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Abstract

We study the convergence to local Nash equilibria of gradient methods for two-
player zero-sum differentiable games. It is well-known that such dynamics converge
locally when S ≻ 0 and may diverge when S = 0, where S ⪰ 0 is the symmetric
part of the Jacobian at equilibrium that accounts for the “potential” component of
the game. We show that these dynamics also converge as soon as S is nonzero
(partial curvature) and the eigenvectors of the antisymmetric part A are in general
position with respect to the kernel of S. We then study the convergence rates when
S ≪ A and prove that they typically depend on the average of the eigenvalues
of S, instead of the minimum as an analogy with minimization problems would
suggest. To illustrate our results, we consider the problem of computing mixed
Nash equilibria of continuous games. We show that, thanks to partial curvature,
conic particle methods – which optimize over both weights and supports of the
mixed strategies – generically converge faster than fixed-support methods. For
min-max games, it is thus beneficial to add degrees of freedom “with curvature”:
this can be interpreted as yet another benefit of over-parameterization.

1 Introduction

Min-max optimization is notoriously subtler than minimization, even in convex-concave settings.
While many of the proof techniques for minimization have a natural equivalent in the min-max
world, some common intuitions fail to transfer. The picture is clear for strongly convex-strongly
concave (SC-SC) min-max games: all the classical gradient methods converge exponentially (for
small enough step-sizes) with worst-case convergence rates dependent on the strong convexity and
strong concavity parameters µx, µy. But, most famously perhaps, for bilinear min-max games the
last iterate of simultaneous Gradient Descent-Ascent (GDA) diverges, while the Proximal Point (PP)
method converges, and alternating GDA and the continuous-time limit of all of these algorithms –
Gradient Flow (GF) – exhibit a cycling behavior.

Based on those two extreme cases, it still seems that part of our intuition from minimization, where
the last-iterate convergence rate is indeed determined by the strong convexity parameter, is preserved.
In this paper, we argue that this intuition is in fact overly pessimistic, and that gradient methods
behave in general more favorably in the min-max setting than in the minimization setting.

Let us first look at a basic example. Consider a bilinear min-max game regularized by a quadratic
term only in one scalar variable:

min
x∈Rd

max
y∈Rd

x⊤Py +
α

2
x2
1.
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(a) Local convergence of the GF iterates for a fixed draw of P ∈ R2×2 and various values of α. Only the final
phase of the dynamics is shown, so here we see the iterates evolve along the “dominant” eigenspace of M (the
subspace along which convergence is the slowest).

(b) Observed and predicted (µ̃M ) normalized conver-
gence rate r/η of GDA with a small step-size η, i.e.,∥∥xk

∥∥ +
∥∥yk

∥∥ = Θ((1 − r)k), vs. regularization
strength α (the higher the faster). Each color rep-
resents one draw of P ∈ R2×2.

(c) Spectrum of the Jacobian M for a fixed draw of
P ∈ R3×3 (green) and its approximation by Equa-
tion (3.1) (gray)

Figure 1: Convergence of gradient methods on a random bilinear game regularized by α
2 x

2
1 for small

step-sizes. The fact that µ̃M , and so r/η, scale linearly with α (for small α) is explained by Prop. 3.1.

Here there is no strong convexity in either player (so µx = µy = 0), yet as observed on Fig. 1a, Fig. 1b,
when P ∈ Rd×d is random with independent standard normal entries, GDA (with a small step-size)
typically converges at an exponential rate that scales linearly with α.1

As we will see, this phenomenon is a consequence of the existing theory for general smooth min-max
games

min
x∈Rn

max
y∈Rm

f(x, y) (1.1)

with a local Nash equilibrium (NE), or local saddle point, z∗ = (x∗, y∗). It is well-known from the
dynamical systems literature that GF converges locally to z∗ if

µ̃M := min
λ∈Sp(M)

ℜ(λ) > 0, with M =

[
∇2

xxf ∇2
xyf

−∇2
xyf

⊤ −∇2
yyf

]
(z∗) ∈ R(n+m)×(n+m)

the Jacobian of the skewed gradient field at z∗, and where Sp(·) denotes the spectrum, i.e., the set of
eigenvalues. For our starting basic example, this quantity2 can be visualized in Fig. 1c. Moreover,
µ̃M also characterizes the convergence behavior of gradient methods (GDA, PP, etc.) in the leading
order in the step-size η: they all converge to z∗ with the rate ηµ̃M +O(η2), see App. A for a review.3

While the condition µ̃M > 0 is very general and tight, it is not obvious how to control or interpret it.
Our purpose with this paper is to explore what this condition entails and to emphasize some of its
surprising consequences.

1Julia code for the numerical experiments is available at https://github.com/guillaumew16/
local_cvgce_minmax.

2In numerical analysis and stability theory, the quantity −µ̃M is known as the spectral abscissa of −M .
3More precisely, gradient methods converge locally (for small enough step-sizes) if minλ∈Sp(M) ℜ(λ) > 0,

and only if minλ∈Sp(M)\{0} ℜ(λ) ≥ 0. Throughout this paper we will assume for simplicity M invertible so
that those two quantities are equal.
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The rest of the paper is organized as follows. In Sec. 2 we show that, generically, µ̃M > 0 as long
as the problem has partial curvature, i.e. the diagonal blocks of M are non-zero. In Sec. 3, we
study more precisely the case of games where the “interaction” component dominates the “potential”
component, i.e., when ∇2

xxf(z
∗),∇2

yyf(z
∗) ≪ ∇2

xyf(z
∗). For such games, in a certain random

setting, we show that µ̃M scales as the average of the eigenvalues of the potential part, instead of
the minimum as an analogy with minimization problems would suggest. In Sec. 4 we consider the
computation of mixed Nash equilibria of continuous games using particle methods, a setting where
the convergence under partial curvature has a striking consequence. By optimizing over both the
weights and supports of the mixed strategies, one obtains dynamics that generically converge faster
than fixed-support methods, even when the latter are using the optimal supports.

For ease of exposition, in most of the paper we focus on the local convergence of GF. We discuss the
convergence of discrete time algorithms in Sec. 3.2.

1.1 Related work

Throughout this paper, by “convergence” we mean convergence of the last iterate to a (local) NE,
while a different line of work also considers convergence of the averaged iterate [Nem04], and another
considers convergence to any critical point [ALW21]. Also to prevent possible confusion, let us
mention a related but distinct line of work [DH19; Doa22] that considers using different step-sizes to
update the x and the y variables. The resulting two-timescale dynamics can be analyzed globally
assuming a min-max analog of the Polyak-Łojasiewicz inequality, using quite different considerations
than the ones developed in this paper.

Analysis of GDA and PP for SC-SC, bilinear or convex-SC games. The fact that PP converges
for SC-SC and bilinear min-max games is well-established since at least [Roc76]; for a modern
reformulation, see e.g. [MOP20]. The convergence of simultaneous GDA for SC-SC games and its
divergence for bilinear games is also a classical fact, see e.g. [LS19; Lu22]. The cycling behavior of
alternating GDA for bilinear games is proved in [BGP20, Theorem 4].

As shown more recently in [NK17, Appendix G] and [ZWLG22, Theorem 6], convexity in x,
strong concavity in y and non-degeneracy of the interaction component are in fact sufficient to
ensure µ̃M > 0, and so local convergence of GDA. The setting of the former work corresponds
to ∇2

xxf(z
∗) = 0, −∇2

yyf(z
∗) ≻ 0 and ∇2

xyf(z
∗) full-row-rank, extended in the latter work to

∇2
xxf(z

∗) ⪰ 0. Those two works also provide bounds on µ̃M for those specific cases in terms of the
least eigenvalues of −∇2

yyf(z
∗) and of ∇2

xyf(z
∗)∇2

xyf(z
∗)⊤.

Spectral analysis-based convergence analyses. Our approach to analyzing min-max algorithms

is to directly study the properties of the update operator (e.g., of T (z) = z −
(

∇xf
−∇yf

)
(z) for

simultaneous GDA). Specifically, by a classical result on discrete-time dynamical systems, the local
exponential convergence is characterized by the spectral radius of that operator’s Jacobian. This
approach is used for example in [Gid+19] to analyze the local convergence behavior of alternating
GDA with negative momentum, and in [AMLG20] to derive tight convergence bounds – dependent
explicitly on η and Sp(M) – for simultaneous GDA and multi-step Extra-Gradient.

Average-case analysis of the (local) convergence rate. In [PS20; DPS21], the authors analyze
the convergence of gradient methods for affine operator problems – i.e., for finding z such that
M(z − z∗) = 0 – when M is a random normal matrix with a known spectral distribution. They
derive average-case optimal methods for this setting. Our analysis in Sec. 3 also has an average-case
flavor, but our random model is different: we assume that the symmetric S and antisymmetric parts
A of M are independent and that S ≪ A. In particular we do not require M to be normal (i.e., S and
A do not commute a priori, which is the typical case in min-max optimization).

Hypocoercivity. In the context of partial differential equations (PDEs), the phenomenon that a linear
PDE ∂tut = −Lut may exhibit linear convergence to 0 even when the generator L is not coercive, is
called hypocoercivity and is studied in detail in [Vil09]. This is precisely the infinite-dimensional
analog of the phenomenon studied in the present paper: still denoting by S,A the symmetric resp.
antisymmetric parts of M , coercivity of L corresponds to S ≻ 0, while hypocoercivity corresponds to
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µ̃M > 0. Specifically, [Vil09] shows how to construct Lyapunov functions to establish hypocoercivity
and convergence rates of certain PDEs, by exploiting properties of the iterated commutators of S
and A. By contrast our focus is on the finite-dimensional case, where it is easier and more natural to
directly study the spectrum of M .

1.2 Notation

For any matrix T ∈ Rd×d or Cd×d, denote by Sp(T ) ⊂ C its spectrum, i.e., the set of its eigenvalues,
and by ρ(T ) = maxλ∈Sp(T ) |λ| its spectral radius. Recall that the spectral radius is distinct from the
operator norm, which is the largest singular value, although they coincide for Hermitian matrices.
Denote eigenspaces as Eλ(T ) =

{
z ∈ Cd; Tz = λz

}
and let Eigvecs(T ) =

⋃
λ∈Sp(T ) Eλ(T ) the

set of all (complex) eigenvectors. ∥·∥ denotes Euclidean or Hermitian norm. For a collection of
square matrices (resp. scalars) (Ck)k, Diag((Ck)) denotes the (block-)diagonal matrix with blocks
(resp. coefficients) (Ck)k.

2 Characterization of local convergence

Consider the general smooth min-max game of Equation (1.1) and assume M is invertible. We
decompose M into its symmetric and antisymmetric parts as

M =

[
∇2

xxf ∇2
xyf

−∇2
xyf

⊤ −∇2
yyf

]
(z∗) =:

[
Q P

−P⊤ R

]
, S :=

[
Q 0
0⊤ R

]
, A :=

[
0 P

−P⊤ 0

]
.

By the second-order optimality condition in the definition of NE, Q ⪰ 0 and R ⪰ 0.

Following [Let+19], S and A can be thought of intuitively as the “potential” resp. “interaction” (or
Hamiltonian) components of the two-player zero-sum game (1.1). Indeed, consider the quadratic

game minx∈Rn maxy∈Rm

{
1
2

(
x
y

)⊤

∇2f(z∗)

(
x
y

)
= 1

2x
⊤Qx− 1

2y
⊤Ry + x⊤Py

}
, which is

essentially sufficient to understand the local behavior of GF for (1.1) around z∗. Then we can interpret
the terms in Q and R as quadratic potentials to be optimized independently by each player, with the
bilinear term in P capturing all of the interaction between the players.

Partial curvature generically suffices. Let us recall that µ̃M = minλ∈Sp(M) ℜ(λ) governs the
local convergence of GF around the local NE z∗. It is a general fact that this quantity is nonnegative
(the proof is included below). In the following theorem, we give necessary and sufficient conditions
for it to be positive, in terms of geometric conditions on Q,R and P .
Theorem 2.1. The following conditions are equivalent:

(i) µ̃M > 0.

(ii) Eigvecs(A) ∩KerS = {0}.

(iii) For any eigenvector x of PP⊤ (i.e., left-singular vector of P ), x ̸∈ KerQ or P⊤x ̸∈ KerR.

(iv) For any eigenvector y of P⊤P (i.e., right-singular vector of P ), Py ̸∈ KerQ or y ̸∈ KerR.

As a consequence of Thm. 2.1, the condition µ̃M > 0 holds generically in the following sense: for
any fixed S ̸= 0, the set of matrices P such that µ̃M > 0 is dense and open in Rn×m. In particular,
this property holds with probability 1 if P is drawn from an absolutely continuous distribution and is
independent from Q and R, as in the experiment of Fig. 1.

Proof. Let λ ∈ Sp(M) and z ∈ Cn+m non-zero such that Mz = (S + A)z = λz. Since S and A
are real and symmetric resp. antisymmetric,

z⊤Sz = z⊤Sz = (z⊤Sz)⊤ = z⊤Sz, so z⊤Sz ∈ R

and z⊤Az = z⊤Az = (z⊤Az)⊤ = −z⊤Az, so z⊤Az ∈ iR.

So by taking the real part in z⊤(S +A)z = λ ∥z∥2,

ℜ(λ) ∥z∥2 = z⊤Sz = ℜ(z)⊤Sℜ(z) + ℑ(z)⊤Sℑ(z) ≥ 0
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since S = Diag(Q,R) ⪰ 0. This shows that µ̃M ≥ 0.

Now let us show the equivalence of the conditions.

(ii) =⇒ (i): By contraposition, suppose there exists λ ∈ Sp(M) with ℜ(λ) = 0, and let z non-zero such
that Mz = λz. Then z⊤Sz = ℜ(λ) ∥z∥2 = 0, so z ∈ KerS. So Mz = Az = λz, and
z ∈ (Eλ(A) ∩KerS) \ {0}.

(i) =⇒ (ii): By contraposition, suppose there exists λ ∈ Sp(A) and a non-zero z ∈ Eλ(A) ∩ KerS.
Since A is antisymmetric, then ℜ(λ) = 0. On the other hand, Mz = (S+A)z = Az = λz,
i.e., λ ∈ Sp(M). So µ̃M ≤ ℜ(λ) = 0.

(i) =⇒ (iii), (iv): By contraposition, suppose there exists an eigenvector x of PP⊤ such that x ∈ KerQ and
P⊤x ∈ KerR, and denote σ ∈ R such that PP⊤x = σ2x (since PP⊤ ⪰ 0). Then

M

(
iσ x
P⊤x

)
=

[
Q P

−P⊤ R

](
iσ x
P⊤x

)
=

(
σ2x

−iσP⊤x

)
= −iσ

(
iσ x
P⊤x

)
and so −iσ ∈ Sp(M). This shows (i) =⇒ (iii), and (i) =⇒ (iv) follows analogously.

(iii), (iv) =⇒ (ii): By contraposition, suppose there exists λ = iσ ∈ Sp(A) and a non-zero z = (x, y) ∈
Eλ(A) ∩KerS. Expanding the blocks in Az = λz,{

Py = iσx

−P⊤x = iσy
and so

{
P⊤Py = σ2y

PP⊤x = σ2x.

Moreover, this implies that x = 0 ⇐⇒ y = 0, and since z ̸= 0, then both x ̸= 0 and
y ̸= 0. So x is an eigenvector of PP⊤ and, since Sz = 0, x ∈ KerQ and P⊤x = −iσy ∈
KerR, which contradicts (iii). Likewise, y is an eigenvector of P⊤P and y ∈ KerR and
Py = iσx ∈ KerQ, which contradicts (iv).

