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Abstract

We address an inherent difficulty in welfare-theoretic fair machine learning (ML),
by proposing an equivalently-axiomatically justified alternative setting, and study-
ing the resulting computational and statistical learning questions. Welfare metrics
quantify overall wellbeing across a population of groups, and welfare-based objec-
tives and constraints have recently been proposed to incentivize fair ML methods to
satisfy their diverse needs. However, many ML problems are cast as loss minimiza-
tion tasks, rather than utility maximization, and thus require nontrivial modeling
to construct utility functions. We define a complementary metric, termed malfare,
measuring overall societal harm, with axiomatic justification via the standard
axioms of cardinal welfare, and cast fair ML as malfare minimization over the
risk values (expected losses) of each group. Surprisingly, the axioms of cardinal
welfare (malfare) dictate that this is not equivalent to simply defining utility as
negative loss and maximizing welfare. Building upon these concepts, we define
fair-PAC learning, where a fair-PAC learner is an algorithm that learns an ε-δ
malfare-optimal model with bounded sample complexity, for any data distribution
and (axiomatically justified) malfare concept. Finally, we show conditions under
which many standard PAC-learners may be converted to fair-PAC learners, which
places fair-PAC learning on firm theoretical ground, as it yields statistical — and
in some cases computational — efficiency guarantees for many well-studied ML
models. Fair-PAC learning is also practically relevant, as it democratizes fair ML
by providing concrete training algorithms with rigorous generalization guarantees.

1 Introduction

It is now well-understood that contemporary ML systems exhibit differential accuracy across gender,
race, and other protected groups, for tasks like facial recognition [5–7], in medical settings [2, 17],
and many others. This exacerbates existing inequality, as facial recognition in policing yields
disproportionate false-arrest rates, and medical ML yields disproportionate health outcomes. Welfare-
centric ML methods encode both accuracy and fairness in a welfare function defined on a set of
groups, and optimize or constrain welfare to learn fairly. This addresses differential accuracy and bias
issues across groups by ensuring that (1) each group is seen and considered during training, and (2)
an outcome is incentivized that is desirable overall, ideally according to some mutually-agreed-upon
welfare function. Unfortunately, welfare metrics require a notion of (positive) utility, and we argue
that this is not natural to many ML tasks, wherein we instead minimize some negatively connoted
loss value. We thus define a complementary measure to welfare, which we term malfare, measuring
societal harm (rather than wellbeing). In particular, malfare arises naturally when one applies the
standard axioms of cardinal welfare to loss values rather than utility values. We then cast fair ML as
a direct malfare minimization problem, and study its computational and statistical aspects.
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Perhaps surprisingly, minimizing a malfare function is not equivalent to maximizing some welfare
function while taking utility to be negative loss, except in the egalitarian and utilitarian edge cases.
This is because nearly every function satisfying the standard axioms of cardinal welfare requires
nonnegative inputs, and it is in general impossible to contort a loss function into a utility function
while satisfying this requirement. For example, while minimizing the 0-1 loss, which simply counts
the number of mistakes a classifier makes, is isomorphic to maximizing the 1-0 gain, which counts
number of correct classifications, minimizing some malfare function defined on 0-1 loss over groups
is not in general equivalent to maximizing any welfare function defined on 1-0 gain.

Building upon these concepts, we develop a generic notion of fair ML, termed fair-PAC (FPAC)
learning, where the goal is to learn models for which finite training samples may guarantee (additively)
ε-optimal malfare, with probability at least 1− δ, for any (axiomatically justified) malfare concept.
This definition extends Valiant’s [31] classic PAC-learning formalization, and we show that, with
appropriate modifications, many (standard) PAC-learners may be converted to FPAC learners. In
particular, we show via a constructive polynomial reduction that realizable FPAC-learning reduces
to realizable PAC-learning. Furthermore, we show, non-constructively, that for learning problems
where PAC-learnability implies uniform convergence, it is equivalent to FPAC-learnability. We also
show that when training is possible via convex optimization under standard assumptions, then training
ε-δ malfare-optimal models, like training risk-optimal models, requires polynomial time. We briefly
summarize our contributions below.

1. We derive in section 2 the malfare concept, extending welfare to measure negatively-connoted
attributes, and show that malfare-minimization naturally generalizes risk-minimization to produce
fairness-sensitive ML objectives that consider multiple protected groups.
2. Section 3 extends PAC-learning to FPAC-learning, where we consider minimization of malfare
rather than risk (expected loss) objectives. Both PAC and FPAC learning are parameterized by a
learning task (model space and loss function), and we explore the resulting learnability hierarchy.
3. We show that for many loss functions, PAC and FPAC learning are statistically equivalent, and
convexity conditions for computationally efficient PAC-learning are also sufficient for FPAC-learning.

1.1 Related Work

Constraint-based notions of algorithmic fairness have risen to prominence in fair ML, with the
potential to ensure fairness (i.e., via parity constraints between the various groups, such as equalized
odds, demographic parity, equality of opportunity, equality of outcome, etc.), thus correcting for some
forms of data or algorithmic bias. While noble in intent and intuitive by design, fairness via such
statistical constraints has several prominent flaws: most notably, several popular parity constraints
are mutually unsatisfiable [16], and their constraint-based formulation inherently puts accuracy and
fairness at odds, where additional tolerance parameters are required to strike a balance between the
two. Furthermore, recent works [14, 15] have shown that welfare and even disadvantaged group
utility can be harmed by such fairness constraints, calling into question whether these constraints
actually benefit those that they purport to aid.

Perhaps in response to these issues, some recent work has trended toward welfare-based fairness-
concepts, wherein both accuracy and fairness are encoded in a welfare function defined on a group of
subpopulations. Welfare is then directly optimized [14, 23, 28] or constrained [13, 29] to promote
fair learning across all groups. Perhaps the most similar to our work is a method of [14], wherein
they directly maximize empirical welfare over linear classifiers; however, as with other previous
works, an appropriate utility function must be selected, which we avoid by instead using malfare. We
argue that empirical welfare maximization is an effective strategy when an appropriate and natural
measure of utility is available, but in ML contexts, there is no “correct” or clearly neutral way to
generically convert loss to utility. We avoid this issue by working directly with malfare and loss.

Our most poignant contrast to existing theoretical work is the Seldonian learner [30] framework,
which essentially extends PAC-learning to learning problems with both constraints and arbitrary
nonlinear objectives. We argue that this generality is harmful to the utility of the concept as a
mathematical or practical object, as nearly any ML problem can be posed as a constrained nonlinear
optimization task. The utility in FPAC learning is that it is sophisticated enough to handle fairness
issues with an axiomatically-justified objective, but remains simple enough to study as a mathematical
object, leading to informative reductions between various PAC and FPAC learnable classes. A similar
framework, termed “multi-group agnostic PAC learning” [3, 24], also considers per-group risk values,
but there regret (maximum relative dissatisfaction), rather than malfare, is minimized.
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2 Aggregating Sentiment within Populations

A generic aggregator function M(S;w) summarizes some sentiment vector S ∈ Rg0+, across a
population of g groups, weighted by a probability vector w ∈ Rg+ s.t.‖w‖1 = 1. When S measures
a desirable quantity, generally termed utility, the aggregator function is a measure of cardinal welfare
[19], and thus quantifies overall wellbeing. We also consider the inverse-notion, that of overall
illbeing, termed malfare, in terms of an undesirable S , generally loss or risk, which naturally extends
the welfare concept. We show an equivalent axiomatic justification for malfare, and argue that its use
is more natural in many situations, particularly when considering or optimizing loss functions.
Definition 2.1 (Aggregator Functions: Welfare and Malfare). An aggregator function M(S;w)
measures the overall sentiment of a population, given sentiment vector S and probability vector w. If
S denotes a desirable quantity (e.g., utility), we call M(S;w) a welfare function, written W(S;w),
and inversely, if it is undesirable (e.g., disutility, loss, or risk), we call M(S;w) a malfare function,
written

W

(S;w).

For now, think of the term aggregator function as signifying that an entire population, with diverse
and subjective desiderata, is considered and summarized into an aggregate value M(S;w), rather
than a single group’s perspective (i.e., some Si). As we introduce axioms and show consequent
properties, the appropriateness of the term shall become more apparent. We use the term sentiment
to refer to S with neutral connotation, but when discussing welfare or malfare, we often refer to S
as utility or risk, respectively, as in these cases, S describes a well-understood preëxisting concept.
We shall see that often aggregator functions on utility values and risk values are mathematically
interchangeable, however, in order to promote fairness, the desirable axioms of malfare and welfare
functions differ slightly. The notation reflects the distinction; M(S;w) is M for mean, whereas
W(S;w) is W for welfare, and

W

(S;w) is

W

(inverted W), to emphasize its inverted nature.

2.1 Axioms of Cardinal Welfare and Malfare

Definition 2.2 (Axioms of Cardinal Welfare and Malfare). We define the aggregator-function axioms
for aggregator function M(S;w) below. For each item, assume (if necessary) that the axiom applies
∀S,S ′ ∈ Rg0+, scalars α, β ∈ R0+, and probability vector w ∈ Rg+.

1. Strict Monotonicity: S ′ 6= 0 =⇒ M(S;w) < M(S + S ′;w).
2. Weighted Symmetry:1 Suppose S ′ ∈ Rg

′

0+ and probability vector w′ ∈ Rg
′

0+, such that for all
u ∈ R0+ it holds

∑
i:Si=uwi =

∑
i:Si=uw

′
i. Then M(S;w) = M(S ′;w′).

