
DISCOVERING LOGIC-INFORMED INTRINSIC REWARDS
TO EXPLAIN HUMAN POLICIES - SUPPLEMENTARY MA-
TERIAL

Anonymous authors
Paper under double-blind review

1 THE MAXIMUM ENTROPY POLICY

In this appendix, we present proofs for the theorems that demonstrate how a policy function can
be monotonically optimized with respect to the maximum entropy objective. Recall the objective
function of Max-Entropy RL:

π∗ = argmax
π

∞∑
t=0

γtE(st,at)∼ρπ
[r (st,at) + αH (π (st, ·)) | s0 = s] . (1)

This objective corresponds to maximizing the discounted expected reward and entropy for future
states originating from every state-action tuple (st,at) weighted by its probability ρπ under the
current policy. We begin by defining the Q-function for any given policy π. This Q-value represents
the expected total reward, taking into account both rewards and entropy, under the policy π:

Qπ(s,a) = r0 + E

[ ∞∑
t=1

γt (rt + αH (π (st, ·)))

]
. (2)

The discounted maximum entropy policy objective can now be defined as:

J(π) =
∑
t

E(st,at)∼ρπ
[Qπ(st,at) + αH (π (st, ·))] . (3)

If we greedily maximizes the sum of entropy and value with one-step look-ahead, then we obtain π̂
from π:

Ea∼π [Q
π(s,a)] + αH (π (s, ·)) ≤ Ea∼π̂ [Q

π(s,a)] + αH (π̂ (s, ·)) . (4)

When we assume that the entropy parameter α = 1, it is worth noting that:

H (π (s, ·)) + Ea∼π [Q
π(s,a)] = −DKL [π (s, ·) ∥π̂ (s, ·)] + log

∫
exp (Qπ (s,a)) da. (5)

Then we can show that Q is bounded for any s:

Qπ(s,a) = Es1 [r0 + γ(H (π (s1, ·)) + Ea1∼π [Q
π(s1,a1)]]

≤ Es1 [r0 + γ(H (π̂ (s1, ·)) + Ea1∼π̂ [Q
π(s1,a1)]]

= Es1 [r0 + γ (H (π̂ (s1, ·)) + r1)] + γ2Es2 [H (π (s2, ·)) + Ea2∼π [Q
π (s2,a2)]]

≤ Es1 [r0 + γ (H (π̂ (s1, ·)) + r1)] + γ2Es2 [H (π̂ (s2, ·)) + Ea2∼π̂ [Q
π (s2,a2)]]

= Es1,s2,a2∼π̂

[
[r0 + γ (H (π̂ (s1, ·)) + r1) + γ2 (H (π̂ (s2, ·)) + r2)

]
+ γ3Es3 [H (π̂ (s3, ·)) + Ea3∼π̂ [Q

π (s3,a3)]]

...

≤ Eτ∼π̂

[
r0 +

∞∑
t=1

γt (H (π̂ (st, ·)) + rt)

]
= Qπ̂ (s,a) . (6)
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So when we start with an arbitrary policy π0 and define the policy iteration as:

πi(s,a) =
exp

(
1
αQ

πi(s,a)
)∫

a′∈A exp
(
1
αQ

πi (s,a′)
)
da′

. (7)

Then Qπi(s,a) optimized monotonically, so πi will converge to π∞, and the optimal policy must
satisfy this energy-based Boltzmann distribution.

2 TRANSFORMER-BASED SYMBOLIC TREE GENERATOR

We generate the symbolic tree by predicting the predicates of the rules. Given the state-action
trajectory and the currently generated partial abstract symbolic tree, our model can calculate the
probabilities of the predicate to expand this node, as shown in Eq. (6) in the main paper.