Geometric interpretation using real vectors. We draw the attention of the reader to the fact
that (ii) involves complex eigenvectors. For a rephrasing in terms of real objects, note that if

z ∈ Eiσ(A) with σ ∈ R, then A [ℜ(z) ℑ(z)] = [ℜ(z) ℑ(z)]
[
0 σ
−σ 0

]
; geometrically, Fiσ(A) =

span(ℜ(z),ℑ(z)) is a “rotation plane” of the GF for the bilinear game minx maxy x
⊤Py, in the

sense that the projection of GF on Fiσ(A) is a circular motion with constant speed σ. Condition (ii)
expresses that for each such Fiσ(A), there exists an eigenspace Eµ(S) of S (for a µ > 0) that is
not orthogonal to it. This causes the GF for minx maxy

1
2x

⊤Qx − 1
2y

⊤Ry + x⊤Py projected on
Fiσ(A) to spiral down to 0 instead of cycling around it.

One may naturally wonder whether a notion of non-orthogonality between the potential (S) and
interaction components (A) can be used to bound the convergence quantitatively; this is developed in
the next section in the particular case S ≪ A.

3 Convergence rate when interaction dominates (S ≪ A)

Let us now discuss the case of games with a small symmetric part, that is, whose Jacobian at optimum

is Mα = A+ αS for some symmetric S =

[
Q 0
0⊤ R

]
, antisymmetric A =

[
0 P

−P⊤ 0

]
and some

small α > 0. In this section we assume n = m (the general case is technically more challenging as
Prop. 3.1 requires A to have distinct eigenvalues, which requires |n−m| ≤ 1).

3.1 Convergence rate of Gradient Flow

As discussed previously, the normalized local exponential convergence rate r/η of gradient methods
in the asymptotic regime η → 0 – or equivalently, the convergence rate of GF – for a game with
Jacobian at optimum Mα is equal to µ̃Mα . We can estimate this quantity using the standard formula
for the asymptotic expansion of the eigenvalues of a perturbed matrix, which takes an interesting
form in our context.
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Proposition 3.1. Suppose that P is full-rank and has distinct singular values, and let P = UΣV ⊤ =∑n
j=1 σjujv

⊤
j be its singular value decomposition. Then it holds

µ̃Mα
=

1

2
α
(

min
1≤j≤n

u⊤
j Quj + v⊤j Rvj

)
+O(α3).

This expansion explains in particular why the normalized convergence rate r/η ∼ µ̃Mα
is approx-

imately proportional to α in Fig. 1. Interestingly, the error term is O(α3), which suggests that the
approximation can be reasonably accurate even for quite large values of α, as illustrated in Fig. 1c.

Proof. Here M0 = A has distinct eigenvalues {isσj , s ∈ {−1, 1}, 1 ≤ j ≤ n}, with unit-norm

eigenvectors A
(
−isuj/

√
2

vj/
√
2

)
= isσj

(
−isuj/

√
2

vj/
√
2

)
. By the calculation of the eigenvalue deriva-

tives from [Tao08], we obtain the following expansion for Sp(Mα):

Sp(Mα) =

{
isσj+

1

2
α
(
u⊤
j Quj + v⊤j Rvj

)
+
1

4
α2

∑
(s′,j′ )̸=(s,j)

1

isσj − is′σj′

(
ss′u⊤

j′Quj + v⊤j′Rvj
)2

+O(α3), s ∈ {−1, 1}, 1 ≤ j ≤ n

}
. (3.1)

Now the zeroth- and second-order terms are all in iR, hence the announced expansion for µ̃Mα
.

Estimate of the leading term under a probabilistic model. Assuming the singular vectors
(u1, ..., un), (v1, ..., vn) of P are distributed uniformly at random – which is the case for example if
P has i.i.d. Gaussian entries by rotational invariance4 –, the leading term in the expansion of µ̃Mα

can be estimated in expectation as follows. The proof is placed in App. B, where we also include a
high-probability version of the estimate as Prop. B.5.

Proposition 3.2. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Then

Tr(S)

n

(
1− 2

∥S∥F
Tr(S)

√
log n

)
≤ E

[
min

1≤j≤n
u⊤
j Quj + v⊤j Rvj

]
≤ Tr(S)

n

where ∥·∥F denotes the Frobenius norm. In particular, provided that Tr(S)
∥S∥F

≥ 2
√
log n(1 + c) for

some fixed c > 0, we have E
[
min1≤j≤n u

⊤
j Quj + v⊤j Rvj

]
≍ Tr(S)

n as n → ∞.

Note that Tr(S)
∥S∥F

, which always lies in the interval [1,
√
2n], is a measure of the effective sparsity of

the spectrum of S (larger meaning less sparse), so the condition Tr(S)
∥S∥F

≥ 2
√
log n(1 + c) means the

spectrum of S is well spread-out. So the proposition shows that the exponential convergence rate
depends on the average of the eigenvalues of S, when αS ≪ A and the spectrum of S is well
spread-out. This fact should be contrasted with the case of minimization, where the convergence rate
scales as the minimum eigenvalue of the Hessian.

Interestingly, when the spectrum of S is sparse, the typical behavior of the leading term in the
expansion of µ̃Mα

, minj u
⊤
j Quj + v⊤j Rvj , is quite different. In this case, that quantity depends on

the geometric mean of the non-zero eigenvalues of S, rather than the arithmetic mean, as formalized
in the following proposition. The proof is placed in App. B, along with a high-probability version of
the estimate in Prop. B.9.

Proposition 3.3. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Let s1 ≥ ... ≥ sr > 0 = sr+1 = ... = s2n the eigenvalues of S.

4If P = UΣV ⊤ has i.i.d. Gaussian entries, then P has the same law as Ũ⊤PṼ , for any Ũ , Ṽ ∈ On the
set of n× n orthonormal matrices. So (U, V ) has the same law as (Ũ⊤U, Ṽ ⊤V ). This shows that (U, V ) is
distributed according to the Haar measure on the product group On ×On, that is, U and V are independently
distributed uniformly on On.
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Table 1: Expansions of ρ(∇T (z∗)) in α and η for classical gradient methods

Algorithm T (z) ∇T (z∗)
ρ(∇T (z∗))2 = maxj≤2n[...]

+O(ηα3 + η2α2)

Sim-GDA z − ηg(z) I − ηM 1− 2αη
(
w⊤

j Swj

)
+ η2σ2

j

Alt-GDA see text I − η(I − η
2A)M +O(η3) 1− 2αη

(
w⊤

j Swj

)
+O(η3)

EG z − ηg(z − ηg(z)) I − η(I − ηM)M 1− 2αη
(
w⊤

j Swj

)
− η2σ2

j +O(η3)

Then

E
[
min
j≤n

u⊤
j Quj + v⊤j Rvj

]
≥ max

S⊂{1,...,r}

1

e

|S|
n

n− 2
|S|

[∏
l∈S

sl

] 1
|S|

.

In particular, E
[
minj≤n u

⊤
j Quj + v⊤j Rvj

]
≳ n− 2

r−1 when n → ∞ and r and s ∈ Rr are fixed.

Numerically, the quantity minj≤n u
⊤
j Quj + v⊤j Rvj indeed scales as n− 2

r−1 under the conditions of
the proposition, suggesting that our lower estimate could be tight.

3.2 Convergence rate of discrete-time algorithms

Prop. 3.1 gave an expansion of the normalized convergence rate r/η of gradient methods (for a game
with Jacobian at optimum Mα), non-asymptotically in α and in the asymptotic limit η → 0. In this
subsection, we give expansions of the convergence rate r that are non-asymptotic in α and η.

The algorithms we will consider can be written in the form zk+1 = T (zk) with the update oper-
ator T dependent only on ∇f and on step-size η, and satisfying z∗ = T (z∗). It is well-known
that local convergence of such methods is determined by ρ(∇T (z∗)), where ∇T is the Jacobian
of T and ρ(·) denotes spectral radius. Namely, if ρ(∇T (z∗)) < 1 then the iterates converge lo-
cally with

∥∥zk − z∗
∥∥ = O

(
(ρ(∇T (z∗)) + ε)k

)
, with ε > 0 an arbitrarily small constant [Ber97,

Proposition 4.4.1].

In Table 1 we give an expansion for ρ(∇T (z∗)) for three classical gradient methods: simultaneous
GDA (Sim-GDA), alternating GDA (Alt-GDA), and Extra-Gradient (EG). Let us clarify immediately
that throughout this paper, statements made about “GDA” without further specification apply to both

Sim-GDA and Alt-GDA. In the second column we denoted by g(z) =

(
∇xf
−∇yf

)
(z) the skewed

gradient field of the game, and in the third column we wrote M instead of Mα for concision. In
the fourth column, ±iσj denotes the eigenvalues of A assumed distinct and wj are the associated
eigenvectors – equivalently, the singular value decomposition of P is P =

∑n
j=1 σjujv

⊤
j and for

each j ≤ n, w⊤
j Swj = w⊤

j+nSwj+n = 1
2

(
u⊤
j Quj + v⊤j Rvj

)
. We refer to App. D for the derivation

of this table and for explicit bounds on the “O(·)” terms.

Informally, as one can directly see from the fourth column, Sim-GDA requires a very small step-size
for the first term in η to overcome the terms +η2σ2

j , while for EG those terms actually appear with a
favorable sign, and Alt-GDA neither benefits nor suffers from those terms. We also see that Alt-GDA
is quite faithful to GF, in that their normalized convergence rates coincide up to terms of order η3+α4.
All of these insights are in line with common intuition in the min-max optimization literature [BGP20;
Lu22], as well as with our numerical experiments for the next section, Fig. 2.

A symmetrized formulation of Alt-GDA. In order to derive the rate for Alt-GDA, we used the
following symmetrized formulation of it: we let (x0, y

1/2) ∈ Rd × Rd and{
∀k ∈ N, xk+1 = xk − η∇xf(x

k, yk+
1/2)

∀k ∈ N+ 1/2, yk+1 = yk + η∇yf(x
k+1/2, yk)

and

{
∀k ∈ N, xk+1/2 = xk+1+xk

2

∀k ∈ N+ 1/2, yk+
1/2 = yk+1+yk

2 .

That is, x gets updated with the gradient rule at integer time-steps, y at half-integer time-steps, and
we define xk, yk at non-updating time-steps as the average of the preceding and following updating
time-steps. Assuming η ≤

∥∥∇2
xxf
∥∥−1

∞ ∧
∥∥∇2

yyf
∥∥−1

∞ , we show in App. C that zk+1 is indeed entirely
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determined by zk = (xk, yk) for each k ∈ N, and that the associated update operator T satisfies

T (z) = z − ηg(z) +
η2

2
A(z)g(z) +O(η3 ∥g(z)∥) where A(z) =

∇g(z)−∇g(z)⊤

2
.

For comparison, the usual formulation of Alt-GDA considers as the iterates (x̃k, ỹk) = (xk, yk+
1/2).

We emphasize that (x̃k, ỹk) and (xk, yk) have the same convergence rate if they converge exponen-
tially, as one can check directly from the definition.

4 Illustration: sparse mixed Nash equilibria of continuous games

In this section we apply the above considerations to a particular class of min-max problems, which is
of its own interest in game theory. Namely we consider the classical problem of finding the mixed
Nash equilibria (MNE) of two-player zero-sum games, that is, given strategy spaces X , Y and a
payoff function f : X × Y → R, solving the min-max problem

min
µ∈P(X )

max
ν∈P(Y)

{F (µ, ν) = Ex∼µ,y∼ν [f(x, y)]} .

Here P(X ) denotes the space of probability measures – representing mixed strategies – over X .
Let us focus on cases where X and Y are continuous sets, say, X = Y = T1 the one-dimensional
Euclidean torus,5 and f : T1 × T1 → R is smooth. The above min-max problem is then infinite-
dimensional, and algorithms to solve it explicitly must be based on reparameterized formulations.
More specifically, suppose that the MNE (µ∗, ν∗) is unique and “sparse”, i.e., has finite supports:
supp(µ∗) = {x∗

I , 1 ≤ I ≤ N}, supp(ν∗) = {y∗J , 1 ≤ J ≤ M} (this is the case for example if f is
a sum of separable functions [SOP08]).

In this setting there are two natural reparameterizations and associated algorithms:

1. If the optimal support points {x∗
I}I , {y∗J}J are known, then we may reparameterize by

µ =
∑N

I=1 aIδx∗
I
, ν =

∑M
J=1 bJδy∗

J
and optimize over the aI , bJ . The problem reduces to

a constrained bilinear game

min
a∈∆N

max
b∈∆M

{
F1(a, b) =

N∑
I=1

M∑
J=1

aIbJ f(x∗
I , y

∗
J) =: a

⊤Pb

}
where ∆N denotes the standard simplex. A classical approach is then to apply Mirror Prox (MP)
with entropy link function [Nem04] (MP is the Bregman-geometry analog of EG).

2. If only the number of optimal support points is known, then we may reparameterize by µ =∑N
I=1 aIδxI

, ν =
∑M

J=1 bJδyJ
and optimize over both the weights (aI , bJ ) and the support

points (xI , yJ ). The problem reduces to

min
(a,x)∈∆N×(T1)N

max
(b,y)∈∆M×(T1)M

{
F2(a, x, b, y) =

N∑
I=1

M∑
J=1

aIbJ f(xI , yJ)

}
.

A possible approach is to iteratively update (simultaneously) the a, b using MP steps with step-size
η and the x, y using EG steps with step-size γη, for some parameter γ > 0. This algorithm is
called Conic Particle Mirror Prox in [WC22], but for concision we will refer to it simply as “EG”
in this section. Note that the main challenge in that reference is to deal with the case where N
and M are unknown, but here we assume they are known for the sake of simplicity.

In Fig. 2, we show the dependency on η and γ of the local convergence rate of MP and EG, as well as
that of the analogs of Sim-GDA and Alt-GDA and GF for the problem min(a,x) max(b,y) F2(a, x, b, y)
in order to illustrate the insights from Sec. 3.2. We used a randomly generated payoff function f , and
the convergence is measured by the iterates’ ℓ2 distance to the solution; see Sec. F.1 for details.

MP (the algorithm based on the reparameterization F1) converges to the MNE for any small enough
η with an exponential rate at least proportional to η2 [WLZL21], and this scaling is tight numerically

5The choice of X = Y = T1 is made for simplicity of exposition. The discussion below extends straightfor-
wardly to toruses of any dimension, and could be extended to X ,Y Riemannian manifolds without boundaries at
the cost of more technical notation.
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(a) Convergence rate r vs. γ (fixed η = 10−2) (b) Convergence rate vs. η (fixed γ = 10−2)

Figure 2: Observed local convergence rates r (i.e.,
∥∥zk − z∗

∥∥ = Θ((1 − r)k)) for various conic
particle methods using step-size η for the weights (a, b) and γη for the positions (x, y) and for a fixed
random draw of f . (left) Fixing η = 10−2, we observe a rate for GF (we plot η · µ̃γ) scaling as γ2 as
predicted in Prop. 4.1. Interestingly, Alt-GDA has exactly the same behavior, while the behavior of
Sim-GDA and EG differ for small γ, due to the corrective terms shown in Table 1. (right) Fixing
γ = 10−2, we observe a rate scaling as η for EG and its variants, and as η2 for MP; the convergence
of EG is mostly faster than MP.

(green dots in Fig. 2b). Its explicit variant (Mirror Descent-Ascent) and its continuous-time flow are
known to diverge for any η [BP18] [MPP18].

EG is known to converge locally to the MNE for any small enough η (and any γ > 0) with
an exponential rate at least proportional to η2, despite the non-convexity of F2, under some non-
degeneracy assumptions [WC22, Sec. 3.1]. However numerically the convergence rate of EG typically
scales as η, not η2 (orange dots in Fig. 2b) – a fact which we will explain below. The explicit variant
of EG and its continuous-time flow have not previously been analyzed; the discussion below will
give a characterization of when they converge locally.