3. Continuity: M(S;w) is a continuous function in both S and w.
4. Independence of Unconcerned Agents:

M(〈S1:g−1, α〉;w) ≤ M(〈S ′1:g−1, α〉;w) =⇒ M(〈S1:g−1, β〉;w) ≤ M(〈S ′1:g−1, β〉;w) .

5. Independence of Common Scale: M(S;w) ≤ M(S ′;w) =⇒ M(αS;w) ≤ M(αS ′;w).
6. Multiplicative Linearity: M(αS;w) = αM(S;w).
7. Unit Scale: M(1;w) = M(〈1, . . . , 1〉;w) = 1.
8. Pigou-Dalton Transfer Principle: Suppose µ = w · S = w · S ′, and for all i ∈ {1, . . . , g}:∣∣µ− S ′i∣∣ ≤|µ− Si|. Then W(S ′;w) ≥W(S;w).
9. Negated Pigou-Dalton Transfer Principle: Suppose as in 8, but conclude

W

(S ′;w) ≤

W

(S;w).

We take a moment to comment on each axiom, to preview their purpose and assure the reader
of their necessity. Axioms 1-5 are essentially the standard axioms of cardinal welfarism [22, 25].
Together, they imply (via the Debreu-Gorman theorem [10, 12]) that any aggregator function can be
decomposed as a monotonic function of a sum (over groups) of logarithm or power functions.

Axiom 6 is a natural and useful property, and one which enables dimensional analysis on mean
functions; in particular, the units of aggregator function match those of sentiment values. Note that
axiom 6 implies axiom 5, and is thus a simple strengthening of a traditional cardinal welfare axiom.
We will also see that it is essential to show convenient statistical and learnability properties. Axiom 7

1In the unweighted case, it is standard to define symmetry as simply M(S) = M
(
π(S)

)
for all permutations

π over {1, . . . , g}, but with weightings, the simple extension M(S;w) = M
(
π(S);π(w)

)
is not quite sufficient.

In particular, in this weaker form, nowhere is additive decomposability, wherein a group may be decomposed
into multiple groups of the same sentiment value and total weight without impacting the aggregate, codified.
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furthers this theme, as it ensures that not only do units of means match those of S , but scale does as
well (making comparisons like “Si is above the population’s welfare” meaningful), and also enabling
comparison across populations (i.e., comparing averages rather than sums).

Finally, axiom 8, the Pigou-Dalton transfer principle [9, 21], is also standard in cardinal welfare
theory, as it ensures fairness in the sense that welfare is higher when utility values are more uniform
(i.e., incentivizing equitable redistribution of “wealth” in welfare). Its antithesis, axiom 9, encourages
the opposite; in the context of welfare, this perversely incentivizes inequality, but for malfare, which
we generally wish to minimize, the opposite occurs, thus this axiom characterizes fairness in the
context of malfare. We thus state axioms 8-9 specifically for welfare or malfare, respectively, whereas
axioms 1-7 apply equally well to both welfare and malfare.

Axioms 1-5, are modified from their standard presentation to include the weighting w, wherein
continuity (3) must also hold over w, and weighted symmetry (2) specifies additionally that weight
may be transferred between groups with equal sentiment value. Axioms 6-7 are novel to this work,
and are key in strengthening the Debreu-Gorman theorem to ensure that all welfare and malfare
functions are power-means in the sequel. Axiom 9 is also novel, as it is necessary to flip the inequality
of axiom 8 when the sense of the aggregator function is inverted from welfare to malfare; in particular,
the semantic meaning shifts from requiring that “redistribution of utility is desirable” to “redistribution
of disutility is not undesirable.”

The Power-Mean We now define the p-power-mean Mp(·; ·), for any p ∈ R∪±∞, which we shall
use to quantify both malfare and welfare. Power-means arise when analyzing aggregator functions
obeying the various axioms of definition 2.2, and are thus particularly important to this work.
Definition 2.3 (Power-Mean Welfare and Malfare). Suppose p ∈ R∪±∞, sentiment vector S ∈ Rg0+

and probability vector w ∈ Rg+. We then define the p-weighted-power-mean as

Mp(S;w)
.
= p

√√√√ g∑
i=1

wiSpi , M0(S;w)
.
= exp

 g∑
i=1

wi lnSi

 , M±∞(S;w)
.
= ± max

i∈1,...,g
±Si ,

where p ∈ {−∞, 0,∞} attain their limits, the minimum, geometric mean, and maximum, respectively.

Theorem 2.4 (Properties of the Power-Mean). Suppose sentiment vectors S,S ′ ∈ Rg0+ and probabil-
ity vector w ∈ Rg+. The following then hold.

1. Monotonicity: Mp(S;w) is weakly-monotonically-increasing in p.
2. Subadditivity: ∀p ≥ 1 : Mp(S + S ′;w) ≤ Mp(S;w) + Mp(S ′;w).
3. Contraction: ∀p ≥ 1 :

∣∣Mp(S;w)−Mp(S ′;w)
∣∣ ≤ Mp(

∣∣S − S ′∣∣ ;w) ≤
∥∥S − S ′∥∥∞.

4. Curvature: Mp(S;w) is concave in S for p ≤ 1 and convex in S for p ≥ 1.

2.2 Properties of Welfare and Malfare Functions

We now derive properties of welfare and malfare from the axioms of definition 2.2.
Theorem 2.5 (Aggregator Function Properties). Suppose aggregator function M(S;w), and assume
arbitrary sentiment vector S ∈ Rg0+ and probability vector w ∈ Rg+. If M(·; ·) satisfies (subsets of)
the aggregator-function axioms (see definition 2.2), then M(·; ·) exhibits the following properties.
1. Identity: Axioms 6-7 imply that ∀α ∈ R0+: M(α1;w) = α.
2. Debreu-Gorman Factorization: Axioms 1-5 imply ∃p ∈ R, strictly-monotonically-increasing
continuous F : R→ R0+ s.t.

M(S;w) = F

 g∑
i=1

wifp(Si)

 , with
{
p = 0 f0(x)

.
= ln(x)

p 6= 0 fp(x)
.
= sgn(p)xp

.

3. Power-Mean Factorization: Axioms 1-7 imply F (x) = f−1
p (x), thus M(S;w) = Mp(S;w).

4. Fair Welfare: Axioms 1-5 and 8 imply p ∈ (−∞, 1].
5. Fair Malfare: Axioms 1-5 and 9 imply p ∈ [1,∞).

Theorem 2.5 tells us that the mild conditions of axioms 1-5 (generally assumed for welfare), along
with 6 (multiplicative linearity), imply that welfare and utility, or malfare and loss, are measured in
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the same units (e.g., nats of cross-entropy loss, or dollars of income utility), and the power-mean
is effectively the only reasonable family of welfare or malfare function; even without axiom 6,
axioms 1-5 imply aggregator function functions are still monotonic transformations of power-means.
Furthermore, the entirely milquetoast unit scale axiom (7) implies that sentiment values and aggregator
functions have the same scale, making comparisons like “the risk of group i is above (or below) the
population’s malfare” meaningful. Finally, we have that Wp(·;w) promotes equitable redistribution
of utility for p ≤ 1, and

W

p(·;w) promotes equitable redistribution of loss for p ≥ 1.

3 Statistical and Computational Learning-Efficiency Guarantees

In this section, we define a formal notion of fair-learnability, termed FPAC-learning, where a loss
function and hypothesis class are FPAC-learnable essentially if any distribution can be learned to
approximate malfare-optimality from a finite sample (w.h.p.). We then construct various FPAC
learners, and relate the concept to standard PAC learning [31], with the understanding that this allows
the vast breadth of research on PAC-learning algorithms to be applied to FPAC learning. In particular,
we show a hierarchy of fair-learnability via generic statistical and computational reductions.
Definition 3.1 (Hypothesis Classes and Class Sequences). A hypothesis class is a family of functions
mapping domain X to codomain Y , and a hypothesis class sequence H = H1,H2, . . . is a nested
sequence of hypothesis classes, each mapping X → Y . In other words,H1 ⊆ H2 ⊆ · · · .

For example, linear classifiers naturally form a sequence of families using their dimension as
Hd

.
=
{
~x 7→ sgn

(
~x · 〈~w1:d,~0〉

) ∣∣ ~w ∈ Rd
}

. The hypothesis class sequence concept allows us
to distinguish statistically-easy problems, like learning hyperplanes in finite-dimensional Rd, from
statistically-challenging problems, like learning hyperplanes in R∞. It is also used to analyze the
computational complexity of learners as d increases.

3.1 Empirical Malfare Minimization and the Rademacher Average

We define the risk of hypothesis h : X → Y w.r.t. loss ` : Y × Y → R+ on distribution D over
(X × Y), and the empirical risk on sample z ∈ (X × Y)m, as

R(h; `,D)
.
= E

(x,y)∼D

[
`(y, h(x))

]
& R̂(h; `, z)

.
= Ê

(x,y)∈z

[
`(y, h(x))

]
,

respectively. The goal in ML is generally to recover the h∗ that minimizes (true) risk, and
empirical risk minimization (ERM) computes ĥ .

= argminh∈HR̂(h; `, z) as a proxy for h∗ .
=

argminh∈HR(h; `,D). Analogously, for fair ML, we define empirical malfare minimization (EMM),
given

W

(·;w), D1:g , and z1:g , with empirical and true optimal models

ĥ
.
= argmin

h∈H

W(
i 7→ R̂(h; `, zi);w

)
& h∗

.
= argmin

h∈H

W(
i 7→ R(h; `,Di);w

)
.