2.1 ABSTRACT SYMBOLIC TREE READER

We design an abstract symbolic tree reader to model the structure of the generated partial symbolic
tree. While our trees are generated by predicting sequences of predicates, these predicates alone
lack a concrete representation of the tree’s structure, making them insufficient for predicting the next
predicate. Therefore, we apply the abstract symbolic tree reader to incorporate both the predicted
predicates and the tree’s structural information. It contains a stack of blocks, with the first block
containing three distinct sub-layers previously introduced: self-attention, the gating mechanism,
and the convolution layer. A residual connection is employed between each pair of consecutive
sub-layers, following the approach outlined in He et al. (2016), and is subsequently followed by layer
normalization.

Self-Attention Within our Transformer block, multi-head attention is utilized to effectively capture
long-range dependencies and facilitate the learning of non-linear features. In the case of a sequence
of mapping predicates denoted as X(1), X(2), . . . , X(n), their embeddings are obtained through a
lookup table. Additionally, positional encoding is employed to encode positional information, which
is computed as follows:

pj,i[2k] = sin

(
i+ j

100002k/j

)
, (8)

pj,i[2k + 1] = sin

(
i+ j

100002k/j

)
, (9)

Here, pi,j [·] refers to a specific dimension within the vector pi,j . In this context, j represents the
jth block and k represents the embedding size. In the initial reader block, the input consists of the
sum of the table-lookup embedding and the position embedding. In subsequent blocks, the input
is the vector sum of the lower Transformer block’s output and the position embedding specific to
that block. The self-attention mechanism employed here follows the same architecture as described
in the original Transformer Vaswani et al. (2017). We denote the output of the self-attention as
Xself

(1),X
self
(2), . . . ,X

self
(n).

Gating Mechanism Character embeddings are incorporated after self-attention, and the softmax
weight k(c)

(i) for character embeddings is obtained through a transformation from character embedding

X(i). The softmax weight k(y)
(i) for the Transformer’s output is derived from a linear transformation

of Xself
(i) . Additionally, the control vector q(i) is obtained from Xself

(i) through a linear transformation.
The gate can be computed as follows:

[α
(y)
(i),t, α

(c)
(i),t] = softmax{qT

(i)k
(y)
(i) ,q

T
(i)k

(c)
(i)}, (10)

α
(y)
(i),t and α

(c)
(i),t are used to weigh the features of the Transformer’s layer c(y)(i) and the features of

character embeddings c(c)i , which are transformed from Xself
(i) and X

(c)
(i) , respectively. So the output of
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gating can computed as follows:

g(i),t = [α
(y)
(i),tc

(y)
(i) , . . . , α

(c)
(i),tc

(c)
(i) ] (11)

g[(i),·] = [Xgate
(1) , · · · ,X

gate
(n) ], (12)

Convolution Following the gating process, two convolutional layers are utilized to capture local
features surrounding each predicate and produce the following output:

X(conv,l) = W (conv,l)[X
(conv,l−1)
(i−(w−1)/2); · · · ;X

(conv,l−1)
(i+(w−1)/2)]. (13)

Here, l represents the convolutional layer, and w denotes the window size. X(conv,l) corresponds to
the output of the l-th convolutional layer. It is important to note that the input to the first layer is the
output of the gating process, denoted as Xgate

(i) .

To encompass various aspects of information, we represent the tree as a sequence of predicates. We
then encode the rules using an attention mechanism and subsequently employ a tree convolution
layer to amalgamate the encoded representation of each node with its ancestors. Suppose we have
a sequence of predicates X(1), X(2), . . . , X(P ), where P denotes the sequence’s length. Within the
Abstract Symbolic Tree Reader, we generate four types of embeddings:

Predicate sequence embedding. To encode the information of predicates, we use table-lookup
embeddings to present these P predicates as real-valued vectors X(1),X(2), . . . ,X(P ).