Note that, at least for the particular f and γ used for Fig. 2b, EG converges locally faster than MP for
the same η (in number of iterations, the per-iteration costs differing only by a constant factor), even
though the former does not use the knowledge of the {x∗

I}I , {y∗J}! In other words, even when the
optimal support points are known, it is beneficial to use the overparameterized formulation F2 where
we also vary the support points.

Overparameterization induces partial curvature. Let us inspect the “Jacobians” at optimum for
the two dynamics, MP vs. EG with parameter γ. Due to the simplex constraints and the non-Euclidean
nature of the updates for a, b, the relevant matrices are MMP and Mγ defined below, in the sense
that the exponential convergence rate of each algorithm is µ̃Mη +O(η2) (see Sec. F.2, F.3). Namely,
omitting half of the antisymmetric off-diagonals for readability,

MMP =

[
0 ΠaDaPDbΠ

⊤
b

−(∗)⊤ 0

]
where Da = Diag(

√
a∗) (square roots being taken component-wise) and Πa ∈ R(N−1)×N is

any matrix such that ΠaΠ
⊤
a = IN−1 and Π⊤

a Πa = IN −
√
a∗
√
a∗

⊤
, and likewise for Db and

Πb ∈ R(M−1)×M ; and for EG,

Mγ =


0 0 ΠaDaPDbΠ

⊤
b

√
γ ΠaDa[∂yP ]Db

0 γDiag(∂2
xxPb∗)

√
γDa[∂xP ]DbΠ

⊤
b γDa[∂

2
xyP ]Db

−(∗)⊤ − (∗)⊤ 0 0

− (∗)⊤ − (∗)⊤ 0 −γDiag(∂2
yyP

⊤a∗)


where [∂xP ]IJ = ∂xf(x

∗
I , y

∗
J), and likewise for ∂yP , ∂2

xxP , ∂2
yyP , ∂2

xyP .

For MP, it is clear that the equivalent conditions of Thm. 2.1 are violated for any payoff function f ,
and so µ̃MMP = 0. For EG, depending on f and γ, they may or may not be violated. For all of the
random payoff functions we considered in our experiments, we observed that µ̃Mγ > 0, suggesting
that the conditions hold generically. They are violated for certain f ’s however, as shown in Sec. F.4,
so that the scaling in η2 of the convergence rate proved in [WC22] is tight in the worst case.
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More precisely as we show in the next proposition, assuming that the blocks of Mγ are in general
position, we expect µ̃Mγ

to scale as γ2, which is indeed observed in the numerical experiment
reported in Fig. 2a. The proof, placed in Sec. F.5, relies on the same tools as Prop. 3.1, that is, on the
asymptotic expansions of the eigenvalues of perturbed matrices.
Proposition 4.1. Let S2 symmetric and A0, A1, A2 antisymmetric real matrices of the form

S2 =

 0
∗

0
∗

 , A0 =

 ∗ 0
0 0

∗ 0
0 0

 , A1 =

 0 ∗
∗ 0

0 ∗
∗ 0

 , A2 =

 0 0
0 ∗

0 0
0 ∗


and Mγ = γS2 +A0 +

√
γA1 + γA2 for all γ > 0. Then µ̃Mγ = O(γ2) as γ → 0.

5 Conclusion

We have investigated the local convergence of gradient methods for min-max games and found
that they converge generically under partial curvature. In more specific settings, we have obtained
quantitative estimates of the local convergence rate which exhibit the average of the eigenvalues
of S as the driving quantity for typical problems. For the computation of mixed Nash equilibria of
continuous games, this leads to a behavior of conic particle gradient methods that is more favorable
than that described by the worst-case bounds.

More generally, our analysis leads to the following insights: (i) worst-case bounds might be looser
in min-max optimization (compared to minimization) as they fail to capture the interplay between
interaction and potential parts; (ii) the addition of new degrees of freedom with curvature typically
accelerates the local convergence, as we illustrated in Sec. 4.

We note that the phenomenon described in this paper is fundamentally a consequence of the fact
that the skewed gradient field’s Jacobian at optimum has a positive-semidefinite symmetric part.
This property is satisfied at local Nash equilibria of min-max games, i.e., of two-player zero-sum
differentiable games, but is not true for general differentiable games.
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A Local convergence rates of classical gradient methods

Consider a game minx∈Rn maxy∈Rm f(x, y) with local NE z∗ and let M =[
∇2

xxf ∇2
xyf

−∇2
xyf

⊤ −∇2
yyf

]
(z∗), assumed invertible for simplicity. Gradient-based iterative methods

can be written in the form zk+1 = T (zk) with the update operator T dependent only on ∇f and on
step-size η, and satisfying z∗ = T (z∗). It is well-known that local convergence is determined by
ρ(∇T (z∗)) where ∇T is the Jacobian of T . Namely, if ρ(∇T (z∗)) < 1 then the iterates converge
locally with

∥∥zk − z∗
∥∥ = O

(
ρ(∇T (z∗)) + ε)k

)
with ε > 0 an arbitrarily small constant [Ber97,

Proposition 4.4.1].

Table 2 summarizes the local convergence rates of three classical gradient methods, up to third order
in η. The last two columns of the table are valid for η ≤ ηmax (given by the second column), and
the O(·)’s hide only universal constants. In the last column, we denoted µ̃ = µ̃M for concision, and
L = ρ(M). “k-EG” stands for k-step Extra-Gradient. The table was extracted from the proofs of
[AMLG20, Appendix E].

As shown in the fourth column, the quantity µ̃M appears naturally in the bounds on the local
convergence rate 1 − ρ(∇T (z∗)), with all methods benefitting from µ̃M being larger. Moreover,
the rate depends linearly on µ̃M in the asymptotic regime of small η, as can be seen in the third
column, since 1 − ρ(∇T (z∗))2 ∼ 2ηminλ∈Sp(M) ℜ(λ) = 2ηµ̃M .6 This asymptotic equivalence
corresponds to the fact that GF, the continuous-time flow of all of the classical gradient methods, has
local exponential convergence rate equal to µ̃M . (Of course using a large η, or following a different
continuous-time flow than GF, may lead to faster convergence, but it may require knowledge of
problem parameters or the use of more complex adaptive schemes.)

Interestingly, as can be seen in the third column, EG may have a slower convergence rate than GDA
if |ℑ(λ)| < ℜ(λ) for λ = argminSp(M) ℜ(·), when η is small.

Table 2: Moduli of eigenvalues of ∇T (z∗) for classical gradient methods

Algorithm ηmax

{
|ν|2 , ν ∈ Sp(∇T (z∗))

}
Upper bound on ρ(∇T (z∗))2

Sim-GDA ∞
{
1− 2ηℜ(λ) + η2 |λ|2 , λ ∈ Sp(M)

}
1− 2ηµ̃+ η2L2

k-EG
(k ≥ 2)

(1− c)/L
(∀c > 0)

{
1− 2ηℜ(λ)− η2

(
|λ|2 − 4ℜ(λ)2

)
+O( 1

1−cη
3 |λ|3), λ ∈ Sp(M)

} 1− 1
(2−c)2 max

(
2ηµ̃, η2L2

)
PP ∞

{
1

1+2ηℜ(λ)+η2|λ2| , λ ∈ Sp(M)
}

1−max
(

2ηµ̃
1+2ηµ̃ ,

η2L2

1+η2L2

)

B Details for Sec. 3.1

B.1 Proof of Prop. 3.2

For ease of reference, we restate the proposition below.

Proposition 3.2. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Then

Tr(S)

n

(
1− 2

∥S∥F
Tr(S)

√
log n

)
≤ E

[
min

1≤j≤n
u⊤
j Quj + v⊤j Rvj

]
≤ Tr(S)

n

where ∥·∥F denotes the Frobenius norm. In particular, provided that Tr(S)
∥S∥F

≥ 2
√
log n(1 + c) for

some fixed c > 0, we have E
[
min1≤j≤n u

⊤
j Quj + v⊤j Rvj

]
≍ Tr(S)

n as n → ∞.

61− ρ(∇T (z∗))2 is the exponential convergence rate for
∥∥zk − z∗

∥∥2
, and 1− ρ(∇T (z∗)) is the one for∥∥zk − z∗

∥∥. Hence those two quantities differ by a factor 2 at first order in η. Equivalently, the additional factor
2 comes from the fact that ρ2 = [1− (1− ρ)]2 ≈ 1− 2(1− ρ) when ρ is close to 1.
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For the sake of concision, let W =

[
U
V

]
and wj = W•j =

(
uj

vj

)
, and (in this appendix only) µ :=

minj≤n u
⊤
j Quj + v⊤j Rvj = minj≤n w

⊤
j Swj the quantity which we want to estimate. Furthermore,

denote s1 ≥ ... ≥ sr > 0 = sr+1 = ... = s2n the eigenvalues of S, and assume S is diagonal w.l.o.g.
Also let, for all j ≤ n, N1, ..., Nn,M1, ...,Mn ∼ χ2

n i.i.d. and independent of U and V , and pose

aj =

(√
Nj uj√
Mj vj

)
.

Note that for each j, aj ∼ N (0, I2n). Indeed,
√

Nj uj ∼ N (0, In) since it is isotropic and its norm
has the correct distribution, and likewise for

√
Mj vj ; so aj ∼ N (0, I2n) as the concatenation of

two independent standard Gaussian vectors.

Lemma B.1. We have 1
nE
[
minj≤n a

⊤
j Saj

]
≤ Eµ ≤ Tr(S)

n .

Proof. Let J := argminj≤n w
⊤
j Swj . Then a⊤J SaJ = NJu

⊤
J QuJ + MJv

⊤
J RvJ . Now J is a

deterministic function of the (wj)j≤n, and (Nj ,Mj)j≤n are i.i.d. and independent of (wj)j≤n, so we
have the conditional expectation E[NJ |(wj)j≤n] = EN1 = Eχ2

n = n and likewise for MJ . Thus,

E
[
a⊤J SaJ

∣∣(wj)j≤n

]
= E [NJ |(wj)j≤n]u

⊤
J QuJ + E [MJ |(wj)j≤n] v

⊤
J RvJ = nµ,

and the first inequality follows by taking total expectations.

For the second inequality, Eµ ≤ Eu⊤
1 Qu1 + v⊤1 Rv1. Now letting a

(1)
1 =

√
N1 u1 ∼ N (0, In),

N1u
⊤
1 Qu1 = (a

(1)
1 )⊤Qa(1), so taking expectations on both sides, nEu⊤

1 Qu1 = Tr(Q). So Eµ ≤
Tr(Q)+Tr(R)

n = Tr(S)
n .

Let for concision ζj = a⊤j Saj for each j ≤ n.

Lemma B.2. The moment-generating function of ζ1(∼ ζ2 ∼ ... ∼ ζn) is

Eetζ1 =

r∏
l=1

(1− 2slt)
−1/2 for all t <

1

2maxl sl
.

Proof. Since ζ1 =
∑2n

l=1 sla1[l]
2 and a1[l]

2 ∼ χ2 i.i.d., we have Eeta1[l]
2

= (1 − 2t)−1/2 for all
t < 1

2 and Eetζ1 =
∏r

l=1 Eetsla1[l]
2

=
∏r

l=1(1− 2slt)
−1/2 for all t < 1

2maxl sl
.

We now lower-bound the expectation of minj≤n ζj using a Chernoff bound-type argument, which we
note does not require independence.
Lemma B.3. We have

Emin
j≤n

ζj ≥ Tr(S)

(
1− 2

∥S∥F
Tr(S)

√
log n

)
where ∥·∥F denotes Frobenius norm, i.e., ℓ2-norm of the vector of eigenvalues.

Proof. By Jensen’s inequality and monotonicity of exp(·),

∀t > 0, exp

(
t Emax

j≤n
−ζj

)
≤ E exp

(
tmax

j≤n
−ζj

)
= Emax

j≤n
exp (−tζj) .

So, taking log and optimizing the bound,

Emax
j≤n

(−ζj) ≤ inf
t>0

1

t
logEmax

j≤n
exp (t(−ζj))

≤ inf
t>0

1

t
log
[
nEet(−ζ1)

]
= inf

t>0

1

t
log

[
n

r∏
l=1

(1 + 2slt)
−1/2

]

= inf
t>0

1

t

(
log(n)− 1

2

r∑
l=1

log(1 + 2slt)

)
=: inf

t>0
g(t). (B.1)
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By calculating we find that g′(t) > 0 ⇐⇒
∑r

l=1

[
log(1 + 2slt)− 2slt

1+2slt

]
> 2 log n. With the

case r ≫ log n in mind, let us evaluate at t(1) defined by
∑r

l=1 2(slt)
2 = 2 log n, i.e., t(1) =√

log n/ ∥S∥F . (This choice is obtained by Taylor expansion for t → 0 of the condition g′(t) = 0.)
Using that log(1 + y) ≥ y − 1

2y
2 for y ≥ 0, we get

g(t(1)) =
∥S∥F√
log n

(
log n− 1

2

r∑
l=1

log

(
1 + 2sl

√
log n

∥S∥F

))

≤
∥S∥F√
log n

(
log n− 1

2

r∑
l=1

(
2sl

√
log n

∥S∥F
− 1

2
4s2l

log n

∥S∥2F

))

=
∥S∥F√
log n

(
log n− Tr(S)

√
log n

∥S∥F
+ log n

)
= −Tr(S) + 2 ∥S∥F

√
log n.

Thus, Eminj≤n ζj ≥ −g(t(1)) ≥ Tr(S)− 2 ∥S∥F
√
log n = Tr(S)

(
1− 2

∥S∥F

Tr(S)

√
log n

)
.

The upper bound of Prop. 3.2 is shown in Lemma B.1, and the lower bound follows immediately
from substituting Lemma B.3 into Lemma B.1.

B.2 Proof of Prop. 3.3

For ease of reference, we restate the proposition below.
Proposition 3.3. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Let s1 ≥ ... ≥ sr > 0 = sr+1 = ... = s2n the eigenvalues of S.
Then

E
[
min
j≤n

u⊤
j Quj + v⊤j Rvj

]
≥ max

S⊂{1,...,r}

1

e

|S|
n

n− 2
|S|

[∏
l∈S

sl

] 1
|S|

.

In particular, E
[
minj≤n u

⊤
j Quj + v⊤j Rvj

]
≳ n− 2

r−1 when n → ∞ and r and s ∈ Rr are fixed.

We are still exactly in the same setting as for Prop. 3.2, so all the lemmas of Sec. B.1 apply. We

also reuse notations from that subsection: µ = minj≤n u
⊤
j Quj + v⊤j Rvj , aj =

(√
Nj uj√
Mj vj

)
where

N1, ..., Nn,M1, ...,Mn ∼ χ2
n i.i.d. and independent of U and V , and ζj = a⊤j Saj for j ≤ n. We

also assume S diagonal w.l.o.g.

Recall from Lemma B.1 that Eµ ≥ 1
nEminj≤n ζj . The proposition then follows immediately from

the following lemma.

Lemma B.4. Let any S ⊂ {1, ..., r}, denote rS = |S| and GS =
[∏

l∈S sl
]1/rS . Then we have

Eminj≤n ζj ≥ 1
e rS n

− 2
rS GS .

Proof. Recall from (B.1) that

Emax
j≤n

(−ζj) ≤ inf
t>0

1

t

(
log(n)− 1

2

r∑
l=1

log(1 + 2slt)

)
=: inf

t>0
g(t)

and that g′(t) > 0 ⇐⇒
∑r

l=1

[
log(1 + 2slt)− 2slt

1+2slt

]
> 2 log n.