Although empirical risk is an unbiased estimate of risk, with

W

p(·;w) for p > 1, empirical malfare
is a biased estimator of malfare. Fortunately, empirical malfare is a consistent estimator of malfare,
and we show that standard tools for bounding the error of ERM can be applied to EMM. Here it is
necessary to consider not the loss function or hypothesis class in isolation, but their composition

∀h ∈ H : (` ◦ h)(x, y)
.
= `(y, h(x)) & ` ◦ H .

= {` ◦ h |h ∈ H} .
The empirical Rademacher average is a well-studied [8, 18, 26] data-dependent measurement of the
capacity to overfit of a model classH w.r.t. loss function `, defined as

R̂m(` ◦ H, z)
.
= E
σ

[
sup
h∈H

∣∣∣∣ 1

m

m∑
i=1

σi`
(
yi, h(xi)

)∣∣∣∣
]
,

where σ1:m are drawn i.i.d. Rademacher (i.e., uniform on ±1), which essentially measures the ability
of the hypothesis class to spuriously correlate loss values with noise.
Theorem 3.2 (Generalization Guarantees for Malfare Estimation). Suppose hypothesis classH ⊆
X → Y , bounded loss function ` : (Y × Y)→ [0, r], and per-group samples zi ∼ Dmi . Then, with
probability at least 1−δ over choice of z, it holds simultaneously for all fair malfare functions

W

(·; ·)
(i.e.,

W

p(·; ·) for p ≥ 1) and probability vectors w ∈ Rg+, that

sup
h∈H

∣∣∣ W(
i 7→R(h; `,Di);w

)
−

W(
i 7→ R̂(h; `, zi);w

)∣∣∣≤ W

(
i 7→2R̂m(` ◦ H, zi) + 3r

√
ln gδ
2m ;w

)
.
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Figure 1: We minimize malfare of a weighted
hinge-loss SVM, with g = 5 ethnoracial pro-
tected groups, listed in the legend with group
weight wi (population frequency) and class
bias bi (proportion with income ≥ $50k/yr.).
Due to existing societal inequity, class imbal-
ance varies widely by group, so we weight risk
by 1

bi
. We report per-group training (dotted)

and test (dashed) hinge risks, along with the
malfare objective (green) of the EMM solution
ĥ
.
=argmin

h∈H

W

p

(
i 7→ 1

bi
R̂(h; `hinge, zi);w

)
,

as functions of p ∈ [1, 32]. The experimental
setup is detailed in appendix A.1.

Per-Group (Race) Weighted Hinge Risk and Malfare Versus p

The contraction property (theorem 2.4 item 3) of malfare is key to this result, and this property
does not hold for welfare. Strikingly, fair welfare functions Wp(S;w) for p ∈ [0, 1) are Lipschitz-
discontinuous; e.g., the Nash social welfare (geometric welfare) W0(S; 1

g ) = g
√∏g

i=1Si is unstable
to perturbations of each Si around 0, which causes great difficulty in sampling-based welfare estima-
tion. For example, if utility samples are BERNOULLI(q)-distributed for S1, the sample complexity of
ε-δ estimating W0(S;w) grows unboundedly as w1 → 0, q → 0 (jointly).

Experimental Validation Figure 1 presents a brief experiment on the lauded adult dataset, where
the task is to predict whether income is above or below $50k/yr. We train

W

p(·;w)-minimizing SVM,
and find significant risk-variation between groups; generally low risk for the white and Asian groups,
and high risk for the native American and other groups. The p = 1 model is a standard weighted
SVM, with poor performance for small and traditionally marginalized groups, as expected in an
85.43% majority-white population. As p increases (towards egalitarianism), we observe interesting
fairness tradeoffs; training malfare increases monotonically, and in general (but not monotonically2),
white and Asian training risks increase, as the remaining risks decrease. At first, most improvement
is in the relatively-large (9.64%), high-risk Black group, but for larger p, the much smaller (0.96%),
but higher-risk, native American group sharply improves.

Both training and test performance generally improve for high-risk groups, but significant overfitting
occurs in small groups and malfare. This is unsurprising, since although SVM generalization error
is well-understood [see 26, chapter 26], bounds are generally vacuous for tiny subpopulations of
≈ 400 individuals. In general, overfitting increases with p, due to the higher relative-importance of
small but high-risk groups on ĥ. This experiment validates EMM as a fair-learning technique, with
the capacity to specify tradeoffs between majority and marginalized groups, while demonstrating
overfitting to fairness, which we formally treat in the sequel. We observe similar fairness tradeoffs
in our supplementary experiments (appendix A.2), on weighted and unweighted SVM and logistic
regressors with race and sex groups.

3.2 Fair Probably Approximately Correct Learning

For context, we first present a generalized notion of PAC-learnability, which we then generalize to
FPAC-learnability. Standard presentations consider only classification under 0-1 loss, but we follow
the generalized learning setting of [32], which treats generic learning problems.
Definition 3.3 (PAC-Learnability). Suppose hypothesis class sequence H1 ⊆ H2 ⊆ . . . , all over
X → Y , and loss function ` : Y × Y → R0+. We say H is PAC-learnable w.r.t. ` if there exists a
(randomized) algorithm A, such that for all

1. sequence indices d;
2. instance distribution D over X × Y;

3. additive approximation error ε > 0; and
4. failure probability δ ∈ (0, 1);

2Note that for continuous loss functions and g = 2 groups, group training risks are monotonic in p, as seen
in the supplementary sex-based experiments (see appendix A.2 ).
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A can identify a hypothesis ĥ ∈ H, i.e., ĥ← A(D, ε, δ, d), such that

1. there exists some sample complexity function m(ε, δ, d) :
(
R+×(0, 1)×N

)
→ N s.t.A(D, ε, δ, d)

consumes no more than m(ε, δ, d) samples from D (i.e., finite sample complexity); and
2. with probability at least 1− δ (over randomness of A), ĥ obeys

R(ĥ; `,D) ≤ inf
h∗∈H

R(h∗; `,D) + ε .

The class of such learning problems is denoted PAC, with membership denoted (H, `) ∈ PAC.

Furthermore, if for all d, the space of D is restricted such that inf
h∈Hd

R(h; `,D) = 0, then (H, `) is
realizable-PAC-learnable, written (H, `) ∈ PAC0.

We now generalize this concept to fair-PAC learnability. In particular, we replace the univariate risk-
minimization task with a multivariate malfare-minimization task. Following the theory of section 2.2,
we do not commit to any particular objective, but instead require that a FPAC-learner is able to
minimize any fair malfare function satisfying the standard axioms. Furthermore, here problem
instances grow not just in problem complexity d, but also in the number of groups g.
Definition 3.4 (Fair-PAC (FPAC) Learnability). Suppose hypothesis class sequence H1 ⊆ H2 ⊆
· · · ⊆ X → Y , and loss function ` : Y × Y → R0+. We sayH is fair-PAC-learnable w.r.t. ` if there
exists a (randomized) algorithm A, such that for all
1. sequence indices d;
2. g instance distributions D1:g over (X × Y)g;
3. probability vectors w ∈ Rg+;

4. malfare concepts

W

satisfying axioms 1-7+9;
5. additive approximation errors ε > 0; and
6. failure probabilities δ ∈ (0, 1);

A can identify a hypothesis ĥ ∈ H, i.e., ĥ← A(D1:g,w,

W

, ε, δ, d), such that
1. there exists some sample complexity function m(ε, δ, d, g) :

(
R+ × (0, 1) × N × N

)
→ N s.t.

A(D1:g,w,

W

, ε, δ, d) consumes no more than m(ε, δ, d, g) samples (finite sample complexity); and
2. with probability at least 1− δ (over randomness of A), ĥ obeys

W(
i 7→ R(ĥ; `,Di);w

)
≤ inf
h∗∈H
W(

i 7→ R(h∗; `,Di);w
)

+ ε .

The class of such fair-learning problems is FPAC, with membership denoted (H, `) ∈ FPAC.

Finally, if for all d, the space of D is restricted such that inf
h∈Hd

max
i∈1,...,g

R(h; `,Di) = 0, then (H, `) is
realizable-FPAC-learnable, written (H, `) ∈ FPAC0.
Observation 3.5 (Malfare Functions and Special Cases). By assumption,

W

(·; ·) must be

W

p(·; ·)
for some p ∈ [1,∞). Taking g = 1 implies w = 〈1〉, and

W

p(S;w) = S1, thus reducing the
problem to standard PAC-learning. Similarly, taking p = 1 converts the problem to weighted loss
minimization (weights determined by w), and p =∞ yields a minimax optimization problem, where
the max is over groups, as commonly encountered in adversarial and robust learning settings.

On Computational Efficiency Some authors consider not just the statistical but also the com-
putational performance of learning, generally requiring that A have polynomial time complexity
(and thus implicitly sample complexity). In other words, they require that A(D, ε, δ, d) terminates in
m(ε, δ, d) ∈ Poly( 1

ε ,
1
δ , d) steps. A similar concept of polynomial-time FPAC-learnability is equally

interesting, where here we assume A(D1:g,w,

W

, ε, δ, d) may be computed by a Turing machine
(with access to sampling and entropy oracles) in m(ε, δ, d, g) ∈ Poly( 1

ε ,
1
δ , d, g) steps. We denote

these concepts PACPoly, PAC0
Poly, FPACPoly, and FPAC0

Poly.
Observation 3.6 (FPAC-Learnability and Weighted Loss Functions). Per-group weighted-loss
functions are a well-studied object in the fairness literature, representing the idea that different
types of incorrect or undesirable outcome can impact different groups in different ways.3 It is not
immediately obvious that the FPAC framework covers this case, however observe that it is compatible
with weighted loss functions, where the weighting is associated with each individual sample, as
this is just a particular choice of loss function. This is actually a much more general case, but since
FPAC-learnability requires uniform learnability over all distributions, this also includes distributions
where per-group weightings are constant.