Predicate definition embedding. The former embedding represents the predicates as an atomic token
and loses the information of the predicates’ content, so we introduce predicate definition embedding
here. For a symbolic predicate i : α → β1, . . . , βK , where α is the parent node and β1, . . . , βK

are child nodes (which can be terminal or non-terminal symbols), the index i is the predicate’s ID.
We encode the predicate content as a vector Xc using a fully connected layer with inputs being the
table-lookup embeddings α,β1, · · · ,βK of the respective symbols, and the sequence is padded to
a maximum length. The predicate definition features X(p)

(1),X
(p)
(2), . . . ,X

(p)
(P ) are then computed by

another fully-connected layer as follows:

X
(p)
(i) = W (p)[X(i);Xc;α]. (14)

Here, X(i) represents the table-lookup embedding of the predicate X(i) in the symbolic tree, while
Xc represents the content-encoded predicate representation.

Position embeddings. Position embeddings are computed as in Eq. (8), representing the position of
each predicate within the sequence X(1), X(2), . . . , X(P ).

Depth embeddings. As position embeddings may not capture the position of a predicate within
the symbolic tree, we introduce depth embedding. Similar to predicate definition embedding, we
represent the depth of the predicate based on its parent node without the content embedding.

These embeddings are input into the reader, and after passing through four distinct sub-layers, they
are transformed into X

(ast)
(1) ,X

(ast)
(2) , . . . ,X

(ast)
(P ) . In contrast to the first block, we incorporate a

cross-attention sub-layer and transform the convolution layer into a tree convolution layer. The
cross-attention sub-layer is informed of the input trajectory, facilitated by multi-head attention. The
tree-convolution layer is used to amalgamate information about a node and its ancestors. Traditional
Transformer architectures struggle to maintain the relationship between two nodes that are far apart
in the rule but close in structure. Further details are shown below.

Cross-Attention Incorporating information from the input trajectory is essential. Therefore, we
involve the output of the trajectory reader here. This is achieved through a multi-head attention
mechanism, following the same approach as the attention mechanism in the Transformer decoder’s
attention to its encoder.

Tree Convolution Utilizing a traditional convolutional layer to effectively amalgamate information
from a node with its ancestors poses challenges. To address this issue, we treat the symbolic tree as a
graph and employ an adjacency matrix denoted as M to represent the directed relationships within
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the graph. When one predicate X(i) serves as the parent of X(j), it is represented by M(ji) = 1.
Assuming the outputs of the preceding layer are X(1), . . . ,X(P ), we can ascertain the parents of
these nodes through matrix multiplication with M :

[X
(parent)
(1) , · · · ,X(parent)

(P ) ] = [X(1), · · · ,X(P )]M. (15)

Here, X(parent)
(i) represents the parent of the ith node. It’s important to note that the father of the root

node is the padded root node. The tree-based convolution window applied to the current sub-tree is
given by:

X(tconv,l) = f(W (tconv,l)
[
X(tconv,l−1);X(tconv,l−1); . . . ;X(tconv,l−1)Mw−1

]
). (16)

where W (tconv,l) is the wighrs of the convolutional layer. and w is the window size. l is the layer of
these convolutional layers. Similar to the convolution layer in the trajectory reader, the input of the
first tree convolution layer is the output of the attention layer.

2.2 DECODER OF SYMBOLIC TREE GENERATOR

Our final component is a decoder that integrates information from generated logic rules with the
state-action trajectory description and predicts the next predicate. It consists of a stack of blocks, each
containing several sub-layers. Each sub-layer is surrounded by a residual connection followed by
layer normalization. The decoder treats the non-terminal node to be expanded as a query, represented
as a path from the root to the node to be expanded. These nodes in the path are represented as
real-valued vectors, then a fully connected layer is applied to these vectors and outputs a path of
the symbolic tree. Then two attention layers were applied to integrate the outputs of the first block
X

(sat)
(1) ,X

(sat)
(2) , . . . ,X

(sat)
(n) and the tree convolutional block X

(ast)
(1) ,X

(ast)
(2) , . . . ,X

(ast)
(P ) . Finally, two

fully connected layers were used to extract features for prediction.