With the case r ≪ log n in mind, let us evaluate at t(2) defined by
∑r

l=1 [log(1 + 2slt)− 1] =

2 log n, i.e.,
∏r

l=1(1 + 2slt) = e2 logn+r = n2er – more precisely, let t(2) be the smallest positive
such t (since there may be several solutions to that polynomial equation). Then g(t(2)) = 1

t(2)
(−r/2).

Let us further upper-bound t(2) by some u > 0. Since t(2) is defined as the smallest positive
root of the polynomial P (t) =

∏r
l=1(1 + 2slt) − n2er, and since P (0) < 0, it suffices to pick
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any u > 0 that P (u) ≥ 0. Since P (t) ≥ [
∏r

l=1 2sl] t
r − n2er for any t > 0,7 we may choose

u = (n2er)
1
r / [
∏r

l=1 2sl]
1
r .

Thus we have

−Emin
j≤n

ζj ≤ g(t(2)) =
1

t(2)
(−r/2) ≤ 1

u
(−r/2) =

[
∏r

l=1 2sl]
1/r

(n2er)1/r
(−r/2)

Emin
j≤n

ζj ≥ r
[
∏r

l=1 sl]
1/r

e · n2/r
.

This shows the lemma in the case S = {1, ..., r}.

For the case of arbitrary S ⊂ {1, ..., r}, drop some terms in the Chernoff bound-type inequality; that
is, upper-bound −

∑
l ̸∈S log(1 + 2slt) by zero:

−Emin
j≤n

ζj ≤ inf
t>0

1

t

(
log(n)− 1

2

r∑
l=1

log(1 + 2slt)

)
≤ inf

t>0

1

t

(
log(n)− 1

2

∑
l∈S

log(1 + 2slt)

)
︸ ︷︷ ︸

=:gS(t)

.

Thereafter, going through exactly the same considerations as above, we obtain the inequality where
we restricted attention to the components l ∈ S.

B.3 High-probability bounds for the spread-out spectrum case

In this subsection we provide a high-probability counterpart to the expectation estimate from Prop. 3.2,
where we showed E

[
minj≤n u

⊤
j Quj + v⊤j Rvj

]
∼ Tr(S)

n when Tr(S)
∥S∥F

≥ Ω(
√
log n).

Proposition B.5. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Then, denoting µ = minj≤n u

⊤
j Quj + v⊤j Rvj ,

∀0 ≤ γ ≤ 1, P
(
µ ≥ Tr(S)

2n
(1− γ)

)
≥ 1− ne

−Tr(S)2

4∥S∥2
F

γ2

− 2e−
n
8

and ∀γ ≥ 0, P
(
µ ≤ 4Tr(S)

n
(1 + γ)

)
≥

1− e
−Tr(S)2

8∥S∥2
F

γ2

− 2e−
n
8 if γ ≤ ∥S∥2

F

Tr(S)|||S|||

1− e−
Tr(S)
8|||S|||γ − 2e−

n
8 otherwise

where ∥·∥F denotes the Frobenius norm and |||·||| denotes the operator norm.

The remainder of this subsection is dedicated to proving the above proposition. Let as in Sec. B.1

aj =

(√
Nj uj√
Mj vj

)
where N1, ..., Nn,M1, ...,Mn ∼ χ2

n i.i.d. and independent of U and V , and

ζj = a⊤j Saj for j ≤ n. Also denote s1 ≥ ... ≥ sr > 0 = sr+1 = ...s2n the eigenvalues of S, and
assume S diagonal w.l.o.g.

Lemma B.6. For each j, P
(

1
2n ≤ 1

Nj

)
≥ 1− e−

n
8 and P

(
1
Nj

≤ 4
n

)
≥ 1− e−

n
8 .

Proof. Since Nj ∼ χ2
n, we have the classical concentration bounds [LM00, Equations (4.3), (4.4)]

∀t > 0, P
(
Nj − n ≤ 2

√
nt+ 2t

)
≥ 1− e−t and P

(
Nj − n ≥ −2

√
nt
)
≥ 1− e−t.

Evaluating the first inequality at t = n
8 yields Nj ≤ n+ n√

2
+ n

4 ≤ 2n with probability ≥ 1− e−
n
8 .

Evaluating the second inequality at t = n
8 yields Nj ≥ n− n√

2
≥ n

4 with probability ≥ 1−e−
n
8 .

7And this approximation of P (t) intuitively makes sense to do since our choice of t(2) was guided by the
Ansatz that 2slt

1+2slt
≈ 1, i.e. slt ≫ 1, for all l ≤ r.
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Letting the random variable J = argminj≤n u
⊤
j Quj + v⊤j Rvj that is only dependent on U and V ,

so independent of the Nj , Mj , we have

µ =
1

NJ
·
√
NJu

⊤
J Q
√
NJuJ +

1

MJ
·
√

MJv
⊤
J R
√
MJvJ ≥

(
1

NJ
∧ 1

MJ

)
a⊤J SaJ

≥
(

1

NJ
∧ 1

MJ

)
min
j≤n

a⊤j Saj

and so by union bound, using that NJ ∼ N1 and MJ ∼ M1 by independence,

∀c ≥ 0, P (µ ≥ c) ≥ P
(
min
j≤n

a⊤j Saj ≥ 2nc

)
− 2e−

n
8 . (B.2)

Let for concision ζj = a⊤j Saj for each j ≤ n. Recall from Lemma B.2 that the moment-generating
function of ζ1(∼ ζ2 ∼ ... ∼ ζn) is

Eetζ1 =

r∏
l=1

(1− 2slt)
−1/2 for all t <

1

2maxl sl
.

We can now use union bound and Chernoff’s bound to lower-bound minj≤n ζj with high probabil-
ity. The derivation is essentially an instantiation of the general subexponential tail bound [Wai19,
Sec. 2.1.3] using our precise knowledge of the moment-generating function of the ζj .
Lemma B.7. For any 0 ≤ γ ≤ 1, we have

P
(
min
j≤n

ζj ≥
Tr(S)

2n
(1− γ)

)
≥ 1− ne

−Tr(S)2

4∥S∥2
F

γ2

where ∥·∥F denotes Frobenius norm, i.e., ℓ2-norm of the vector of eigenvalues.

Proof. By union bound, since the ζj are identically distributed, P (minj ζj ≤ x) ≤ nP (ζ1 ≤ x). By
Markov’s inequality,

P (ζ1 ≤ x) = P (−ζ1 ≥ −x) ≤ inf
t>0

1

e−tx
Ee−tζ1 = inf

t>0
etx

r∏
l=1

(1 + 2slt)
−1/2

logP (ζ1 ≤ x) ≤ inf
t>0

tx− 1

2

r∑
l=1

log(1 + 2slt) =: inf
t>0

gx(t).

By calculating we find that g′x(t) > 0 ⇐⇒ 2x >
∑r

l=1
2slt

1+2slt
. With the case

x ≈ Eζ1 = Tr(S) ≪ r in mind, let us evaluate at t(1)x defined by 2x =
∑r

l=1 2sl(1 − 2slt) =

2Tr(S)− 4 ∥S∥2F t, i.e., t(1)x = Tr(S)−x

2∥S∥2
F

. Assume henceforth that x ≤ Tr(S) so that t(1)x ≥ 0. Using

that log(1 + y) ≥ y − 1
2y

2 for y ≥ 0, we get

gx(t
(1)
x ) =

Tr(S)− x

2 ∥S∥2F
x− 1

2

r∑
l=1

log

(
1 + 2sl

Tr(S)− x

2 ∥S∥2F

)

≤ Tr(S)x− x2

2 ∥S∥2F
− 1

2

r∑
l=1

2sl
Tr(S)− x

2 ∥S∥2F
+

1

4

r∑
l=1

4s2l

(
Tr(S)− x

2 ∥S∥2F

)2

=
Tr(S)x− x2

2 ∥S∥2F
− Tr(S)

Tr(S)− x

2 ∥S∥2F
+ ∥S∥2F

(
Tr(S)− x

2 ∥S∥2F

)2

=
1

2 ∥S∥2F

[
Tr(S)x− x2 − Tr(S)2 +Tr(S)x+

1

2
(Tr(S)− x)

2

]
= − 1

4 ∥S∥2F
[Tr(S)− x]2.
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Hence we have shown

∀x ≤ Tr(S), P
(
min
j

ζj ≤ x

)
≤ nP (ζ1 ≤ x) ≤ n exp

(
− 1

4 ∥S∥2F
[Tr(S)− x]2

)
and the announced bound follows by a change of variables γ = 1− x

Tr(S) .

Combining (B.2) with Lemma B.7 yields the high-probability lower bound

∀0 ≤ γ ≤ 1, P
(
µ ≥ Tr(S)

2n
(1− γ)

)
≥ 1− ne

−Tr(S)2

4∥S∥2
F

γ2

− 2e−
n
8

which is exactly the lower bound of Prop. B.5.

For a high-probability upper bound on µ = minj≤n w
⊤
j Swj , in the regime of interest in this

subsection it is sufficient to start from

µ ≤ w⊤
1 Sw1 =

1

N1
·
√
N1u

⊤
1 Q
√
N1u1 +

1

M1
·
√
M1v

⊤
1 R
√

M1v1 ≤
(

1

N1
∨ 1

M1

)
a⊤1 Sa1

so that, by union bound and Lemma B.6,

∀C ≥ 0, P(µ ≤ C) ≥ P
(
a⊤1 Sa1 ≤ n

4
C
)
− 2e−

n
8 . (B.3)

Hence it is sufficient to upper-bound ζ1 = a⊤1 Sa1 with high probability.
Lemma B.8. For any ε ≥ 0, we have

P (ζ1 ≤ Tr(S) + ε) ≥

1− e
− ε2

8∥S∥2
F if 0 ≤ ε ≤ ∥S∥2

F

maxl sl

1− e
− ε

8maxl sl otherwise.

Proof. ζ1 =
∑r

l=1 sla1[l]
2 is subexponential with parameters

(√∑r
l=1(2 · sl)2,maxl≤r 4 · sl

)
as

a linear combinations of independent χ2 random variables aj [l]
2 which are subexponential with

parameters (2, 4) [Wai19, Sec. 2.1.3]. The announced subexponential tail bound follows by a direct
application of [Wai19, Prop. 2.9].

Combining (B.3) with Lemma B.8 yields the high-probability upper bound

∀ε ≥ 0, P
(
µ ≤ 4

Tr(S) + ε

n

)
≥

1− e
− ε2

8∥S∥2
F − 2e−

n
8 if ε ≤ ∥S∥2

F

maxl sl

1− e
− ε

8maxl sl − 2e−
n
8 otherwise

and so ∀γ ≥ 0, P
(
µ ≤ 4Tr(S)

n
(1 + γ)

)
≥

1− e
−Tr(S)2

8∥S∥2
F

γ2

− 2e−
n
8 if γ ≤ ∥S∥2

F

Tr(S)[maxl sl]

1− e
− Tr(S)γ

8maxl sl − 2e−
n
8 otherwise

by the change of variables Tr(S)γ = ε, which is exactly the upper bound of Prop. B.5.

B.4 High-probability bounds for the sparse spectrum case

In this subsection we provide a high-probability counterpart to the expectation lower estimate
from Prop. 3.3, where we showed E

[
minj≤n u

⊤
j Quj + v⊤j Rvj

]
≳ n− 2

r−1 when n → ∞ with
r = rank(S) and s ∈ Rr fixed.
Proposition B.9. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Let s1 ≥ ... ≥ sr > 0 = sr+1 = ... = s2n the eigenvalues of S.
Then denoting µ = minj≤n u

⊤
j Quj + v⊤j Rvj , for any S ⊂ {1, ..., r},

∀0 ≤ γ ≤ 1, P

µ ≥ 1

2e

|S|
n

n− 2
|S|

[∏
l∈S

sl

] 1
|S|

· (1− γ)

 ≥ 1− e−
|S|
2 γ − 2e−

n
8 .
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The remainder of this subsection is dedicated to proving the above proposition. As we are exactly in
the same setting as for Prop. B.5, all the lemmas of Sec. B.3 apply. We also reuse notations from that

subsection: aj =
(√

Nj uj√
Mj vj

)
where N1, ..., Nn,M1, ...,Mn ∼ χ2

n i.i.d. and independent of U and

V , and ζj = a⊤j Saj for j ≤ n. We also assume S diagonal w.l.o.g.

Given (B.2), in order to prove the proposition it suffices to derive a different lower tail bound for
minj≤n ζj that is more adapted to the sparse spectrum case.

Lemma B.10. Let any S ⊂ {1, ..., r}, rS = |S| and GS =
[∏

l∈S sl
]1/rS . Then

∀γ ∈ R, P

min
j≤n

ζj ≥
rS
e
n
− 2

rS

[∏
l∈S

sl

] 1
rS

· (1− γ)

 ≥ 1− e−
rS
2 γ .

Proof. Let any x ∈ R. By Markov’s inequality,

P
(
min
j

ζj ≤ x

)
= P

(
max

j
(−ζj) ≥ −x

)
≤ inf

t>0

1

e−tx
Eetmaxj(−ζj) = inf

t>0
etx · Emax

j
et(−ζj).

Now for any α ≥ 1, by monotonicity and concavity of y 7→ y1/α,

Emax
j≤n

et(−ζj) = E

[(
max
j≤n

eαt(−ζj)

)1/α
]
≤ E


∑

j≤n

eαt(−ζj)

1/α
 ≤

E∑
j≤n

eαt(−ζj)

1/α

=
[
nEeαt(−ζ1)

]1/α
.

Hence, taking the infimum over α and substituting into the above inequality,8

P
(
min
j

ζj ≤ x

)
≤ inf

t>0
etx · inf

α≥1

[
nEeαt(−ζ1)

]1/α
logP

(
min
j

ζj ≤ x

)
≤ inf

t>0
tx+ inf

α≥1

1

α

(
log n+ logEeαt(−ζ1)

)
= inf

t>0
t

[
x+ inf

β≥t

1

β

(
log n+ logEeβ(−ζ1)

)]
.

Let, as in the proof of Lemma B.4,

g(β) :=
1

β

(
log n+ logEe−βζ1

)
=

1

β

(
log n− 1

2

r∑
l=1

log(1 + 2slβ)

)
and u :=

e

2
n

2
r

[
r∏

l=1

sl

]− 1
r

.

One can check, by lower-bounding log(1 + 2slu) by log(2slu) for each term, that g(u) ≤ 1
u (−r/2).

Hence,

logP
(
min
j

ζj ≤ x

)
≤ inf

t>0
t

[
x+ inf

β≥t
g(β)

]
≤ inf

0<t≤u
t (x+ g(u))

≤ u(x+ g(u)) ≤ ux− r

2
=

r

2
·
(

u

r/2
x− 1

)
.

Hence we have shown that for all x ∈ R,

P
(
min
j

ζj ≤ x

)
≤ exp

(
−r

2

(
1− u

r/2
x

))
.

8In fact one can check, by inverting inft and infα and optimizing first over t, that the infimum over the joint
(t, α) is always attained at some (t∗, 1); that is, the true optimum is always at α = 1. What introducing the extra
degree of freedom α affords us is a way to obtain a tractable upper bound, whereas upper-bounding the inft
with α = 1 fixed seems more difficult.
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The inequality of the lemma with S = {1, ..., r} follows by the change of variable γ = 1− u
r/2x and

substituting the expression of u.

The inequality for arbitrary S ⊂ {1, ..., r} follows by exactly the same considerations as above
applied to

gS(β) =
1

β

(
log n− 1

2

∑
l∈S

log(1 + 2slβ)

)
and uS =

e

2
n

2
rS

[∏
l∈S

sl

]− 1
rS

instead of g and u, noting that g(β) ≤ gS(β) for any β > 0.