3The experiments of section 3.1 represent a special case of this, wherein incorrect classifications dispropor-
tionately impact marginalized groups, who already have disproportionately many low-income members.
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We also observe (immediately from definitions 3.3 and 3.4) that PAC-learning is a special case
of FPAC-learning; in particular, taking g = 1 implies Mp(S) = M1(S) = S1, thus malfare-
minimization coincides with risk minimization. The more interesting question, which we seek to
answer in the remainder of this document, is when and whether the converse holds. Furthermore,
when possible, we would like to show practical constructive reductions.

We now show that in the realizable case, PAC-learnability implies FPAC-learnability via a construc-
tive polynomial-time reduction. Our reduction simply takes a sufficiently number of samples from the
uniform mixture distribution over all g groups, and PAC-learns on this distribution. As the reduction
is constructive (and efficiency-preserving), this gives us generic algorithms for (efficient) realizable
FPAC-learning in terms of algorithms for realizable PAC-learning.
Theorem 3.7 (Realizable Reductions). Suppose loss function ` and hypothesis classH. Then

1. (H, `)∈PAC0 =⇒ (H, `)∈FPAC0; and 2. (H, `)∈PAC0
Poly =⇒ (H, `)∈FPAC0

Poly.

We construct a(n) (efficient) FPAC-learner for (H, `) by noting that there exists some A′ with
sample-complexity mA′(ε, δ, d) and time complexity tA′(ε, δ, d) to PAC-learn (H, `), and taking
A(D1:g,w,

W

, ε, δ, d)
.
= A′(mix(D1:g),

ε
g , δ, d), where mix(D1:g) denotes the uniformly-weighted

mixture of distributions D1:g . Then A FPAC-learns (H, `), with sample-complexity mA(ε, δ, d, g) =
mA′(

ε
g , δ, d), and time-complexity tA(ε, δ, d, g) = tA′(

ε
g , δ, d).

Unfortunately, the argument here strongly depends on the properties of realizability, and does not
extend to the agnostic case. Furthermore, we note that, philosophically speaking, realizable FPAC
learning is rather uninteresting, essentially because in a world where all parties may be satisfied
completely, the obvious solution is to do so. Thus nontrivial unfairness and bias issues logically only
arise in a world of conflict, e.g., in zero-sum or resource-constrained settings, which foster competition
between groups. We henceforth focus our efforts on the more interesting agnostic-learning setting.

3.3 Characterizing Fair Statistical Learnability with FPAC-Learners

We first consider only questions of statistical learning, i.e., we ignore computation and show that
there exist FPAC-learning algorithms. In particular, we show a generalization of the fundamental
theorem of statistical learning to fair learning problems. The aforementioned result relates uniform
convergence and PAC-learnability, and is generally stated for binary classification only. We define a
natural generalization of uniform convergence to arbitrary learning problems within our framework,
and then show conditions under which a generalized fundamental theorem of (fair) statistical learning
holds. In particular, we show that, neglecting computational concerns, PAC-learnability and FPAC
learnability are equivalent for learning problems with a particular no-free-lunch guarantee.

We first define a generalized notion of uniform convergence. In particular, our definition applies to
any bounded loss function, thus greatly generalizes the standard notion for binary classification.
Definition 3.8 (Uniform Convergence). Suppose ` : Y ×Y → [0, r] and hypothesis classH ⊆ X →
Y . We say (H, `) ∈ UC if

lim
m→∞

sup
D over X×Y

E
z∼Dm

[
sup
h∈H

∣∣∣R̂(h; `, z)− R(h; `,D)
∣∣∣] = 0 .

We stress that this definition is both uniform over ` composed with the hypothesis class H and
uniform over all possible distributions D. Standard uniform convergence definitions consider only
the convergence of empirical frequencies of events to their true frequencies, whereas we generalize
to consider uniform convergence of the empirical means of functions to their expected values. It is
also helpful to consider the sample complexity of ε-δ uniform-convergence, where we take

mUC(` ◦ H, ε, δ) .
= argmin

{
m
∣∣∣ sup
D over X×Y

P
(

sup
h∈H

∣∣∣E
D

[` ◦ h]− Ê
z∼Dm

[` ◦ h]
∣∣∣ > ε

)
≤ δ
}
,

i.e., the minimum sufficient sample size to ensure ε-δ uniform-convergence over the loss family ` ◦ H.
For classification, uniform convergence bijectively implies PAC-learnability as follows.
Theorem 3.9 (Fundamental Theorem of Statistical Learning [26, theorem 6.2]). Suppose ` is the 0-1
loss. Then the following are equivalent:
1. ∀d ∈ N: Hd has finite Vapnik-Chervonenkis (VC) dimension [33, 34].
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UC(`) VC(H) <∞

Uniform Convergence
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Figure 2: Implications between membership in PAC and FPAC classes. For arbitrary fixed `, =⇒
denotes implication of membership of some H (i.e., containment); see theorems 3.7 and 3.10, and
=⇒ holds conditionally on `. Note that when the assumption on ` (see theorem 3.10) holds, the
hierarchy collapses, and in general, under realizability, some classes are known to coincide.

2. ∀d ∈ N: (`,Hd) has the uniform convergence property.
3. Any ERM rule is a successful agnostic-PAC learner forH, thusH is agnostic-PAC learnable.
4. Any ERM rule is a successful realizable-PAC learner forH, thusH is realizable-PAC learnable.

It is rather subtle to generalize this result beyond classification, as there are PAC-learnable problems
for which uniform convergence does not hold. However, [1] show similar results for various regression
problems, and we now generalize to FPAC learning (summarized in figure 2).
Theorem 3.10 (Fundamental Theorem of Fair Statistical Learning). Suppose ` such that ∀H :
(H, `) ∈ PAC0 =⇒ (H, `) ∈ UC. Then ∀H, the following are equivalent:
1. ∀d ∈ N: (`,Hd) has the generalized uniform convergence property.
2. Any EMM rule is an agnostic-FPAC learner for (`,H), thus (`,H) is agnostic-FPAC learnable.
3. Any EMM rule is a realizable-FPAC learner for (`,H), thus (`,H) is realizable-FPAC learnable.

3.4 Characterizing Computational Learnability with Efficient FPAC Learners

In this section, we consider the more granular question of whether FPAC learning is computationally
harder than PAC learning. In other words, where previously we showed conditions under which
PAC = FPAC, here we focus on the subset of models with polynomial time training-efficiency
guarantees, i.e., PACPoly = FPACPoly. Theorem 3.7 has already characterized the computational
complexity of realizable FPAC-learning, so we now focus on the agnostic case. Here we show neither
a generic reduction, nor a non-constructive proof that PACPoly = FPACPoly, nor do we show a
counterexample, but rather we show that under standard convexity conditions often leveraged as
sufficient for efficient PAC-learning, so too is efficient FPAC-learning possible.

Here we show concretely and constructively the existence of FPAC-learners under standard convex
optimization assumptions via the projected subgradient method [27]. This result is immediately
practical, and can be applied verbatim to problems like generalized linear models [20] and many
kernel methods.
Theorem 3.11 (Efficient FPAC Learning via Convex Optimization). Suppose each hypothesis
space Hd ∈ H is indexed by Θd ⊆ RPoly(d), i.e., Hd = {h(·; θ) | θ ∈ Θd}, s.t. (Euclidean)
Diam(Θd) ∈ Poly(d), and ∀x ∈ X , θ ∈ Θd, h(x; θ) can be evaluated in Poly(d) time, and
θ̃ ∈ RPoly(d) can be Euclidean-projected onto Θd in Poly(d) time. Suppose also ` such that
∀x ∈ X , y ∈ Y : θ 7→ `(y, h(x; θ)) is a convex function, and suppose Lipschitz constants
λ`, λH ∈ Poly(d) and some norm‖·‖Y over Y s.t. ` is λ`-‖·‖Y -|·|-Lipschitz in ŷ, i.e.,

∀y, ŷ, ŷ′ ∈ Y :
∣∣`(y, ŷ)− `(y, ŷ′)

∣∣ ≤ λ`∥∥ŷ − ŷ′∥∥Y ,
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Algorithm 1 Approximate Empirical Malfare Minimization via the Projected Subgradient Method

1: procedure APSG(`,H, θ0,mUC(·, ·),D1:g,w,

W

(·; ·), ε, δ)
2: input: λ`-Lipschitz loss function `, λH-Lipschitz hypothesis class H with parameter space

Θ s.t. ` ◦ H is convex, initial guess θ0 ∈ Θ, uniform-convergence sample-complexity bound
mUC(·, ·), group distributions D1:g, group weights w ∈ Rg+, malfare function

W

(·; ·), and
additive error guarantee ε-δ

3: output: ε-δ-

W

(·; ·)-optimal ĥ ∈ H
4: mA ← mUC( ε3 ,

δ
g ); z1:g,1:mA ∼ DmA

1 × · · · × DmA
g . Draw sufficient sample for each group

5: n← 1 +
( 3 Diam(Θ)λ`λH

ε

)2
; α← Diam(Θ)

λ`λH
√
n

. Set iteration count n and learning rate α

6: f(θ) : Θ 7→ R0+
.
=

W(
i 7→ R̂(h(·; θ); `, zi);w

)
. Define empirical malfare objective

7: θ̂ ← PROJECTEDSUBGRADIENT(f,Θ, θ0, n, α) . Run PSG algorithm on empirical malfare
8: return h(·; θ̂) . Return ε-δ optimal model
9: end procedure

and also that eachHd is λH-‖·‖2-‖·‖Y -Lipschitz in θ, i.e.,

∀x ∈ X , θ, θ′ ∈ Θd :
∥∥h(x; θ)− h(x; θ′)

∥∥
Y ≤ λH

∥∥θ − θ′∥∥
2
.

