2)
y

(
1− ξ(x,u2)

y

)
= 0,

∑
y

ξ(x,u2)
y = 1,

∀u1, 0 ≤ θu1
≤ 1,

∑
u1

θu1
= 1,

∀u2, 0 ≤ θu2 ≤ 1,
∑
u2

θu2 = 1.

(103)

where the cardinality d1 = |ΩZ | and d2 = |ΩZ 7→ ΩX | × |ΩX 7→ ΩY |.1007

Example 3: Bow Consider the “Bow” diagram in Fig. 1d. We could derive a tight bound [l, r]1008

over the counterfactual probability P (yx, y
′
x′) ≡ P (Yx = y, Yx=x′ = y′) from the observational1009

32



distribution P (x, y) by solving the following polynomial program:1010

min /max P (yx, y
′
x′) =

d∑
u=1

ξ(x,u)
y ξ

(x′,u)
y′ θu

subject to P (x, y) =

d∑
u=1

ξ(u)
x ξ(x,u)

y θu

∀x, u, ξ(u)
x

(
1− ξ(u)

x

)
= 0,

∑
x

ξ(u)
x = 1,

∀y, x, u, ξ(x,u)
y

(
1− ξ(x,u)

y

)
= 0,

∑
y

ξ(x,u)
y = 1,

∀u, 0 ≤ θu ≤ 1,
∑
u

θu = 1

(104)

where the cardinality d = |ΩZ 7→ ΩX |.1011

Example 4: Frontdoor Consider the “Frontdoor” diagram in Fig. 3. We could derive a tight1012

bound [l, r] over the interventional probability P (yx) from the observational distribution P (x, y, z)1013

by solving the following polynomial program:1014

min /max P (yx) =

d1∑
u1=1

d2∑
u1=1

∑
w

ξ(w,u1)
y ξ(x,u2)

w θu1θu2

subject to P (x, y, w) =

d∑
u1=1

d2∑
u1=1

∑
w

ξ(u)
x ξ(w,u1)

y ξ(x,u2)
w θu1θu2

∀x, u1, ξ(u)
x

(
1− ξ(u)

x

)
= 0,

∑
x

ξ(u)
x = 1,

∀y, w, u1, ξ(w,u1)
y

(
1− ξ(w,u1)

y

)
= 0,

∑
y

ξ(w,u1)
y = 1,

∀w, x, u2, ξ(x,u2)
w

(
1− ξ(x,uw)

w

)
= 0,

∑
w

ξ(x,uw)
w = 1,

∀u1, 0 ≤ θu1
≤ 1,

∑
u1

θu1
= 1,

∀u2, 0 ≤ θu2 ≤ 1,
∑
u2

θu2 = 1.

(105)

where the cardinality d1 = |ΩX | × |ΩW 7→ ΩY | and d2 = |ΩX 7→ ΩW |.1015
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F Derivations of Complete Conditional Distributions1016

In this section, we will provide detailed derivations for complete conditional distributions used in our1017

proposed Gibbs samplers in Sec. 3.1018

Sampling P (ū | v̄,θ, ξ). Variables U (n),V (n), n = 1, . . . , N , are mutually independent given1019

parameters θ, ξ. This implies1020

P (ū | v̄,θ, ξ) =
∏
U∈U

P
(
u(n) | v̄,θ, ξ

)
(106)

=
∏
U∈U

P
(
u(n) | v(n),θ, ξ

)
(107)

The complete conditional for
(
U (n) | V (n),θ, ξ

)
, n = 1, . . . , N , is given by1021

P
(
u(n) | v(n),θ, ξ

)
∝ P

(
u(n)v(n) | θ, ξ

)
(108)

∝
∏
V ∈V

P
(
v(n) | pa(n)

V , u
(n)
V ,θ, ξ

) ∏
U∈U

P
(
u

(n)
V | θ, ξ

)
. (109)

Among quantities in the above equation, P
(
u

(n)
V | θ, ξ

)
= θu for u = u

(n)
V ; and1022

P
(
v(n) | pa(n)

V , u
(n)
V ,θ, ξ

)
= 1

ξ
(pa

(n)
V ,u

(n)
V )

V =v(n)

. (110)

Sampling P (ξ,θ | v̄, ū). For every exogenous variable U ∈ U , θU = {θu | ∀u}. For every1023

endogenous variable V ∈ V , ξV =
{
ξ

(paV ,uV )
V | ∀paV , uV

}
. Since parameters ξV , for every1024

V ∈ V , θU , for every U ∈ U are mutually independent, and they do not have common child nodes,1025

we must have1026

P (ξ,θ | v̄, ū) =
∏
V ∈V

P (ξV | v̄, ū)
∏
U∈U

P (θU | v̄, ū) . (111)

The above independence relationships imply that we could draw samples of posterior distributions1027

over
(
ξV | V̄ , Ū

)
and

(
θU | V̄ , Ū

)
for every V ∈ V , U ∈ U separately.1028

The complete conditional over
(
ξV | V̄ , Ū

)
, defined in Eq. (10), follows from the fact that in discrete1029

SCMs, the nth observation of variable V ∈ V is decided by v(n) ← ξ
(paV ,uV )
V given pa

(n)
V = paV ,1030

u
(n)
V = uV . The complete conditional over

(
θU | V̄ , Ū

)
in Eq. (11), follows from the conjugacy of1031

the generalized Dirichlet distribution to multinomial sampling (e.g., see [22, Sec. 5.2]).1032

Sampling P
(
u(n) | v̄, ū−n

)
. At each iteration, draw U (n) from the conditional given by1033

P
(
u(n) | v̄, ū−n

)
∝
∏
V ∈V

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

) ∏
U∈U

P
(
u(n) | v̄−n, ū−n

)
. (112)

Among quantities in the above equation, for every V ∈ V ,1034

P
(
v(n) | pa(n)

V , u
(n)
V , v̄−n, ū−n

)
=

∑
ξ
(pa

(n)
V ,u

(n)
V )

V ∈ΩV

1
ξ
(pa

(n)
V ,u

(n)
V )

V =v(n)

P

(
ξ

(
pa

(n)
V ,u

(n)
V

)
V | v̄−n, ū−n

)
.

(113)

The complete conditional distribution over
(
ξ

(paV ,uV )
V | V̄−n, V̄−n

)
, ∀paV , uV , follows from the1035

definition of discrete SCMs, i.e., the nth observation of variable V ∈ V is decided by v(n) ←1036

ξ
(paV ,uV )
V given pa

(n)
V = paV , u(n)

V = uV . Formally,1037

P
(
ξ

(paV ,uV )
V | V̄−n, V̄−n

)
=

1ξ(paV ,uV )
V =v(i)

if ∃i 6= n, pa
(i)
V = paV , u

(i)
V = uV ,

1/|ΩV | otherwise.
. (114)
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Marginalizing over the domain ΩV in Eq. (113) gives the complete conditional in Eq. (13). For every1038

U ∈ U , the complete conditional of P
(
u(n) | v̄−n, ū−n

)
, defined in Eq. (14), follows from the1039

Pólya urn characterization of generalized Dirichlet distributions (e.g., see [22, Sec. 4]).1040
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