Combining (B.2) with Lemma B.10 yields the high-probability lower bound

∀γ ∈ R, P

µ ≥ 1

2n

|S|
e
n− 2

|S|

[∏
l∈S

sl

] 1
|S|

· (1− γ)

 ≥ 1− e−
|S|
2 γ − 2e−

n
8

for any S ⊂ {1, ..., r}, which is exactly the inequality of Prop. B.5.

C A symmetric expression for Alt-GDA

This appendix contains results stated in Sec. 3.2 and used in Sec. D.3 and that may be of independent
interest.

As announced in Sec. 3.2, we analyze a symmetrized formulation of Alt-GDA, whose definition we
recall here for ease of reference: let (x0, y

1/2) ∈ Rd × Rd and{
∀k ∈ N, xk+1 = xk − η∇xf(x

k, yk+
1/2)

∀k ∈ N+ 1/2, yk+1 = yk + η∇yf(x
k+1/2, yk)

and

{
∀k ∈ N, xk+1/2 = xk+1+xk

2

∀k ∈ N+ 1/2, yk+
1/2 = yk+1+yk

2 .
(C.1)

Note that this symmetrized formulation is indeed equivalent to standard one (used e.g. in [Gid+19;
BGP20; ZWLG22; GLWM22]), via the correspondence ∀k ∈ N, x̃k = xk and ỹk = yk+

1/2. We
emphasize that, as one can easily check from the definition, the symmetrized iterates (zk)k =
(xk, yk)k converge if and only if the classical ones (z̃k)k = (xk, yk+

1/2)k∈N do, and if they converge
exponentially, then they have the same convergence rate.

The following proposition shows that the evolution of the symmetrized Alt-GDA iterates can be
expressed approximately in terms only of the (skewed) gradient field g(z).

Proposition C.1. Assume η ≤
∥∥∇2

xxf
∥∥−1

∞ ∧
∥∥∇2

yyf
∥∥−1

∞ . Then the symmetrized Alt-GDA iterates
defined by (C.1) satisfy

∀k ∈ N ∪ (N+ 1/2), zk+1 = zk − ηg(zk) +
η2

2
A(zk)g(zk) +O

(
η3
∥∥g(zk)∥∥)

where A(z) =

[
0 ∇2

xyf
−∇2

xyf
⊤ 0

]
(z). More precisely the “O(·)” term is a vector with norm at

most 10η3
∥∥g(zk)∥∥(∥∥∇3f

∥∥
∞ (1 +

∥∥∇2
xyf
∥∥2
∞ η2) +

∥∥∇2f
∥∥
∞

∥∥g(zk)∥∥).

Remark C.1 (High-resolution ODE for the symmetrized iterates). The symmetrized update operator
with the O(η3) term neglected, z 7→ z − ηg(z) + η2

2 A(z)g(z), leads to a different high-resolution
ODE than the one derived by [GLWM22, Eq. (12)] for the standard formulation. The one derived in
that reference is

dz̃

dt
= −g(z̃)− η

2

[
Q P
P⊤ −R

]
(z̃)g(z̃) where

[
Q P

−P⊤ R

]
(z) := ∇g(z)

while the high-resolution ODE corresponding to the symmetrized update zk+1 ≈ T (zk) can be
shown – simply by applying the high-resolution ODE for explicit Euler steps [Lu22, Eq. (20)] to the
vector field −g(z) + η

2A(z)g(z) – to be

dz

dt
= −g(z)− η

2
M(z)g(z) +

η

2
A(z)g(z) = −g(z)− η

2

[
Q 0
0 R

]
(z)g(z).
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There is no contradiction here, as the classical Alt-GDA iterates z̃k are not identical pointwise to
the symmetrized ones zk; instead the correspondence involves a time-shift of +1/2 for one of the
variables. Informally, the former high-resolution ODE tracks the evolution of the Alt-GDA iterates
using a piecewise-constant (forward in time) interpolation scheme, with the arbitrary choice of
measuring at time-steps where y was updated more recently than x, and the latter tracks the same
iterates but using a piecewise-linear (trapezoidal) interpolation scheme.

Proof. As usual in this paper we let for concision zk = (xk, yk) for all k ∈ N ∪ (N + 1/2).
Denote Lxx =

∥∥∇2
xxf
∥∥
∞, Lyy =

∥∥∇2
yyf
∥∥
∞, Lxy =

∥∥∇2
xyf
∥∥
∞, L2 = Lxx ∨ Lyy ∨ Lxy and

L3 =
∥∥∇3f

∥∥
∞. Throughout this proof we will write ε or ε′ to denote elements of [−1, 1] or of the

unit ball of Rn or Rm or Rn+m, and that may change from line to line.

Let k ∈ N. By Taylor expansion with remainder in Lagrange form,

xk+1 − xk = −η∇xf(x
k, yk+

1/2)

= −η

[
∇xf(z

k) +∇2
xyf(z

k) · (yk+1/2 − yk) + ε

(
L3

2

∥∥∥yk+1/2 − yk
∥∥∥2)] .

Now

yk+
1/2 − yk = yk+

1/2 − yk+
1/2 + yk−

1/2

2
=

yk+
1/2 − yk−

1/2

2

and yk+
1/2 − yk−

1/2 = η∇yf(x
k, yk−

1/2) = η∇yf(z
k) + ε

(
ηLyy

∥∥∥yk − yk−
1/2
∥∥∥)

= η∇yf(z
k) + ε

(
ηLyy

1

2

∥∥∥yk+1/2 − yk−
1/2
∥∥∥)

since yk−
1/2 − yk = yk−

1/2 − yk+
1/2 + yk−

1/2

2
= −yk+

1/2 − yk−
1/2

2
= −

(
yk+

1/2 − yk
)
.

Moreover, the above computation also shows that∥∥∥yk+1/2 − yk−
1/2
∥∥∥ ≤ η

∥∥∇yf(z
k)
∥∥+ ηLyy

1

2

∥∥∥yk+1/2 − yk−
1/2
∥∥∥

and so
∥∥∥yk+1/2 − yk−

1/2
∥∥∥ ≤ 1

1− ηLyy/2
η
∥∥∇yf(z

k)
∥∥ (C.2)

for any η ≤ 2/Lyy. In particular, since we assume η ≤ 1/Lyy then
∥∥yk+1/2 − yk−

1/2
∥∥ ≤

2η
∥∥∇yf(z

k)
∥∥. Thus, using this last fact to express the error terms in terms of

∥∥g(zk)∥∥ =
∥∥∇f(zk)

∥∥,
by substituting into the Taylor expansion of xk+1 − xk we obtain

∀k ∈ N, xk+1 − xk = −η∇xf(z
k)− 1

2
η2∇2

xyf(z
k) · ∇yf(z

k)

+ ε

(
η2LxyLyy

1

2

∥∥∥yk+1/2 − yk−
1/2
∥∥∥)+ ε′

(
η
L3

8

∥∥∥yk+1/2 − yk−
1/2
∥∥∥2)

= −η∇xf(z
k)− 1

2
η2∇2

xyf(z
k) · ∇yf(z

k) + η3ε

(
LxyLyy

∥∥g(zk)∥∥+ L3

2

∥∥g(zk)∥∥2) . (C.3)

By the symmetric calculations, we have

∀k ∈ N+ 1/2, yk+1 − yk = η∇yf(z
k)− 1

2
η2∇2

yxf(z
k)∇xf(z

k)

+ η3ε

(
LxyLyy

∥∥g(zk)∥∥+ L3

2

∥∥g(zk)∥∥2) . (C.4)
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Now let us compute an expansion for the increments between non-updating time-steps. Let k ∈ N
and let us compute yk+1 − yk:

yk+1 − yk =
yk+

3
2 + yk+

1/2

2
− yk+

1/2 + yk−
1/2

2
=

1

2

(
yk+

3
2 − yk−

1/2
)

=
1

2

(
η∇yf

(
xk+1, yk+

1/2
)
+ η∇yf

(
xk, yk−

1/2
))

=
1

2
η
[
2∇yf(z

k) +∇2
yxf(z

k) · (xk+1 − xk) +∇2
yyf(z

k) · (yk+1/2 − yk) +∇2
yyf(z

k) · (yk−1/2 − yk)
]

+ ε

(
η
L3

2

∥∥xk+1 − xk
∥∥2 + η

L3

2

∥∥∥yk+1/2 − yk
∥∥∥2)+ ε′

(
η
L3

2

∥∥∥yk − yk−
1/2
∥∥∥2)

= η∇yf(z
k) +

1

2
η∇2

yxf(z
k) · (xk+1 − xk) +

1

2
η∇2

yyf(z
k) ·

(
yk+

1/2 + yk−
1/2 − 2yk

)
︸ ︷︷ ︸

=0

+ ε

(
η
L3

2

∥∥xk+1 − xk
∥∥2 + η

L3

4

∥∥∥yk+1/2 − yk−
1/2
∥∥∥2)

= η∇yf(z
k) +

1

2
η∇2

yxf(z
k) · (xk+1 − xk) + ε

(
η3L3

(
2 + L2

xyη
2
) ∥∥g(zk)∥∥2) .

Here in order to bound the error term in
∥∥xk+1 − xk

∥∥ we used that∥∥xk+1 − xk
∥∥ = η

∥∥∥∇xf(x
k, yk+

1/2)
∥∥∥ ≤ η

∥∥∇xf(z
k)
∥∥+ ηLxy

∥∥∥yk+1/2 − yk
∥∥∥

= η
∥∥∇xf(z

k)
∥∥+ 1

2
ηLxy

∥∥∥yk+1/2 − yk−
1/2
∥∥∥ ≤ η(1 + Lxyη)

∥∥g(zk)∥∥∥∥xk+1 − xk
∥∥ ≤ η2

(
2 + 2L2

xyη
2
) ∥∥g(zk)∥∥2

since
∥∥yk+1/2 − yk−

1/2
∥∥ ≤ 2η

∥∥∇yf(z
k)
∥∥ as shown previously (C.2). Hence, substituting the

expansion of xk+1 − xk from the previous paragraph, we have

∀k ∈ N, yk+1 − yk = η∇yf(z
k) +

1

2
η∇2

yxf(z
k) ·

[
−η∇xf(z

k)− 1

2
η2∇2

xyf(z
k) · ∇yf(z

k)

]
+ η3ε

(
L3

(
2 + L2

xyη
2
) ∥∥g(zk)∥∥2 + LxyLyy

∥∥g(zk)∥∥+ L3

2

∥∥g(zk)∥∥2)
= η∇yf(z

k)− 1

2
η2∇2

yxf(z
k)·∇xf(z

k)+η3ε

(
L3

(
5

2
+ L2

xyη
2

)∥∥g(zk)∥∥2 + 5

4
L2
2

∥∥g(zk)∥∥) .

(C.5)

By the symmetric calculations, we have

∀k ∈ N+ 1/2, xk+1 − xk = −η∇xf(z
k)− 1

2
η2∇2

xyf(z
k) · ∇yf(z

k)

+ η3ε

(
L3

(
5

2
+ L2

xyη
2

)∥∥g(zk)∥∥2 + 5

4
L2
2

∥∥g(zk)∥∥) . (C.6)

The announced expansion for zk+1 − zk, both at time-steps k ∈ N and k ∈ N + 1/2, follows
immediately from (C.3), (C.4), (C.5) and (C.6).

The above Prop. C.1 is already a good indication of the fact that local convergence of Alt-GDA
can be analyzed via the spectrum of ∇

[
id−ηg + η2

2 A · g
]
(z∗) = I − ηM + η2

2 AM . In fact,

since the error term in the above proposition is O(η3
∥∥g(zk)∥∥), one can follow the potential-based

approach developed in [Lu22, Sec. 4] (via continuous-time) or [WC22, Sec. H] (for a special case),
to lower-bound the decrease of

∥∥g(zk)∥∥ or
∥∥zk − z∗

∥∥ at each iteration. However that approach may
require η to be smaller than actually necessary. The following proposition offers a more direct path to
linking convergence of Alt-GDA to spectral properties of the aforementioned matrix.
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Proposition C.2. Assume η ≤
∥∥∇2

xxf
∥∥−1

∞ ∧
∥∥∇2

yyf
∥∥−1

∞ . Consider zk = (xk, yk)k∈N∪(N+1/2) the
symmetrized Alt-GDA iterates defined by (C.1).

For any k ∈ N∪(N+1/2), zk+1/2 is entirely determined by zk. More precisely, there exist well-defined

operators T
1/2
xy , T

1/2
yx such that

{
∀k ∈ N, zk+

1/2 = T
1/2
xy (zk)

∀k ∈ N+ 1/2, zk+
1/2 = T

1/2
yx (zk)

.

Moreover, for z∗ such that g(z∗) = 0, it holds T
1/2
xy (z∗) = T

1/2
yx (z∗) = z∗ and

∇
[
T

1/2
xy ◦ T 1/2

yx

]
(z∗), ∇

[
T

1/2
yx ◦ T 1/2

xy

]
(z∗) = I − ηM +

η2

2
AM +O(η3).

More precisely the “O(·)” term is a matrix with operator norm – and so spectral radius – at most
2η3|||A||| (|||A||| ∨ |||S|||)2, where |||·||| denotes operator norm.

Thanks to the above proposition, one can analyze the local convergence of the integer-time-step
iterates (zk)k∈N, say, by applying the usual analysis to its well-defined update operator T

1/2
yx ◦ T 1/2

xy ;
that is to say, by bounding the spectral radius of its Jacobian at z∗.

For comparison, the update operator T̃xy for the standard formulation is given by z̃k+1 =(
x̃k −∇xf(x̃

k, ỹk)
ỹk +∇yf(x̃

k+1, ỹk)

)
. Denoting M =

[
Q P

−P⊤ R

]
as usual the Jacobian of g at a fixed point z∗,

the Jacobian of T̃xy at z∗ writes [ZWLG22, Sec. A.3]

∇T̃xy(z
∗) =

[
I 0

ηP⊤ I − ηR

] [
I − ηQ −ηP

0 I

]
=

[
I − ηQ −ηP

ηP⊤ − η2P⊤Q I − ηR− η2P⊤P

]
which cannot be written only in terms of the symmetric and antisymmetric parts of M . Interestingly,
in order to heuristically obtain an expression for a “Jacobian” that is symmetric in the x and y players,
a natural idea is to simply consider the average

∇Txy(z
∗) +∇Tyx(z

∗)

2
=

[
I − ηQ− η2

2 PP⊤ −ηP + η2

2 PR

ηP⊤ − η2

2 P⊤Q I − ηR− η2

2 P⊤P

]
= I − ηM +

η2

2
AM,

which yields the same matrix as in Prop. C.2 (ignoring the O(η3) term).

Proof. Denote Lxx =
∥∥∇2

xxf
∥∥
∞, Lyy =

∥∥∇2
yyf
∥∥
∞, Lxy =

∥∥∇2
xyf
∥∥
∞, L2 = Lxx ∨ Lyy ∨ Lxy

and L3 =
∥∥∇3f

∥∥
∞.

Let k ∈ N. We have by definition
xk+1/2 = xk−η∇xf(x

k,yk+1/2)+xk

2

yk+
1/2 = yk−

1/2 + η∇yf(x
k, yk−

1/2)

yk−
1/2 = yk − (yk+

1/2 − yk)

and so
{
xk+1/2 = xk − 1

2η∇xf(x
k, yk+

1/2)

yk+
1/2 = 2yk − yk+

1/2 + η∇yf(x
k, 2yk − yk+

1/2)

i.e.,
{
xk+1/2 = xk − 1

2η∇xf(x
k, yk+

1/2)

yk+
1/2 = yk + 1

2η∇yf(x
k, 2yk − yk+

1/2).