Finally, assume ` ◦ Hd exhibits ε-δ uniform convergence with sample complexity mUC(ε, δ, d) ∈
Poly( 1

ε ,
1
δ , d). It then holds that, for arbitrary initial guess θ0 ∈ Θd, for any group distributions D1:g ,

group weights w, and fair malfare function

W

(·; ·), the algorithm (see algorithm 1)

A(D1:g,w,

W

(·; ·), ε, δ, d)
.
= APSG

(
`,Hd, θ0,mUC(·, ·, d),D1:g,w,

W

(·; ·), ε, δ
)

FPAC-learns (H, `) with sample complexity m(ε, δ, d, g) = g ·mUC( ε3 ,
δ
g , d), and (training) time-

complexity ∈ Poly( 1
ε ,

1
δ , d, g), thus (H, `) ∈ FPACPoly.

4 Conclusion

This paper introduces malfare minimization as a fair learning task, which we argue is better aligned to
address ML tasks cast as loss minimization than is welfare. We then show statistical and computational
relationships between malfare and risk minimization. We do not claim that malfare is a better or more
useful concept than welfare; rather only that it is significantly different, enjoys equivalent axiomatic
footing, and it stands to reason that the right tool (malfare) should be used for the task (fair risk
minimization). We acknowledge that some learning tasks, e.g., bandit problems and reinforcement
learning tasks, are more naturally phrased as maximizing utility or (discounted) reward, however,
most supervised learning problems are naturally cast as minimizing nonnegative loss functions.

We are highly interested in exploring a parallel theory of fair welfare maximization, however some
key malfare properties do not hold for welfare. In particular, non-Lipschitz welfare functions, i.e.,
Wp(·; ·) for p ∈ [0, 1), create great statistical and computational challenges in learning. For this
reason, straightforward translation of our FPAC framework into a welfare setting is rather vacuous. In
contrast, the contraction property (theorem 2.4 item 3) of malfare leads to uniform sample complexity
bounds, which are crucial to FPAC-learning. It thus seems that similar bounds for welfare would
need either to either impose additional assumptions to avoid non-Lipschitz behavior (e.g., artificially
limit the permitted range of p), or otherwise provide weaker (non-uniform) learning guarantees.

As FPAC learning generalizes PAC learning, known hardness reductions and lower-bounds apply,
thus the interesting computation-theoretic question is whether malfare minimization is harder than
risk minimization. Theorem 3.7 answers this question in the negative under realizability, as does
theorem 3.10 for sample complexity in the general (agnostic) case, under appropriate conditions
on the loss function. The remaining cases are left open, though section 3.4 shows that convexity
conditions sufficient for efficient PAC-learnability are also sufficient for efficient FPAC-learnability.
We hope that deeper inquiry into these questions will lead to both a better understanding of what is
and is not FPAC-learnable, as well as more practical and efficient reductions and FPAC-learners.
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A Experimental Setup and Extensions

A.1 Data, Preprocessing, and Experimental Setup

All experiments are conducted on the adult dataset, derived from the 1994 US Census
database, and obtained from the UCI repository [11], where it was donated by Ronny
Kohavi and Barry Becker. This dataset has m = 48842 instances, and we used a
90%:10% training:test split. The task has binary target variable income, 6 numeric fea-
tures, and 8 categorical features, including race split into 5 ethnoracial groups, namely
{White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo(sic), Other}, and sex split into
{male, female}. In each experiment, the target and protected group are omitted from the feature set,
the remaining categorical features are 1-hot encoded, and all d features are z-score normalized.

All experiments are with λ-`2-norm constrained linear predictors, i.e., the hypothesis class is

H .
=
{
h(~x; ~θ) = ~x · ~θ

∣∣∣ ~θ ∈ Rd, ‖~θ‖2 ≤ λ
}

.

The output of this hypothesis class is real-valued, but for this binary classification task, we take
Y = ±1, so the loss function is selected to reify this value with a semantic classification interpretation.
The 0-1 loss (for hard classification) is defined as

`01(y, h(~x; ~θ)) = 1− y sgn(~x · ~θ) ,

which is readily interpreted in a decision-theoretic sense, but is generally computationally intractable
to optimize. The SVM objective is generally stated in terms of the hinge loss, which acts as a convex
relaxation of the 0-1 loss. The hinge-loss is defined as

`hinge(y, h(~x; ~θ)) = max(0, 1− y(~x · ~θ)) ,

which is of course convex in ~θ, and obeys `01(y, h(~x; ~θ)) ≤ `hinge(y, h(~x; ~θ)). Finally, the logistic-
regression cross-entropy loss (measured in nats) is (see, e.g., ch. 9.3 of [26])

`LRCE(y, h(~x; ~θ)) = ln
(
1 + exp

(
−y(~x · ~θ)

))
,

which interprets the model output as a probabilistic classification P(y = 1|ŷ) = 1
1+exp(−ŷ) . Note

that for ŷ 6≈ 0, `LRCE(y, ŷ) ≈ `hinge(y, ŷ), and logistic regression may also be viewed as a convex
relaxation of hard classification, as `01(y, ŷ) ≤ 1

ln(2)`LRCE (perhaps more naturally, the 1
ln(2)

constant vanishes if we measure cross entropy in bits rather than nats).

In all experiments with weighted risk values, we use regularity constraint λ = 4, and in the experi-
ments with unweighted risk values, we take λ = 10.

Implementation and Computational Resources Computation was not a concern on these simple
convex linear models; all experiments were run on a low-end laptop with no GPU acceleration.

Theorem 3.11 analytically quantifies the computational complexity of ε-EMM, but in our experiments,
we simply used standard out-of-the-box first-order methods (adaptive projected gradient descent and
SLSQP), as well as derivative-free methods (COBYLA) to train all models.

A.2 Supplementary Experiments

0-1 Risk of Weighted SVM Figure A1 complements figure 1, reporting the same per-group and
malfare statistics, except now on the (similarly weighted) 0-1 risk, rather than the weighted hinge
risk. Here, the interpretation is that the hinge risk is a convex proxy for the 0-1 risk, as it would be
computationally intractable to optimize the 0-1 risk directly. Because we optimize hinge risk, but
report 0-1 risk, we don’t expect to see monotonicity in malfare, and the discontinuity of the 0-1 risk
is manifest as noise in risk values. Nevertheless, if hinge risk is a good proxy for 0-1 risk, we should
still see a general trend of the classifier becoming fairer (improving high-risk group performance)
w.r.t. 0-1 risk as it becomes fairer w.r.t. hinge risk, and we do in fact observe this with increasing p.
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Figure A1: Training (dashed) and test (dot-
ted) weighted 0-1 risk, per group, of hinge-
risk SVM in the adult experiment, as
functions of malfare power p. Training
and test malfare are also plotted, again as
functions of p. The model is optimized for
weighted malfare of weighted hinge-risk,
and is thus identical to the model reported
on in figure 1. Here hinge-risk is optimized
as a proxy for the 0-1 risk, so only the re-
ported risk function changes in this figure.

Per-Group (Race) Weighted 0-1 Risk and Malfare Versus p

Per-Group (Race) Hinge Risk and Malfare Versus p Per-Group (Sex) Hinge Risk and Malfare Versus p

Per-Group (Race) 0-1 Risk and Malfare Versus p Per-Group (Sex) 0-1 Risk and Malfare Versus p

Figure A2: Unweighted linear SVM experiments on adult dataset, with groups split by race (left)
and sex (right), malfare and risk plotted against p. The upper row depicts hinge-risks and malfare of
hinge-risks, and the lower row depicts the 0-1 risks and malfare of 0-1 risks (of the models trained on
hinge-risk). All plots show training (dashed) and test (solid) per-group risk and malfare values, as
functions of p, with shaded regions depicting train-test gaps.

Unweighted SVM These experiments are quite similar to those of figure 1 and figure A1, except
here we optimize the malfare of, and report the values of, the unweighted hinge risk. In these
experiments, we also take regularity constraint‖~θ‖2 ≤ λ = 10, and report the hinge and 0-1 risks
and malfares, using race and sex groups. As such, the objective is to minimize the

W

p(·;w) malfare
of per-group hinge risks, using per-group-frequencies as malfare weights, i.e.,

ĥ
.
= argmin

h∈H

W

p

(
i 7→ R̂(h; `hinge, zi);w

)
.

With both sex and race, we see significantly variations in model performance between groups. We
stress that group size and affluence are not directly correlated with model accuracy; for instance,
here we see that model performance on the (generally affluent) Male, white, and Asian populations
is relatively poor, due to greater income homogeneity within these groups (in direct contrast to the
weighted experiments).