3 Q-FUNCTION WITH RESPECT TO THE ANCHOR ACTION

To begin, let’s isolate the case where t = 0 from the summation in the value function and derive the
following expression:

V (s) = E [r(s,A0) + αH (π∗ (s, ·))] +
∞∑
t=1

γtE [r (St,At) + αH (π∗ (St, ·))] . (17)

By the definition of Q-function in the Eq. (2), we can get:

V (s) = E [Q (s,A)] + αH (π∗ (s, ·)) . (18)

where the expectation is over the action following the optimal policy Eq. (2) in the main paper. Next,
by the definition of expectation and information entropy, we can derive

V (s) =

∫
a∈A

Q (s,a)π∗ (s,a) da− α

∫
a∈A

log (π∗ (s,a))π∗ (s,a) da

=

∫
a∈A

Q (s,a)π∗ (s,a) da− α

∫
a∈A

Q (s,a)

α
π∗ (s,a) da

+ α

∫
a∈A

log

[∫
a′∈A

exp

(
Q (s,a′)

α

)
da′
]
π∗ (s,a) da

= α log

[∫
a′∈A

exp

(
Q (s,a′)

α

)
da′
]

= α log

[∫
a∈A

exp

(
Q (s,a)

α

)
da

]
. (19)
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Then, we consider a anchor action aA, and extract α log

[
exp

(
Q(s,aA)

α

)]
from Eq. (19):

V (s) = α log

∫a∈A exp
(

Q(s,a)
α

)
da

exp
(

Q(s,aA)
α

)
+ α log

[
exp

(
Q
(
s,aA

)
α

)]

= α log

(
1

π∗ (s,aA)

)
+Q

(
s,aA

)
= −α log

(
π∗ (s,aA))+Q

(
s,aA

)
. (20)

Then according to the Theorem 2. in Haarnoja et al. (2017), we have

Q (s,a) = r (s,a) + γE [V (s′)] . (21)

Finally, by taking Eq. (20) into Eq. (21), we get the connection:

Q(s,a) = r (s,a) + γEs′
[
−α log(π∗(s′,aA)) +Q(s′,aA) | s,a

]
. (22)

4 DATASET DESCRIPTION

BlocksWorld. In this environment, the agent will learn how to stack the blocks into certain styles,
that are widely used as a benchmark problem in the relational reinforcement learning research. The
blocks world environment contains two worlds: the initial world and the target world, each containing
the ground and m blocks. The task is to take actions in the operating world and make its configuration
the same as the target world. The agent receives positive rewards only when it accomplishes the task
and the sparse reward setting brings significant hardness.

MIMIC Dataset. We consider the Medical Information Mart for Intensive Care (MIMIC-III)
database and MIMIC-IV (Johnson et al., 2023) database to predict prescription based on 8 obser-
vations – temperature, white blood cell count, heart rate, hematocrit, hemoglobin, blood pressure,
creatinine, and potassium. MIMIC-III contains 7,493 patients with multiple visits from 2001 to 2012,
while there are 85,155 patients in MIMIC-IV with multiple visits from 2008 to 2019. Since there is
an overlapped time range between MIMIC-III and MIMIC-IV, we randomly sampled 10,000 patients
from MIMIC-IV from 2013 to 2019. By the nature of real-world clinical practice, observation history
must be considered by the acting policies – making our decision-making environments partially
observable.

Sorting. This task trends to iterative swap elements to sort the array in ascending order. Given a
length-m array a of integers, We treat each slot in the array as an object and input their index relations
and numeral relations to each model.

Finding Path. Given an undirected graph represented by its adjacency matrix as relations, the
algorithm needs to find a path from a start node to the target node. We formulate the shortest path
task as a decision-making task. The agent iteratively chooses the next node along the path. In the
next step, the starting node will become the next node.
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