It remains to check that the second equation determines yk+1/2 completely for any given xk and yk.
And indeed, thanks to our assumption that η

2Lyy < 1, the mapping y 7→ yk+ 1
2η∇yf(x

k, 2yk−y) is
a contraction, so in particular it has a unique fixed point. This shows that zk+1/2 is entirely determined
by zk for k ∈ N, and the case k ∈ N+ 1/2 is similar.

Moreover the above also shows that T
1/2
xy is characterized by

(xk+1/2, yk+
1/2) = T

1/2
xy (x

k, yk) ⇐⇒
{
xk+1/2 = xk − 1

2η∇xf(x
k, yk+

1/2)

yk+
1/2 = yk + 1

2η∇yf(x
k, 2yk − yk+

1/2)

and symmetrically for T
1/2
yx . So by substituting, we indeed find that T

1/2
xy (x∗, y∗) = T

1/2
yx (x∗, y∗) =

(x∗, y∗). In order to compute the Jacobian, let any small δ = (δx, δy), and consider T
1/2
xy (z∗ + δ)−
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T
1/2
xy (z∗) =: ∆ = (∆x,∆y). Then, denoting y′ the unique solution of y′ = y∗ + δy +

1
2η∇yf(x

∗ +
δx, 2y

∗ + 2δy − y′), we have

y′ − y∗ = δy +
η

2
[∇yf(x

∗ + δx, 2y
∗ + 2δy − y′)−∇yf(z

∗)]

∥y′ − y∗∥ ≤ ∥δy∥+
η

2
[Lxy ∥δx∥+ Lyy (2 ∥δy∥+ ∥y∗ − y′∥)]

∥y′ − y∗∥ ≤ 1

1− ηLyy/2
·
(
∥δy∥+

η

2
[Lxy ∥δx∥+ Lyy2 ∥δy∥]

)
= O (∥δx∥+ ∥δy∥)

since we assume that ηLyy/2 ≤ 1/2, and so

y′ − y∗ = δy +
η

2

[
∇2

yxf(z
∗)δx +∇2

yyf(z
∗)(2δy + y∗ − y′) +O

(
∥δx∥2 + ∥δy∥2

)]
y′ − y∗ =

[
I +

η

2
∇2

yyf(z
∗)
]−1 (

δy +
η

2

[
∇2

yxf(z
∗)δx + 2∇2

yyf(z
∗)δy

])
+O

(
∥δx∥2 + ∥δy∥2

)
.

This directly gives an expansion for ∆y = y′ − y∗, and we have

∆x = δx − 1

2
η [∇xf(x

∗ + δx, y
′)−∇xf(z

∗)]

= δx − 1

2
η
[
∇2

xxf(z
∗)δx +∇2

xyf(z
∗)(y′ − y∗)

]
+O(∥δx∥2 + ∥δy∥2)

= δx − η

2
∇2

xxf(z
∗)δx − η

2
∇2

xyf(z
∗)
[
I +

η

2
∇2

yyf(z
∗)
]−1 (

δy +
η

2

[
∇2

yxf(z
∗)δx + 2∇2

yyf(z
∗)δy

])
+O(∥δx∥2 + ∥δy∥2)

=

{
I − η

2
∇2

xxf(z
∗)− η2

4
∇2

xyf(z
∗)
[
I +

η

2
∇2

yyf(z
∗)
]−1

∇2
yxf(z

∗)

}
δx

+

{
−η

2
∇2

xyf(z
∗)
[
I +

η

2
∇2

yyf(z
∗)
]−1 (

I + η∇2
yyf(z

∗)
)}

δy +O(∥δx∥2 + ∥δy∥2).

Writing for concision
[
∇2

xxf ∇2
xyf

∇2
yxf ∇2

yyf

]
(z∗) =

[
Q P
P⊤ −R

]
as usual in this paper, the above expan-

sions write

∆x =

{
I − η

2
Q− η2

4
P
[
I − η

2
R
]−1

P⊤
}
δx +

{
−η

2
P
[
I − η

2
R
]−1

(I − ηR)

}
δy +O(∥δx∥2 + ∥δy∥2)

∆y =

{[
I − η

2
R
]−1 η

2
P⊤
}
δx +

{[
I − η

2
R
]−1

(I − ηR)

}
δy +O

(
∥δx∥2 + ∥δy∥2

)
which implies by definition of the Jacobian that

∇T
1/2
xy (z

∗) =

[
I − η

2Q− η2

4 P
[
I − η

2R
]−1

P⊤ −η
2P
[
I − η

2R
]−1

(I − ηR)[
I − η

2R
]−1 η

2P
⊤ [

I − η
2R
]−1

(I − ηR)

]
.

By symmetry, the Jacobian for T
1/2
yx can be obtained from the above expression by swapping η for

−η, Q for −R, P⊤ for P , and swapping the lines resp. columns of the block matrix, yielding

∇T
1/2
yx (z

∗) =

[ [
I − η

2Q
]−1

(I − ηQ) −
[
I − η

2Q
]−1 η

2P
η
2P

⊤ [I − η
2Q
]−1

(I − ηQ) I − η
2R− η2

4 P⊤ [I − η
2Q
]−1

P

]
.

By straightforward but tedious computations, and noting that
[
I − η

2R
]−1

commutes with R, we

arrive at the following expression for ∇
[
T

1/2
xy ◦ T 1/2

yx

]
(z∗) = ∇T

1/2
xy (z∗) · ∇T

1/2
yx (z∗) (since z∗ is a

fixed point of both operators):

∇
[
T

1/2
xy ◦ T 1/2

yx

]
(z∗)

=

[
I − ηQ− η2

2 PP⊤ [I − η
2Q
]−1

(I − ηQ) −ηP + η2

2 PR+ η3

4 PP⊤ [I − η
2Q
]−1

P

ηP⊤ [I − η
2Q
]−1

(I − ηQ) I − ηR− η2

2 P⊤ [I − η
2Q
]−1

P

]

=

[
I − ηQ− η2

2 PP⊤ −ηP + η2

2 PR

ηP⊤ − η2

2 P⊤Q I − ηR− η2

2 P⊤P

]
+E = I − ηM +

η2

2
AM +E
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where the error term E is

E =

 −η2

2 PP⊤
{[

I − η
2Q
]−1

(I − ηQ)− I
}

η3

4 PP⊤ [I − η
2Q
]−1

P

ηP⊤
{[

I − η
2Q
]−1

(I − ηQ)−
(
I − η

2Q
)}

−η2

2 P⊤
{[

I − η
2Q
]−1 − I

}
P

 = O(η3)

thanks to our assumption that η
2Lxx < 1. More precisely, by bounding the operator norm of each

block and summing the bounds, and using that
∣∣∣∣∣∣∣∣∣[I − η

2Q
]−1
∣∣∣∣∣∣∣∣∣ ≤∑∞

k=0

∣∣∣∣∣∣η
2Q
∣∣∣∣∣∣k = 1

1−η|||Q|||/2 ≤
1

1−ηLxx/2
≤ 2, one can check that

|||R||| ≤
∣∣∣∣∣∣∣∣∣∣∣∣[I − η

2
Q
]−1
∣∣∣∣∣∣∣∣∣∣∣∣ (η2

2
|||P |||2 · η

2
|||Q|||+ η3

4
|||P |||3 + η|||P ||| · η

2

4
|||Q|||2 + η2

2
|||P |||2 · η

2
|||Q|||

)
≤ 1

1− ηLxx/2
· η3|||P |||(|||P ||| ∨ |||Q|||)2 ≤ 2η3|||P |||(|||P ||| ∨ |||Q|||)2.

Note that by definition of A =

[
0 P

−P⊤ 0

]
and S =

[
Q 0
0 R

]
, we have |||A||| = |||P ||| and

|||S||| = |||Q||| ∨ |||R|||.

This proves the claimed expansion for ∇
[
T

1/2
xy ◦ T 1/2

yx

]
(z∗), and the expansion for

∇
[
T

1/2
yx ◦ T 1/2

xy

]
(z∗) follows by symmetry.

D Details for Sec. 3.2

In this section we prove the expansions of the convergence rates of discrete-time algorithms (with
non-asymptotic bounds in η and α) reported in Table 1. That is, we derive approximate expressions
for ρ(∇T (z∗)) the spectral radius of the update operator’s Jacobian at optimum, for various update
rules (GDA, EG, etc.), when the skewed gradient field’s Jacobian M has a small symmetric part.

We will repeatedly make use of the following estimate for the spectrum of a perturbed normal matrix.
The expansion itself is a special case of [Tao08, Eqs. (5) and (7)] for M0 normal, explicitly pointed
out in that reference. Deriving the explicit bound on the error term involves rather tedious calculations
however, so the proof is deferred to Sec. D.5.

Proposition D.1. Let M0,M1,M2 ∈ Rd×d or Cd×d and Mα = M0 + αM1 +
α2

2 M2. Assume M0

is normal and has distinct eigenvalues; denote its eigenvalue decomposition as M0wj = λjwj with

(wj)j unitary, and let γ0 = mink ̸=j |λk − λj |. Then for all α such that
∣∣∣∣∣∣∣∣∣αM1 +

α2

2 M2

∣∣∣∣∣∣∣∣∣ ≤ γ0

4
√
2d

,

Sp(Mα) =

λj + αw⊤
j M1wj +

α2

2
w⊤

j M2wj + α2
∑
k ̸=j

(
w⊤

j M1wk

) (
w⊤

k M1wj

)
λj − λk

+ rj , 1 ≤ j ≤ d


where |||·||| denotes operator norm and for each j, |rj | ≤ α3 · 8dγ−1

0 |||M1|||
(
|||M2|||+ 4dγ−1

0 |||M1|||2
)

.

In the remainder of this section, consider S real symmetric and A real antisymmetric in Rd×d, and let
M = Mα = αS +A. Assume A has simple eigenvalues and denote its eigenvalue decomposition as
Awj = iσjwj with σj ∈ R. This corresponds exactly to Sec. 3 with the correspondence d := n+ n
and Sp(A) = {iσj , j ≤ d} := {isσ̃j , s ∈ {−1, 1}, j ≤ n} with (σ̃j)j≤n the singular values of P .
Furthermore, let for concision γA = mink ̸=j |σk − σj | and LS = |||S|||, LA = |||A|||.
Throughout the derivations of this section, we will write ε, ε′, εj or ε′j to denote elements of [−1, 1]

or of the unit ball of Rd, and that may change from line to line. Likewise, ζ, ζ′, ζj , ζ
′
j will denote

elements of {z ∈ C; |z| ≤ 1} or of the unit ball of Cd, and that may change from line to line.

D.1 Simultaneous GDA

The Sim-GDA update rule is zk+1 = T (zk) = zk − ηg(zk), so the update operator’s Jacobian at
optimum is

∇T (z∗) = I − ηM = (I − ηA)− αηS.
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Observe that I − ηA is normal with eigenvalue/eigenvector pairs (1− iησj , wj). Hence let us apply
Prop. D.1 with M0 = I − ηA and M1 = −ηS (and M2 = 0). We get that

∀α ≤ 1

ηLS

ηγA

4
√
2d

=
γA

LS · 4
√
2d

,

Sp(∇T (z∗)) =

1− ηiσj − αηw⊤
j Swj + α2

∑
k ̸=j

η2
∣∣w⊤

j Swk

∣∣2
−iησj + iησk

+ α3η · ζj
(
32d2γ−2

A L3
S

)
, 1 ≤ j ≤ d

 .

It seems unlikely that the term in α2 will ever lead to friendly expressions, so we will bound it
uniformly; let us nonetheless note that it is pure imaginary. Namely, since∣∣∣∣∣∣α2

∑
k ̸=j

η2
∣∣w⊤

j Swk

∣∣2
−iησj + iησk

∣∣∣∣∣∣ ≤ α2η
∑
k ̸=j

∣∣w⊤
k Swj

∣∣2
|σk − σj |

≤ α2ηγ−1
A

∑
k

∣∣w⊤
k Swj

∣∣2
︸ ︷︷ ︸
=∥Swj∥2≤L2

S

, (D.1)

then we may write that term as iα2η · εj
(
γ−1
A L2

s

)
. For the spectral radius we get

ρ(∇T (z∗))2 = max
λ∈Sp(∇T (z∗))

|λ|2

= max
j≤d

∣∣1− αηw⊤
j Swj + α3η · ε′j32d2γ−2

A L3
S

∣∣2 + ∣∣ησj + α2η · εjγ−1
A L2

S + α3η · ε′′j 32d2γ−2
A L3

S

∣∣2
= max

j≤d
1− 2αη

(
w⊤

j Swj

)
+ η2σ2

j +O(α3η + α2η2)

and more precisely one can check that the O(·) term is absolutely bounded by α3η ·
128d2γ−2

A L3
S (1 + 5ηLA) + α2η2 · 2γ−1

A L2
SLA, for all α ≤ γA

LS ·4
√
2d

.

D.2 Proximal Point

The PP update rule is zk+1 = T (zk) with T−1(z) = z + ηg(z) so the update operator’s Jacobian at
optimum is ∇T (z∗) = (I + ηM)

−1. So Sp(∇T (z∗)) =
{
λ−1, λ ∈ Sp(I + ηM)

}
and so, by the

exact same calculations as for Sim-GDA with η replaced by −η,

ρ(∇T (z∗))2 =

[
min
j≤d

1 + 2αη
(
w⊤

j Swj

)
+ η2σ2

j +O(α3η + α2η2)

]−1

for all α ≤ γA

LS ·4
√
2d

, and we have the same absolute bound on the O(·) term as for Sim-GDA.

D.3 Alternating GDA

As we show in App. C, for any η ≤
∥∥∇2

xxf
∥∥−1

∞ ∧
∥∥∇2

yyf
∥∥−1

∞ , the (symmetrized) Alt-GDA update
operator’s Jacobian at optimum is

∇T (z∗) = ∇T (z∗) +E for some E ∈ Rd×d with |||E||| ≤ 2η3LA(LA ∨ αLS)
2,

where ∇T (z∗) = I − ηM +
η2

2
AM =

(
I − ηA+

η2

2
A2

)
+ α

(
−ηS +

η2

2
AS

)
.

Observe that I − ηA+ η2

2 A2 is normal with eigenvalue/eigenvector pairs
(
1− iησj − η2

2 σ2
j , wj

)
.

Hence let us apply Prop. D.1 with M0 = I − ηA+ η2

2 A2 and M1 = −ηS + η2

2 AS (and M2 = 0).
Further observe that

w⊤
j ASwk = w⊤

j

(∑
l

iσlwlw
⊤
l

)
Swk = iσj · w⊤

j Swk.
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So we get that, for all α ≤ γA

4
√
2d·Ls(1+ η

2LA)
,

Sp(∇T (z∗))

=

{
1− ηiσj −

η2

2
σ2
j + αw⊤

j

(
−ηS +

η2

2
AS

)
wj + α2

∑
k ̸=j

η2
(
w⊤

j

(
S − η

2AS
)
wk

) (
w⊤

k

(
S − η

2AS
)
wj

)
−iησj + iησk + η2

2 (−σ2
j + σ2

k)

+ α3η · ζj
(
32d2γ−2

A L3
S

(
1 +

η

2
LA

)3)
, 1 ≤ j ≤ d

}

=

{
1− ηiσj −

η2

2
σ2
j − αη

(
w⊤

j Swj

)
+ α

η2

2
iσj ·

(
w⊤

j Swj

)
+ i · α2η · εj

(
γ−1
A L2

S

)
+ α3η · ζj

(
32d2γ−2

A L3
S

(
1 +

η

2
LA

)3)
+ α2η3 · ζ′

j

(
γ−1
A L2

SL
2
A/4

)
, 1 ≤ j ≤ d

}
.