In all cases, we see that increasing p improves the training set performance of the model on the high-
risk (inaccurate) groups (male, white, and Asian), at the cost of significant performance degradation
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Per-Group (Race) Weighted CE Risk and Malfare Versus p Per-Group (Race) Weighted 0-1 Risk and Malfare Versus p

Figure A3: Experiments on the adult dataset, with ethnoracial protected groups, and the weighted
logistic regression malfare objective. Training (dashed) and test (dotted) malfare and risk values are
plotted as functions of p, with both weighted cross entropy risk (left) and weighted 0-1 risk (right).

for the more accurate groups. However, the trend does not always hold in test set performance,
since raising p increases the relative importance of high-risk subpopulations in training, which leads
to increased overfitting. This highlights the phenomenon of overfitting to fairness, as we see that
improved training set malfare does not necessarily translate to the test set.

Logistic Regression Experiments Figure A3 complements the previous experiments, where now
we optimize malfare of (weighted) cross entropy risk of logit predictors, where weights are chosen as
in figure 1, i.e., we optimize

ĥ
.
= argmin

h∈H
W

p

(
i 7→ 1

bi
R̂(h; `LRCE, zi);w

)
.

We draw essentially the same conclusions as with the hinge risk: malfare minimization yields
better training performance for high-risk (Black, native American, and other) groups, and better test
performance as well, except in the other group, which is very small, and badly overfit.
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B A Compendium of Missing Proofs

Here we present all missing proofs of results stated in the main text.

B.1 Welfare and Malfare

We now show theorem 2.4.

Theorem 2.4 (Properties of the Power-Mean). Suppose sentiment vectors S,S ′ ∈ Rg0+ and probabil-
ity vector w ∈ Rg+. The following then hold.

1. Monotonicity: Mp(S;w) is weakly-monotonically-increasing in p.
2. Subadditivity: ∀p ≥ 1 : Mp(S + S ′;w) ≤ Mp(S;w) + Mp(S ′;w).
3. Contraction: ∀p ≥ 1 :

∣∣Mp(S;w)−Mp(S ′;w)
∣∣ ≤ Mp(

∣∣S − S ′∣∣ ;w) ≤
∥∥S − S ′∥∥∞.

4. Curvature: Mp(S;w) is concave in S for p ≤ 1 and convex in S for p ≥ 1.

Proof. We omit proof of item 1, as this is a standard property of power-means, generally termed the
power-mean inequality [4, chapter 3].

We first show item 2. By the triangle inequality (for p ≥ 1), we have

Mp(S + S ′;w) ≤ Mp(S;w) + Mp(S ′;w) .

We now show item 3 First take ε .
= S−S ′, and let ε+

.
= 0∨ε, where a∨b denotes the (elementwise)

maximum. Now consider

Mp(S;w) = Mp(S ′ + ε;w) DEFINITION OF ε

≤ Mp(S ′ + ε+;w) MONOTONICITY

≤ Mp(S ′;w) + Mp(ε+;w) ITEM 2

≤ Mp(S ′;w) + Mp(
∣∣S − S ′∣∣ ;w) , MONOTONICITY

where here MONOTONICITY refers to monotonicity of Mp(S;w) in each Si, i.e., axiom 1. By
symmetry, we have Mp(S ′;w) ≤ Mp(S;w) + Mp(

∣∣S − S ′∣∣ ;w), which implies the result.

We now show item 4. First note the special cases of p ∈ ±∞ follow by convexity of the maximum
(p =∞) and concavity of the minimum (p = −∞).

Now, note that for p ≥ 1, by concavity of p
√
·, Jensen’s inequality gives us

M1(S;w) =

g∑
i=1

wiSi =

g∑
i=1

wi
p

√
Spi ≤ p

√√√√ g∑
i=1

wiSpi︸ ︷︷ ︸
DEFINITION OF CONVEXITY

= Mp(S;w) ,

i.e., convexity, and similarly, for p ≤ 1, p 6= 0, by convexity of p
√
·, we have

M1(S;w) =

g∑
i=1

wiSi =

g∑
i=1

wi
p

√
Spi ≥ p

√√√√ g∑
i=1

wiSpi︸ ︷︷ ︸
DEFINITION OF CONCAVITY

= Mp(S;w) .

Similar reasoning, now by convexity of exp(·), shows the case of p = 0.

We now show theorem 2.5.

Theorem 2.5 (Aggregator Function Properties). Suppose aggregator function M(S;w), and assume
arbitrary sentiment vector S ∈ Rg0+ and probability vector w ∈ Rg+. If M(·; ·) satisfies (subsets of)
the aggregator-function axioms (see definition 2.2), then M(·; ·) exhibits the following properties.

1. Identity: Axioms 6-7 imply that ∀α ∈ R0+: M(α1;w) = α.
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2. Debreu-Gorman Factorization: Axioms 1-5 imply ∃p ∈ R, strictly-monotonically-increasing
continuous F : R→ R0+ s.t.

M(S;w) = F

 g∑
i=1

wifp(Si)

 , with
{
p = 0 f0(x)

.
= ln(x)

p 6= 0 fp(x)
.
= sgn(p)xp

.

3. Power-Mean Factorization: Axioms 1-7 imply F (x) = f−1
p (x), thus M(S;w) = Mp(S;w).

4. Fair Welfare: Axioms 1-5 and 8 imply p ∈ (−∞, 1].
5. Fair Malfare: Axioms 1-5 and 9 imply p ∈ [1,∞).

Proof. First note that item 1 is an immediate consequence of axioms 6-7 (multiplicative linearity and
unit scale).

We now note that item 2 is the celebrated Debreu-Gorman theorem, extended to weighted aggregator
functions. The proof strategy for this extension is essentially to define two infinite sequences of
rational weightings wj↓ and wj↑ that both converge to w, each of which may be characterized by
the unweighted Debreu-Gorman theorem, to then show that M(S;wj↓) ≤ M(S;w) ≤ M(S;wj↑)
for each sequence index j, and finally to apply standard continuity and limit properties to conclude
the desideratum. In particular, the lower and upper weighting sequences w↓i and w↑ are composed
entirely of weights that are binary fractions, the weighted symmetry axiom allows us to equate
aggregate values with rational weights with aggregate values of a larger unweighted population,
which is then characterized via the standard (unweighted) Debreu-Gorman theorem.

The (classical) Debreu-Gorman theorem describes the unweighted case, and is based on the un-
weighted symmetry axiom, whereas we seek to show the weighted case, i.e.,

M(S;w) = F

 g∑
i=1

fp(Si)


︸ ︷︷ ︸

UNWEIGHTED

, M(S;w) = F

 g∑
i=1

wifp(Si)


︸ ︷︷ ︸

WEIGHTED

, with
{
p = 0 f0(x)

.
= ln(x)

p 6= 0 fp(x)
.
= sgn(p)xp

.

Note that the unweighted case is equivalent to taking w = 〈 1g ,
1
g , . . . ,

1
g 〉, but we omit these weight

terms above, as they can be factored into the strictly-monotonically-increasing continuous function
F (·). The unweighted case holds by the standard Debreu-Gorman theorem, as our weighted symmetry
axiom generalizes the standard unweighted symmetry axiom, i.e., ∀ permutations π over {1, . . . , g}:
M(S) = M(π(S)). To show the general case, a more sophisticated argument is necessary involving
the continuity (axiom 3) of M(S;w) w.r.t. w and the weighted symmetry axiom (2).

We now begin the reweighting argument proper. Suppose WLOG that (S;w) are jointly permuted s.t.
S1 ≤ S2 ≤ · · · ≤ Sg; this is always possible via the weighted symmetry axiom (2), e.g., for some
permutation π,

W

(〈3, 2, 1〉, 〈 12 ,
1
6 ,

1
3 〉) =

W

(π(〈3, 2, 1〉), π(〈 12 ,
1
6 ,

1
3 〉)) =

W

(〈1, 2, 3〉, 〈 13 ,
1
6 ,

1
2 〉).

Now, define lower and upper weighting sequences

wj↓
i

.
= min

1−
i−1∑
i′=1

wj↓
i′ ,
dwi2je

2j

 , and wj↑
i

.
= min

1−
g∑

i′=i+1

wj↑
i′ ,
dwi2je

2j

 ,

respectively, as illustrated in figure A4, and note that their limits obey

lim
j→∞

wj↓ = w = lim
j→∞

wj↑ ,

and furthermore, by continuity of M(S;w) in w,

lim
j→∞

M(S;wj↓) = M(S;w) = lim
j→∞

M(S;wj↑) .

Now, note that cumulative weights obey the simple relationship for all i ∈ {1, . . . , g}:
i∑

i′=1

w0↓
i′ ≥

i∑
i′=1

w1↓
i′ ≥ · · · ≥

i∑
i′=1

w∞↓i′ =

i∑
i′=1

wi′ =

i∑
i′=1

w∞↑i′ ≥ · · · ≥
i∑

i′=1

w1↑
i′ ≥

i∑
i′=1

w0↑
i′ ,
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w1 = 1
3 w2 = 1

6 w3 = 1
4 w4 = 1

4

w0↓
i ,w

1↓
i ,w

2↓
i ,w

3↓
i ,w

3↓
i ,w

5↓
i ,w

6↓
i ,w

7↓
i , ,wi,  ,w7↑

i ,w
6↑
i ,w

5↑
i ,w

4↑
i ,w

3↑
i ,w

2↑
i ,w

1↑
i ,w

0↑
i

        

Figure A4: Illustration of lower and upper reweighting sequences wj↓ and wj↑, for weights vector
w = 〈 12 ,

1
6 ,

1
4 ,

1
4 〉. Each wi is shown in black, separated by vertical dotted lines, alongside the lower

and upper reweighting sequenceswj↓
i and wj↑

i , for various values of j. Note that with increasing j,
the binary fractional weights of the reweighting sequences more accurately approximate w, and even
by j = 7, the difference between wj↓

i ≈ w ≈ wj↑ is essentially imperceptible above.

which is equivalent to stochastic dominance when each weights vector is viewed as a discrete random
variable over {1, . . . , g}. Intuitively, this is because the lower and upper weights sequences round
weights progressively more accurately, in such a way that the lower sequence wj↓

i always transfers
weight to higher group indices i as sequence index j increases, whereas the upper sequence wj↑

i
always transfers weight to lower group indices i as sequence index j increases.

Now, by the weighted symmetry axiom (2), letting wj↑↓ refer generically to either wj↑ or wj↓,

∀j : M(S;wj↑↓) = M

〈 S1, . . . ,S1︸ ︷︷ ︸
2jwj↑↓1 COPIES

, S2, . . . ,S2︸ ︷︷ ︸
2jwj↑↓2 COPIES

, . . . , Sg, . . . ,Sg︸ ︷︷ ︸
2jwj↑↓g COPIES

〉
, i 7→ 1

2j︸ ︷︷ ︸
UNIFORM WEIGHTS

 .

From here, by the monotonicity axiom (1), as well as the above argument regarding cumulative
weights, and the fact that S was assumed to be ascending (and remains so above), we have

M(S;w0↓)≤M(S;w1↓)≤· · ·≤M(S;w∞↓)=M(S;w)=M(S;w∞↑)≤· · ·≤M(S;w1↑)≤M(S;w0↑) .

In particular, monotonicity and weighted symmetry imply the inequalities relating the lower and
upper weighting sequences, and continuity in w implies the equalities between the malfare values of
(limits of) the weighting sequences and w.

Now, by the (unweighted) Debreu-Gorman theorem, we have that there exists some p ∈ R, and some
strictly-monotonically-increasing continuous function F (·), s.t. for all j,

M(Sj↑↓;w) = F
(
Mp(Sj↑↓;w)

)
.

Substituting this result into the above yields the desideratum.

We now show item 3. This result is essentially a corollary of item 2, hence the dependence on
axioms 1-5. In particular, we need only derive the canonical form of F (·) under this axiomatization,
which is quite straightforward when one considers the case of S = 1. By item 1 (as we now assume
axioms 6-7), and axiom 6 itself, for all p 6= 0, we have

α = αM(1;w) = M(α1;w) = F

 g∑
i=1

wifp(α)

 = F
(
sgn(p)αp

)
.

From here, we have α = F
(
sgn(p)αp

)
, thus F−1(u) = sgn(p)up, and consequently, F (v) =

p
√

sgn(p)v.
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Taking p = 0, and applying similar logic to the above, gets us

α = αM(1;w) = αM(α1;w) = F

 g∑
i=1

wi ln(α)

 = F (lnα) ,

from which it is clear that F−1(u) = ln(u) =⇒ F (v) = exp(v).

For all values of p ∈ R, substituting the values of fp and F (·) into item 2 yields M(S;w) =
Mp(S;w) by definition.

We now show items 4 and 5. These properties follow directly from item item 3 and item 4, alongside
the observation that the Pigou-Dalton transfer principle (axiom 8) implies M(S;w) is concave in S ,
whereas the negated Pigou-Dalton transfer principle (axiom 9) implies M(S;w) is convex in S .

B.2 FPAC-Learning

We now work towards showing theorem 3.2. We first show some lemmas in service of the main result.
Lemma B.1 (Statistical Estimation). Suppose probability distributions D1:g, samples z1:g,1:m ∼
Dm1 × · · · × Dmg , aggregator function M(·; ·) obeying monotonicity, probability vector w ∈ Rg+,
and some sentiment-function f . Now take sentiment vector S ∈ Rg0+ such that Si = EDi [f ], and
empirical sentiment value estimate Ŝ ∈ Rg0+ such that Ŝi

.
= Êzi [f ]. If it holds with probability at

least 1− δ that ∀i ∈ 1, . . . , g : Ŝi − εi ≤ Si ≤ Ŝi + εi, then with said probability, we have

Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(S;w) ≤ Mp(Ŝ + ε;w) ,

where a ∨ b denotes the (elementwise) maximum.

Proof. This result follows from the assumption, and the monotonicity axiom (i.e., adding/subtracting
ε can not decrease/increase the aggregator function value, respectively). The minimum with 0 on the
LHS is valid simply because, by definition, sentiment values are nonnegative, and is necessary, as
Mp(·;w) is in general undefined with negative inputs.

We now state a standard result4 in uniform convergence theory (see, e.g., [18, 26]).
Lemma B.2 (Emprical Rademacher Bounds). Suppose ` : (Y × Y) → [0, r], and H ⊆ X → y.
Suppose also z ∼ Dm. Then, with probability at least 1− δ over choice of z, we have

sup
h∈H

∣∣∣R̂(h; `, z)− R(h; `,D)
∣∣∣ ≤ 2R̂m(` ◦ H, z) + 3r

√
ln 1
δ

2m .

With these results, we are now ready to show theorem 3.2.
Theorem 3.2 (Generalization Guarantees for Malfare Estimation). Suppose hypothesis classH ⊆
X → Y , bounded loss function ` : (Y × Y)→ [0, r], and per-group samples zi ∼ Dmi . Then, with
probability at least 1−δ over choice of z, it holds simultaneously for all fair malfare functions

W

(·; ·)
(i.e.,

W

p(·; ·) for p ≥ 1) and probability vectors w ∈ Rg+, that

sup
h∈H

∣∣∣ W(
i 7→R(h; `,Di);w

)
−

W(
i 7→ R̂(h; `, zi);w

)∣∣∣≤ W

(
i 7→2R̂m(` ◦ H, zi) + 3r

√
ln gδ
2m ;w

)
.

Proof. This result follows from the above statistical lemmas, and the contraction property of malfare.
In particular, note that by lemma B.2, with probability at least 1− δ, by union bound it holds that

∀i ∈ 1, . . . , g : ∀h ∈ H :
∣∣∣R̂(h; `,zi)− R(h; `,D)

∣∣∣ ≤ 2R̂m(` ◦ H, zi) + 3r

√
ln g

δ

2m
.

The desideratum then follows via lemma B.1 and the contraction property of malfare, i.e., theo-
rem 2.4 item 3. Note that the above statement on risk holds in probability, but the rest of the argument
holds deterministically, hence the with probability at least 1− δ qualifier holds over all fair malfare
functions and weighting probability vectors simultaneously.

4Note cautiously that we bound the absolute supremum deviation, which incurs no union bound penalty, as
we define the empirical Rademacher average itself with the absolute value built in.
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We now show theorem 3.7.
Theorem 3.7 (Realizable Reductions). Suppose loss function ` and hypothesis classH. Then
1. (H, `)∈PAC0 =⇒ (H, `)∈FPAC0; and 2. (H, `)∈PAC0

Poly =⇒ (H, `)∈FPAC0
Poly.

We construct a(n) (efficient) FPAC-learner for (H, `) by noting that there exists some A′ with
sample-complexity mA′(ε, δ, d) and time complexity tA′(ε, δ, d) to PAC-learn (H, `), and taking
A(D1:g,w,

W

, ε, δ, d)
.
= A′(mix(D1:g),

ε
g , δ, d), where mix(D1:g) denotes the uniformly-weighted

mixture of distributions D1:g . Then A FPAC-learns (H, `), with sample-complexity mA(ε, δ, d, g) =
mA′(

ε
g , δ, d), and time-complexity tA(ε, δ, d, g) = tA′(

ε
g , δ, d).

Proof. We first show the correctness of the constructed FPAC-learner A. Suppose ĥ ←
A(D1:g,w,

W

, ε, δ, d). Then, with probability at least 1 − δ, by the PAC-learnability guarantee
of A′, we have

W

p(i 7→ R(h; `,Di));w) ≤

W

∞
(
i 7→ R(h; `,Di); i 7→ 1

g

)
≤ g

W

1

(
i 7→ R(h; `,Di); i 7→ 1

g

)
= gR

(
h; `,mix(D1:g)

)
≤ g εg = ε .

We thus may conclude that (H, `) is efficiently realizable-PAC-learnable by A′, with sample com-
plexity mA(ε, δ, d, g) = mA′(

ε
g , δ, d). Similarly, if A has polynomial runtime, then so too does A′,

thus we may also conclude efficiency.

We now show theorem 3.10.
Theorem 3.10 (Fundamental Theorem of Fair Statistical Learning). Suppose ` such that ∀H :
(H, `) ∈ PAC0 =⇒ (H, `) ∈ UC. Then ∀H, the following are equivalent:
1. ∀d ∈ N: (`,Hd) has the generalized uniform convergence property.
2. Any EMM rule is an agnostic-FPAC learner for (`,H), thus (`,H) is agnostic-FPAC learnable.
3. Any EMM rule is a realizable-FPAC learner for (`,H), thus (`,H) is realizable-FPAC learnable.

Proof. First note that 1 =⇒ 2 is a rather straightforward consequence of the definition of uniform
convergence and the contraction property of fair malfare functions (theorem 2.4 item 3). In particular,
take m .