Here for the second equality, we computed the coefficient for the term in α2 as∑
k ̸=j

η2
(
w⊤

j

(
S − η

2AS
)
wk

) (
w⊤

k

(
S − η

2AS
)
wj

)
−iησj + iησk + η2

2 (−σ2
j + σ2

k)

=
∑
k ̸=j

η

(
w⊤

j Swk − η
2 iσjw

⊤
j Swk

) (
w⊤

k Swj − η
2 iσkw

⊤
k Swj

)
i(σk − σj) +

η
2 (σ

2
k − σ2

j )
=
∑
k ̸=j

η
∣∣w⊤

j Swk

∣∣2 (
1− η

2 iσj

) (
1− η

2 iσk

)
i(σk − σj)

(
1− iη2 (σk + σj)

)
=
∑
k ̸=j

η
∣∣w⊤

j Swk

∣∣2
i(σk − σj)

(
1 +

−η2

4 σjσk

1− iη2 (σk + σj)

)
= iη · εj(γ−1

A L2
S) + η3 · ζ′

j

(
γ−1
A L2

S · L2
A/4

)
where the last equality follows from the same bound as in (D.1). For the spectral radius we get

ρ(∇T (z∗))2 = max
j≤d

∣∣∣∣1− η2

2
σ2
j − αη

(
w⊤

j Swj

)∣∣∣∣2 + ∣∣∣∣−ησj + α
η2

2
σj ·

(
w⊤

j Swj

)
+O(α2η)

∣∣∣∣2
+O(α3η + α2η3)

= max
j≤d

1 +
η4

4
σ4
j − η2σ2

j − 2αη
(
w⊤

j Swj

)
+ αη3σ2

j

(
w⊤

j Swj

)
+ η2σ2

j − αη3σ2
j

(
w⊤

j Swj

)
+O(α3η + α2η2)

= max
j≤d

1− 2αη
(
w⊤

j Swj

)
+

η4

4
σ4
j +O(α3η + α2η2).

The two cancellations that occur in the last line (of ±η2σ2
j and of ±αη3σ2

j

(
w⊤

j Swj

)
) are consistent

with the intuition that Alt-GDA is a good symplectic integrator. More precisely, one can check that
the final O(·) term is absolutely bounded by α3η ·512d2γ−2

A L3
S(1+ηLA)

6+α2η2 ·4dγ−1
A L2

SLA(1+
ηLA)

4, for all α ≤ γA

4
√
2d·Ls(1+ η

2LA)
.

Finally, by smoothness of the eigenvalues of perturbed matrices (Lemma D.2),

ρ(∇T (z∗))2 = ρ(∇T (z∗) +E)2 = ρ(∇T (z∗)2 +O(η3).

One could further derive explicit bounds on the O(η3) term in that last expression by controlling the
distance to normality of ∇T (z∗) – since it is continuous in α and normal for α = 0 – and adapting
the proof of Lemma D.5 to matrices that are close to normal.

D.4 Extra-Gradient

The EG update rule is zk+1 = T (zk) = zk − ηg(zk − ηg(zk)) so the update operator’s Jacobian at
optimum is

∇T (z∗) = I − ηM(I − ηM) = I − ηA− αηS + η2M2

=
(
I − ηA+ η2A2

)
+ α

(
−ηS + η2(AS + SA)

)
+

1

2
α2
(
2η2S2

)
.
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Similarly as in the previous subsection, observe that I − ηA + η2A2 is normal with eigen-
value/eigenvector pairs

(
1− iησj − η2σ2

j , wj

)
, and that

w⊤
j (AS + SA)wk = i(σj + σk) · w⊤

j Swk.

Let us apply Prop. D.1 to M0 = I−ηA+η2A2, M1 = −ηS+η2(AS+SA) and M2 = 2η2S2. The
proposition yields a bound for all α such that α

∣∣∣∣∣∣S − η(AS + SA) + αηS2
∣∣∣∣∣∣ ≤ γA

4
√
2d

, for which a
simpler sufficient condition is α ≤ 1∧ γA

4
√
2d·LS(1+ηLS(1+2LA))

. Using that |||M1||| ≤ ηLS(1+2ηLA)

to upper-bound the term in α3, we get that for all such α,

Sp(∇T (z∗)) =

{
1− iησj − η2σ2

j + α
(
−ηw⊤

j Swj + η22iσjw
⊤
j Swj

)
+ α2η2w⊤

j S
2wj

+ α2
∑
k ̸=j

η2w⊤
j (S − η(AS + SA))wk · w⊤

k (S − η(AS + SA))wj

−iησj + iησk + η2(−σ2
j + σ2

k)

+ α3η · ζj · 8dγ−1
A LS(1 + 2ηLA)

(
2ηL2

S + 4dγ−1
A L2

S(1 + 2ηLA)
2
)
, 1 ≤ j ≤ d

}

=

{
1− iησj − η2σ2

j − αη
(
w⊤

j Swj

)
+ 2iαη2σj

(
w⊤

j Swj

)
+ i · α2η · εj

(
γ−1
A L2

S

)
+ α2η2 · ε′j

(
2γ−1

A L2
SLA

)
+ α2η2w⊤

j S
2wj

+ α3η · ζj
(
512d2γ−2

A L3
S(1 + ηLA)

3
)
, 1 ≤ j ≤ d

}
.

Here for the second equality we computed the terms in α2 as

α2
∑
k ̸=j

η2w⊤
j (S − η(AS + SA))wk · w⊤

k (S − η(AS + SA))wj

−iησj + iησk + η2(−σ2
j + σ2

k)

= α2
∑
k ̸=j

η

(
w⊤

j Swk

)
(1− iη(σj + σk)) ·

(
w⊤

k Swj

)
(1− iη(σj + σk))

i(σk − σj) (1− iη(σk + σj))

= α2
∑
k ̸=j

η
∣∣w⊤

j Swk

∣∣2
i(σk − σj)

(1− iη(σk + σj)) = i · α2η · εj
(
γ−1
A L2

S

)
+ α2η2 · ε′j

(
γ−1
A L2

S · 2LA

)
where the last equality follows from the same bound as in (D.1). For the spectral radius we get

ρ(∇T (z∗))2 = max
j≤d

∣∣1− η2σ2
j − αη

(
w⊤

j Swj

)
+O(α2η2)

∣∣2 + ∣∣−ησj + 2αη2σj

(
w⊤

j Swj

)
+O(α2η)

∣∣2
+O(α3η)

= max
j≤d

1 + η4σ4
j − 2η2σ2

j − 2αη
(
w⊤

j Swj

)
+ 2αη3σ2

j

(
w⊤

j Swj

)
+ η2σ2

j − 4αη3σ2
j

(
w⊤

j Swj

)
+O(α3η + α2η2)

= max
j≤d

1− 2αη
(
w⊤

j Swj

)
− η2σ2

j − 2αη3σ2
j

(
w⊤

j Swj

)
+ η4σ4

j +O(α3η + α2η2)

and more precisely one can check that the final O(·) term is absolutely bounded by α3η ·
212d2γ−2

A L3
S(1 + ηLA)

7 + α2η2 · 15dγ−1
A L2

SLA(1 + ηLA)
2.

D.5 Proof of Prop. D.1

The following lemma summarizes the eigenvalue derivative formulas up to order 2 for perturbed
matrices with distinct eigenvalues.
Lemma D.2 ([Tao08]). Let Mα ∈ Cd×d for α ∈ (−1, 1) a smooth curve of matrices such that M0 has
distinct eigenvalues. Then there exists an open interval I ∋ 0 such that Mα has distinct eigenvalues
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for all α ∈ I; in particular they are diagonalizable. Denote their eigenvalue decompositions as Mα =∑d
k=1 λk(α)vk(α)wk(α)

⊤; that is, the eigenvalues of Mα are (λk(α))k, the associated eigenvectors
are (vk(α))k, and (wk(α))k is a dual basis to the basis of eigenvectors, i.e., wk(α)

⊤vj(α) = 1j=k.

The eigenvalues of Mα are smooth over I and their first two derivatives at any α ∈ I are given by,
using •̇ to denote differentiation w.r.t. α and leaving the dependency on α implicit,

λ̇k = w∗
kṀvk and λ̈k = w∗

kM̈vk + 2
∑
j ̸=k

(w∗
kṀvj)(w

∗
j Ṁvk)

λk − λj

where we denoted w∗
k = w⊤

k . Furthermore the eigenvectors vk and dual basis vectors wk can also be
chosen smooth and their derivatives at any α ∈ I are given by

v̇k =
∑
j ̸=k

w∗
j Ṁvk

λk − λj
vj + ckvk and ẇ∗

k =
∑
j ̸=k

w∗
kṀvj

λk − λj
w∗

j − ckw
∗
k

for some scalars ck that reflect the normalization of the eigenvectors.

By applying a Taylor expansion with remainder in Lagrange form to the eigenvalues λk(α) of the
matrix Mα = M0 + αM1 +

α2

2 M2 of Prop. D.1 – since the eigenvalues are smooth by the above
lemma –, we have that for all α in some neighborhood of zero,

λk(α) = λk(0) + αλ̇k(0) +
α2

2
λ̈k(0) +

α3

6

...
λ k(ξ) for some 0 < ξ < α. (D.2)

By substituting the expressions from Lemma D.2 for the first two eigenvalue derivatives, we already
get the terms in α and α2 in Prop. D.1. In order to control the last term in α3, we need to compute
the third eigenvalue derivatives

...
λ k(ξ). Note that Mξ is never assumed normal for any ξ > 0, which

is why we do not use normality in Lemma D.2 nor in Lemma D.3 below.
Lemma D.3. Under the conditions of Lemma D.2,

...
λ k = w∗

k

...
Mvk + 3

∑
j ̸=k

1

λk − λj

[
(w∗

kṀvj)(w
∗
j M̈vk) + (w∗

kM̈vj)(w
∗
j Ṁvk)

]
+ 6

∑
j,l ̸=k

(w∗
kṀvj)(w

∗
j Ṁvl)(w

∗
l Ṁvk)

(λk − λj)(λk − λl)
− 6

∑
j ̸=k

(w∗
kṀvj)(w

∗
j Ṁvk)

(λk − λj)2
w∗

kṀvk.

In particular,

max
k

∣∣ ...λ k

∣∣ ≤ χ
∣∣∣∣∣∣∣∣∣ ...
M
∣∣∣∣∣∣∣∣∣+ 6dγ−1χ2

∣∣∣∣∣∣∣∣∣Ṁ ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣M̈ ∣∣∣∣∣∣∣∣∣+ 6d2γ−2χ3
∣∣∣∣∣∣∣∣∣Ṁ ∣∣∣∣∣∣∣∣∣3

where γ = minj ̸=k |λj − λk|, χ = maxk ∥vk∥ ∥wk∥ and |||·||| denotes operator norm.

Proof. By differentiating the identity Mvk = λkvk, we have that

Ṁvk +Mv̇k = λ̇kvk + λkv̇k

M̈vk + 2Ṁv̇k +Mv̈k = λ̈kvk + 2λ̇kv̇k + λv̈k
...
Mvk + 3M̈v̇k + 3Ṁ v̈k +M

...
v k =

...
λ kvk + 3λ̈kv̇k + 3λ̇kv̈k + λk

...
v k.

Also note that w∗
kM = λkw

∗
k. By multiplying the third identity by w∗

k on the left, we have that

w∗
k

...
Mvk + 3w∗

kM̈v̇k + 3w∗
kṀv̈k + w∗

kM
...
v k =

...
λ k + 3λ̈kw

∗
kv̇k + 3λ̇kw

∗
kv̈k + λkw

∗
k

...
v k

w∗
k

...
Mvk + 3w∗

kM̈ v̇k + 3w∗
kṀv̈k =

...
λ k + 3λ̈kw

∗
kv̇k + 3λ̇kw

∗
kv̈k

since (w∗
kM)

...
v k = λkw

∗
k

...
v k. Now let us compute v̈k. By multiplying the identity for the second

derivatives by w∗
j on the left for any j ̸= k, we have that

w∗
j M̈vk + 2w∗

j Ṁv̇k + w∗
jM︸ ︷︷ ︸

=λjw∗
j

v̈k = λ̈kw
∗
j vk + 2λ̇kw

∗
j v̇k + λkw

∗
j v̈k

w∗
j v̈k =

1

λj − λk

(
2λ̇kw

∗
j v̇k − w∗

j M̈vk − 2w∗
j Ṁv̇k

)
.
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Hence we can compute

w∗
kṀv̈k − λ̇kw

∗
kv̈k = w∗

kṀ
∑
j

(w∗
j v̈k)vj − λ̇kw

∗
kv̈k

=
∑
j ̸=k

(
w∗

kṀvj

) 1

λj − λk

(
2λ̇kw

∗
j v̇k − w∗

j M̈vk − 2w∗
j Ṁv̇k

)
+ (w∗

kṀvk)(w
∗
kv̈k)− λ̇kw

∗
kv̈k︸ ︷︷ ︸

=0

since λ̇k = w∗
kṀvk by Lemma D.2. Substituting back into the identity for the third derivative

left-multiplied by w∗
k, we find that

...
λ k = w∗

k

...
Mvk + 3w∗

kM̈v̇k − 3λ̈kw
∗
kv̇k + 3

∑
j ̸=k

w∗
kṀvj

λj − λk

(
2λ̇kw

∗
j v̇k − w∗

j M̈vk − 2w∗
j Ṁ v̇k

)
.

The claimed expression for
...
λ k will follow by substituting the expressions for v̇k, λ̇k and λ̈k from

Lemma D.2 and simplifying. Namely, letting for concision δjk = λj − λk and Mjk = w∗
jMvk,

Ṁjk = w∗
j Ṁvk and similarly for M̈jk,

...
M jk for any j, k ≤ d, we have

λ̇k = Ṁkk, v̇k =
∑
j ̸=k

Ṁjk

δkj
vj + ckvk, λ̈k = M̈kk + 2

∑
j ̸=k

ṀkjṀjk

δkj

and in particular w∗
j v̇k =

Ṁjk

δkj
for all j ̸= k and so

...
λ k =

...
Mkk + 3

∑
j ̸=k

M̈kjṀjk

δkj
+ 3M̈kkck − 3

M̈kk + 2
∑
j ̸=k

ṀkjṀjk

δkj

 ck

− 3
∑
j ̸=k

ṀkjM̈jk

δjk
+ 6

∑
j ̸=k

Ṁkj

δjk

Ṁkk
Ṁjk

δkj
−
∑
l ̸=k

ṀjlṀlk

δkl
− Ṁjkck


=

...
Mkk + 3

∑
j ̸=k

M̈kjṀjk + ṀkjM̈jk

δkj
+ 6

∑
j ̸=k

Ṁkj

δjk

Ṁkk
Ṁjk

δkj
−
∑
l ̸=k

ṀjlṀlk

δkl

 .

In order to simplify the last term, we simply write it as

∑
j ̸=k

Ṁkj

δjk

Ṁkk
Ṁjk

δkj
−
∑
l ̸=k

ṀjlṀlk

δkl

 =
∑
j,l ̸=k

ṀkjṀjlṀlk

δkjδkl
−
∑
j ̸=k

ṀkjṀjk

δ2kj
Ṁkk.

By substituting, we obtain the announced expression for
...
λ k.