= mUC(`◦Hd, ε2 ,
δ
g ). By union bound, this implies that with probability at least 1− δ, taking

samples z1:g,1:m ∼ Dm1 × · · · × Dmg , we have

∀i ∈ {1, . . . , g} : sup
h∈Hd

∣∣∣R(h; `,Di)− R̂(h; `, zi)
∣∣∣ ≤ ε

2
.

Consequently, as

W

(·;w) is 1-‖·‖∞-|·|-Lipschitz in risk (see lemma B.1), it holds with probability at
least 1− δ that

∀h ∈ Hd :
∣∣∣ W(

i 7→ R̂(h; `, zi);w
)
−

W(
i 7→ R(h; `,Di);w

)∣∣∣ ≤ ε

2
.

Now, for EMM-optimal ĥ, and malfare-optimal h∗, we apply this result twice to get

W(
i 7→ R(ĥ; `,Di);w

)
≤

W(
i 7→ R̂(ĥ; `, zi);w

)
+ ε

2

≤

W(
i 7→ R̂(h∗; `,zi);w

)
+ ε

2

≤

W(
i 7→ R(h∗; `,Di);w

)
+ ε .

Therefore, under uniform convergence, the EMM algorithm agnostic FPAC learns (H, `) with finite
sample complexity mA(ε, δ, d, g) = g ·mUC(` ◦ Hd, ε2 ,

δ
g ), completing 1 =⇒ 2.

Now, 2 =⇒ 3 holds, as realizable learning is a special case of agnostic learning.

It remains only to show that 3 =⇒ 1, i.e., ifH is realizable FPAC learnable, thenH has the uniform
convergence property. In general, the question is rather subtle, but here the assumption “suppose `
such that (H, `) ∈ PAC0 =⇒ (H, `) ∈ UC” does most of the work. In particular, as PAC-learning
is a special case of FPAC-learning, we have

(H, `) ∈ FPAC =⇒ (H, `) ∈ PAC ,

then applying the assumption yields (H, `) ∈ UC.
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B.3 Efficient FPAC-Learning

We now show theorem 3.11.
Theorem 3.11 (Efficient FPAC Learning via Convex Optimization). Suppose each hypothesis
space Hd ∈ H is indexed by Θd ⊆ RPoly(d), i.e., Hd = {h(·; θ) | θ ∈ Θd}, s.t. (Euclidean)
Diam(Θd) ∈ Poly(d), and ∀x ∈ X , θ ∈ Θd, h(x; θ) can be evaluated in Poly(d) time, and
θ̃ ∈ RPoly(d) can be Euclidean-projected onto Θd in Poly(d) time. Suppose also ` such that
∀x ∈ X , y ∈ Y : θ 7→ `(y, h(x; θ)) is a convex function, and suppose Lipschitz constants
λ`, λH ∈ Poly(d) and some norm‖·‖Y over Y s.t. ` is λ`-‖·‖Y -|·|-Lipschitz in ŷ, i.e.,

∀y, ŷ, ŷ′ ∈ Y :
∣∣`(y, ŷ)− `(y, ŷ′)

∣∣ ≤ λ`∥∥ŷ − ŷ′∥∥Y ,

and also that eachHd is λH-‖·‖2-‖·‖Y -Lipschitz in θ, i.e.,

∀x ∈ X , θ, θ′ ∈ Θd :
∥∥h(x; θ)− h(x; θ′)

∥∥
Y ≤ λH

∥∥θ − θ′∥∥
2
.

Finally, assume ` ◦ Hd exhibits ε-δ uniform convergence with sample complexity mUC(ε, δ, d) ∈
Poly( 1

ε ,
1
δ , d). It then holds that, for arbitrary initial guess θ0 ∈ Θd, for any group distributions D1:g ,

group weights w, and fair malfare function

W

(·; ·), the algorithm (see algorithm 1)

A(D1:g,w,

W

(·; ·), ε, δ, d)
.
= APSG

(
`,Hd, θ0,mUC(·, ·, d),D1:g,w,

W

(·; ·), ε, δ
)

FPAC-learns (H, `) with sample complexity m(ε, δ, d, g) = g ·mUC( ε3 ,
δ
g , d), and (training) time-

complexity ∈ Poly( 1
ε ,

1
δ , d, g), thus (H, `) ∈ FPACPoly.

Proof. We now show that this projected-subgradient method construction of A requires
Poly( 1

ε ,
1
δ , d, g) time to identify an ε-δ-

W

p(·; ·)-optimal θ̃ ∈ Θd, and thus FPAC-learns (H, `).
This essentially boils down to showing that (1) the empirical malfare objective is convex and Lipschitz
continuous, and (2) that algorithm 1 runs sufficiently many projected-subgradient update steps, with
appropriate step size, on a sufficiently large training set, to yield the appropriate guarantees, and that
each step of the projected-subgradient method, of which there are polynomially many, itself requires
polynomial time.

First, note that by theorem 2.5 items 3 and 5, we may assume that

W

(·; ·) can be expressed as a
p-power-mean with p ≥ 1; thus henceforth we refer to it as

W

p(·; ·). Now, recall that the empirical
malfare objective (given θ ∈ Θd and training sets z1:g) is defined as

W

p

(
i 7→ R̂(h(·; θ); `, zi);w

)
.

We first show that empirical malfare is convex in θ ∈ Θd. By assumption and positive linear closure,
R̂(h(·; θ′); `,zi) is convex in θ ∈ Θd. The objective of interest is the composition of

W

p(·;w) with
this empirical risk evaluated on each of the g training sets z1:g. By theorem 2.4 item 4,

W

p(·;w)
is convex ∀p ∈ [1,∞] in Rg0+, and by the monotonicity axiom, it is monotonically increasing.
Composition of a monotonically increasing convex function on Rg0+ with convex functions on Θd

yields a convex function, thus we conclude the empirical malfare objective is convex in Θd.

We now show that empirical malfare is Lipschitz-continuous. Now, note that for any p ≥ 1, w,

∀S,S ′ :
∣∣ W

p(S;w)−

W

p(S ′;w)
∣∣ ≤ 1

∥∥S − S ′∥∥∞ ,

i.e.,

W

p(·;w) is 1-‖·‖∞-|·|-Lipschitz in empirical risks (see theorem 2.4 item 3), and thus by Lipschitz
composition, we have Lipschitz property

∀θ, θ′ ∈ Θd :
∣∣∣ W

p

(
i 7→ R̂(h(·; θ); `, zi);w

)
−

W

p

(
i 7→ R̂(h(·; θ′); `, zi);w

)∣∣∣ ≤ λ`λH∥∥θ − θ′∥∥2
.

We now show that algorithm 1 FPAC-learns (H, `). As above, take m .
= mUC( ε3 ,

δ
g , d). Our

algorithm shall operate on a training sample z1:g,1:m ∼ Dm1 × · · · × Dmg .

First note that evaluating a subgradient (via forward finite-difference estimation or automated sub-
differentiation) requires (Dim(Θd) + 1)m evaluations of h(·; ·), which by assumption is possible in
Poly(d,m) = Poly(1

ε ,
1
δ , d, g) time.

21



The projected subgradient method produces θ̃ approximating the empirically-optimal θ̂ such that [see
27]

f(θ̃) ≤ f(θ̂) +
‖θ0 − θ̂‖22 + Λ2α2n

2αn
≤ Diam2(Θd) + Λ2α2n

2αn
,

for Λ-‖·‖2-|·|-Lipschitz objective f , thus taking α .
= Diam(Θd)

Λ
√
n

yields

f(θ̃)− f(θ̂) ≤ Diam(Θd)Λ√
n

.

As shown above, Λ = λ`λH, thus we may guarantee optimization error

εopt
.
= f(θ̂)− f(θ∗) ≤ ε

3

if we take iteration count

n ≥ 9 Diam2(Θd)λ
2
`λ

2
H

ε2
=

(
3 Diam(Θd)λ`λH

ε

)2

∈ Poly( 1
ε , d) .

As each iteration requires m · Poly(d) ⊆ Poly( 1
ε ,

1
δ , d, g) time, the projected-subgradient method

identifies an ε
3 -empirical-malfare-optimal θ̃ ∈ Θd in Poly( 1

ε ,
1
δ , d, g) time.

As m was selected to ensure ε
3 - δg uniform convergence, we thus have that by uniform convergence,

and union bound (over g groups), with probability at least 1− δ over choice of z1:g , we have

∀i ∈ {1, . . . , g}, θ ∈ Θd :
∣∣∣ W

p(i 7→ R̂(h(·; θ); `, zi);w)−

W

p(i 7→ R(h(·; θ); `,Di);w)
∣∣∣ ≤ ε

3
.

Combining estimation and optimization errors, we get that with probability at least 1 − δ, the
approximate-EMM-optimal h(·; θ̃) obeys

W

p(i 7→ R(h(·; θ̃); `,Di);w) ≤

W

p(i 7→ R̂(h(·; θ̃); `, zi);w) + ε
3

≤

W

p(i 7→ R̂(h(·; θ̂); `, zi);w) + 2ε
3

≤

W

p(i 7→ R̂(h(·; θ∗); `,zi);w) + 2ε
3

≤

W

p(i 7→ R(h(·; θ∗); `,Di);w) + ε .

We may thus conclude that A FPAC learns H with sample complexity gm = g · mUC( ε3 ,
δ
g , d).

Furthermore, as the entire operation requires polynomial time, we have (H, `) ∈ PACPoly.
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