In order to bound the term in
...
λ k(ξ) in (D.2), we want to control

γ(α) := min
j ̸=k

|λj(α)− λk(α)| and χ(α) := max
k

∥vk(α)∥ ∥wk(α)∥

the uniform eigengap resp. maximal eigenvalue condition number, uniformly in α for α in a neigh-
borhood of zero. Now assuming M0 has distinct eigenvalues then γ(0) > 0, and assuming M0 is
normal – as is the case for Prop. D.1 – then χ(0) = 1. So we want to bound the perturbation of the
eigenvalues and eigenvectors uniformly.

For the eigenvalues, thanks to the assumption that M0 is normal, we easily get the following bound.
Lemma D.4. Under the conditions of Lemma D.2, if additionally M0 is normal, then it holds

max
k

|λk(α)− λk(0)| ≤ |||Mα −M0|||

for all α ∈ I ′ the maximal open interval containing 0 such that ∀α ∈ I ′, |||Mα −M0||| < 1
2γ(0).

In particular, we have for all α ∈ I ′

γ(α) ≥ γ(0)− 2|||Mα −M0||| > 0.
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Note that I ′ ⊂ I the interval from Lemma D.2, since γ(α) > 0 if and only if Mα has distinct
eigenvalues.

Proof. Let λ any eigenvalue of Mα and v such that Mαv = λv and ∥v∥ = 1. Since M0 is normal,
it is orthonormally diagonalizable, so we may write it as M0 = U0Λ0U

⊤
0 with U0 unitary and

Λ0 = Diag((λk(0))). Then, letting ṽ = U
⊤
0 v and ∆ = Mα −M0 and ∆̃ = U

⊤
0 ∆U0,

Mαv = (M0 +∆)v = U⊤
0 (Λ0 + ∆̃)U

⊤
0 v = λv, i.e., (Λ0 + ∆̃)ṽ = λṽ

and so min
j

|λ− λ0j |2 ≤
∑
j

|ṽ[j]|2 |λ− λ0j |2 =
∥∥∥(Λ0 + ∆̃)ṽ

∥∥∥2 ≤
∥∥∥∆̃ṽ

∥∥∥2 ≤ |||∆|||2

since U0 is unitary and ∥v∥ = 1.

This shows that for any λ ∈ Sp(Mα), there exists a λk(0) ∈ Sp(M0) which is close to it, i.e.,

∀k, ∃j s.t |λk(α)− λj(0)| ≤ |||Mα −M0|||.

A fortiori, we can ensure that the smooth parametrization of the eigenvalues (λk(α))k satis-
fies the inequality announced in the lemma, by restraining α to some I ′ small enough so that
argminj |λk(α)− λj(0)| = k for all α ∈ I ′. More explicitly, this can be achieved by choosing
I ′ such that supα∈I′ |||Mα −M0||| < 1

2 minj ̸=k |λj(0)− λk(0)| = 1
2γ(0). Hence the choice of I ′

announced in the lemma.

For the eigenvectors, also using the assumption that M0 is normal, we get the following bound.

Lemma D.5. Under the conditions of Lemma D.2, assume additionally that M0 is normal, and
choose the normalization of the eigenvectors (vk(α))k such that ∥vk(α)∥ = 1 and v∗k(0)·vk(α) ∈ R+

for all k. Then

∀k, ∥vk(α)− vk(0)∥ ≤ 2
√
2|||Mα −M0|||

γ(0)

and ∥w∗
k(α)− v∗k(0)∥ ≤

√
d ∥wk(α)∥

2
√
2|||Mα −M0|||

γ(0)

for all α ∈ I ′ the interval from Lemma D.4.

In particular, we have

χ(α) ≤ γ(0)

γ(0)− 2
√
2d|||Mα −M0|||

for all α ∈ I ′′ the maximal open interval containing 0 such that ∀α ∈ I ′′, |||Mα −M0||| < 1
2
√
2d
γ(0).

Proof. We will write for concision vk = vk(α) and v0k = vk(0) = wk(0) since M0 is normal,
and λk = λk(α), λ0k = λk(0). Fix α ∈ I ′ and let ∆ = Mα − M0; by Lemma D.4 we have
maxk |λk − λ0k| ≤ |||∆||| ≤ 1

2γ(0).

Fix k. Subtracting M0v0k = λ0kv0k from (M0 +∆)vk = λkvk, we have

M0(vk − v0k) + ∆vk = λkvk − λ0kv0k = λ0k(vk − v0k) + (λk − λ0k)v0k
(M0 − λ0kI)(vk − v0k) = −∆vk + (λk − λ0k)v0k∑

j ̸=k

|λ0j − λ0k|2
∣∣v∗0jvk∣∣2 = ∥(M0 − λ0kI)(vk − v0k)∥2 ≤ |||∆|||2(∥vk∥+ 1)2 = 4|||∆|||2

where v∗0j := v⊤0j , using the unitary basis (v0j)j to compute the norm on the left-hand side. The

left-hand side is further lower-bounded by γ(0)2
∑

j ̸=k

∣∣v∗0jvk∣∣2 = γ(0)2
(
1− |v∗0kvk|

2
)

, so

1− |v∗0kvk|
2 ≤ 4|||∆|||2

γ(0)2
.
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Consequently, by our choice of normalization: v∗k(0)vk(α) ∈ R+, we have

∥vk − v0k∥2 = 2− 2ℜ(v∗0kvk) = 2− 2 |v∗0kvk| ≤ 2

1−

√
1− 4|||∆|||2

γ(0)2

 ≤ 8|||∆|||2

γ(0)2

using that ∀y ∈ [0, 1], 1−
√
1− y2 ≤ y2. This shows the first inequality of the lemma.

Let us now show the control on wk := w∗
k(α) – the second inequality of the lemma. Using the

unitary basis (v0j)j to compute the norm, we have ∥w∗
k − v∗0k∥

2
=
∑

j ̸=k |w∗
kv0j |

2
+ |w∗

kv0k − 1|2

and since by definition w∗
kvj = 1j=k, we can bound each term as

∀j ̸= k, |w∗
kv0j | ≤ |w∗

kvj |+ |w∗
k(v0j − vj)| ≤ 0 + ∥w∗

k∥
2
√
2|||∆|||
γ(0)

and |w∗
kv0k − 1| = |w∗

kvk − 1 + w∗
k(v0k − vk)| ≤ ∥w∗

k∥ ∥v0k − vk∥ ≤ ∥w∗
k∥

2
√
2|||∆|||
γ(0)

.

So in total, ∥w∗
k − v∗0k∥

2 ≤ d · ∥w∗
k∥

2 8|||∆|||2
γ(0)2 , as announced.

The second part of the lemma follows by noting that ∥vk∥ ∥wk∥ = 1 · ∥wk∥ is bounded by

∥wk∥ ≤ ∥v0k∥+ ∥wk − v0k∥ ≤ 1 +
√
d ∥wk∥

2
√
2|||∆|||
γ(0)

=⇒ ∥wk∥ ≤ 1

1−
√
d · 2

√
2|||∆|||
γ(0)

=
γ(0)

γ(0)− 2
√
2
√
d|||∆|||

for all α such that the denominator in the second line is positive, as announced.

By combining the three above lemmas, we have that under the conditions of Lemma D.2, if addition-
ally M0 is normal, then for all α in a neighborhood of zero such that |||Mα −M0||| ≤ γ(0)

4
√
2d

, one can
check that γ(α) ≥ 1

2γ(0) and χ(α) ≤ 2 and so

1

6
max

k

∣∣∣ ...
λk

∣∣∣ ≤ 1

3

∣∣∣∣∣∣∣∣∣ ...
M
∣∣∣∣∣∣∣∣∣+ 8dγ(0)−1

∣∣∣∣∣∣∣∣∣Ṁ ∣∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣∣M̈ ∣∣∣∣∣∣∣∣∣+ 32d2γ(0)−2
∣∣∣∣∣∣∣∣∣Ṁ ∣∣∣∣∣∣∣∣∣3.

In particular, for a matrix Mα = M0 +αM1 +
α2

2 M2 with M0 normal, the right-hand side translates
exactly to the bound on |rj | announced in Prop. D.1. So that proposition follows directly from (D.2)
and the above discussion.

E Local convergence of equality-constrained Mirror Flow

This appendix contains results used in App. F.

Let X ,Y convex subsets of Rn resp. Rm and ϕx : X → R, ϕy : Y → R strictly convex and
differentiable. Let Z = X × Y and ϕ : Z → R with ϕ(x, y) = ϕx(x) + ϕy(y). Consider a twice
continuously differentiable min-max objective f : X×Y → R, denote g(z) = Diag(In,−Im)∇f(z)
and M(z) = ∇g(z). Throughout this appendix we make the following assumption.

Assumption 1. The constraint set is defined by equalities: Z = {z ∈ Rn+m;Az = b} = zb +KerA,
where zb is any solution of Azb = b. Furthermore, ϕ is strictly convex and three times differentiable.

Definition E.1 ([AW20, Proposition 1]). For an initial point z0 ∈ Z , the mirror flow (MF) with link
function ϕ is the unique curve z(t) such that z(0) = z0 and

dz

dt
= −Φ−1

z Pzg(z) =: −geff(z),

where Φz denotes the Hessian of ϕ at z and Pz := I −A⊤ [AΦ−1
z A⊤]−1

AΦ−1
z .

32



One can check that P 2
z = Pz and that PzΦz = ΦzP

⊤
z . Furthermore, PzA

⊤ = 0, i.e.,
ImP⊤

z ⊂ KerA, and in fact ImP⊤
z = KerA since (ImP⊤

z )⊥ = KerPz = Im(I −
Pz) ⊂ ImA⊤ = (KerA)⊥. In particular the MF preserves the constraint set, since
d
dt (Az − b) = −AP⊤Φ−1

z g(z) = 0. As a consequence, geff can be seen as an operator from the
affine space Z = zb +KerA to itself.

Lemma E.1. The Jacobian of geff : Rn+m → Rn+m at a local NE z∗ is equal to Φ−1
z∗ Pz∗ ·M(z∗).

Furthermore, the Jacobian of geff : Z → Z (seen as an operator between affine spaces) at z∗ is

Meff(z
∗) = Φ−1

z∗ Pz∗ ·M(z∗)P⊤
z∗

which is a linear operator from KerA to itself.

Proof. In this proof, write for concision P = Pz and Φ−1 = Φ−1
z . Using Einstein’s summation

notation, pose

P j
i = P = I −A⊤ [AΦ−1A⊤]−1

AΦ−1 and Qij = Q := Φ−1P.

In particular geff(z) = Qg. Now

∇{Qg}ij =
∂[Qg]i

∂zj
= (Q∇g)ij +

∂Qik

∂zj
gk. (E.1)

Using formula (59) from [PP+08]: ∂Y −1

∂x = −Y −1 ∂Y
∂x Y

−1, we have that

∂(Φ−1)il

∂zj
= −(Φ−1)iaKabj(Φ

−1)bl

∂P k
l

∂zj
= −

(
A⊤[AΦ−1A⊤]−1A

) s

l
Kstj

(
Φ−1A⊤[AΦ−1A⊤]−1AΦ−1

)tk
− (A⊤)la

∂{[AΦ−1A⊤]−1}ab

∂zj
(AΦ−1) k

b

where K = ∇3ϕ(z), and after calculating and simplifying,

∂P k
l

∂zj
= (I − P ) s

l Kstj(Φ
−1P )tk.

So
∂Qik

∂zj
= (Φ−1)il

∂P k
l

∂zj
+

∂(Φ−1)il

∂zj
P k
l

= −(Φ−1P )isKstj(Φ
−1P )tk = −QisKstjQ

tk

and finally
∂Qik

∂zj
gk = −QisKstj(Qg)t.

Now geff(z
∗) = 0, so Qg = 0 at z∗. The first part of the lemma follows by substituting into (E.1).

To check the second part of the lemma, simply use that Φ−1
z∗ Pz∗ = P⊤

z∗Φ−1
z∗ and that P⊤

z∗ is a projector
onto the kernel of A, as remarked under Definition E.1.

The next lemma is a special case of the stable manifold theorem [Per13, Section 2.7].
Lemma E.2. Let Z = zb + TZ an affine subspace of Rd. Let a continuously differentiable operator
g : Z → Z and denote its Jacobian as ∇g : Z → TZ × TZ . Suppose there exists z∗ such that
g(z∗) = 0 and minλ∈Sp(∇g(z∗)) ℜ(λ) > 0.

Then for any ε > 0, there exists C > 0 and a relative neighborhood of z∗ such that, for any z0 in
that neighborhood, the flow dz

dt = −g(z) converges exponentially to z∗ with

∥z(t)− z∗∥2 ≤ C
∥∥z0 − z∗

∥∥2 exp(−2

[
min

λ∈Sp(∇g(z∗))
ℜ(λ)− ε

]
t

)
.

Proposition E.3. If M̃ := Φ
− 1

2
z∗ Pz∗ · M(z∗) · P⊤

z∗Φ
− 1

2
z∗ is invertible and satisfies the equivalent

conditions of Thm. 2.1, then MF converges locally exponentially to z∗ at a rate µ̃
M̃

.
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Proof. M̃ is similar to Meff(z
∗). In particular they have the same eigenvalues. So the proposition

follows immediately from the above two lemmas.

Remark E.1. The matrix M̃ can be interpreted as

M̃ = Φ
− 1

2
z∗ Pz∗Φ

1
2
z∗︸ ︷︷ ︸

=:Rz∗

· Φ
− 1

2
z∗ M(z∗)Φ

− 1
2

z∗ · Φ
1
2
z∗P⊤

z∗Φ
− 1

2
z∗︸ ︷︷ ︸

=R⊤
z∗

.

Note that Rz∗ is an orthogonal projection. Furthermore, the central factor consists in a transformation
of M(z∗) that is compatible with the block structure:

• If we write M(z∗) = S + A with S symmetric and A antisymmetric, then Φ
− 1

2
z∗ M(z∗)Φ

− 1
2

z∗ =

Φ
− 1

2
z∗ SΦ

− 1
2

z∗ +Φ
− 1

2
z∗ AΦ

− 1
2

z∗ and the first term is symmetric and the second term is antisymmetric.

• If we write M(z∗) =

[
Q P

−P⊤ R

]
with Q,R symmetric, then

Φ
− 1

2
z∗ M(z∗)Φ

− 1
2

z∗ =

[
Φ

− 1
2

x∗ 0

0 Φ
− 1

2
y∗

] [
Q P

−P⊤ R

][
Φ

− 1
2

x∗ 0

0 Φ
− 1

2
y∗

]
=

 Φ
− 1

2
x∗ QΦ

− 1
2

x∗ Φ
− 1

2
x∗ PΦ

− 1
2

y∗

−
(
Φ

− 1
2

x∗ PΦ
− 1

2
y∗

)⊤
Φ

− 1
2

y∗ RΦ
− 1

2
y∗


is of the same form, where Φx∗ is the Hessian of ϕx at x∗ and similarly for Φy∗ .

We state an analogous result for Mirror Descent-Ascent (MDA) and its variants, Mirror Prox (MP)
and Bregman PP. Its proof, omitted for brevity, involves exactly the same ideas as for MF.
Proposition E.4. Under the assumptions of Prop. E.3, if additionally ϕ is strongly convex, then MDA,
MP and Bregman PP converge locally exponentially to z∗ for any small enough step-size at a rate
ηµ̃

M̃
+O(η2).

F Details for Sec. 4

In this appendix we provide details for Fig. 2, derive the first-order term (in η) in the local convergence
rate of MP and EG, and discuss a counter-example. For our purpose it is sufficient to consider only
the continuous-time flows of those algorithms.

F.1 Details for Fig. 2

In the numerical experiment reported in Fig. 2, we used the same random payoff functions as in
[WC22, Section 4]:

f(x, y) = ℜ
∑

−K≤k≤K

∑
−L≤l≤L

ckle
2πi(kx+ly) for (ckl) ∈ C(2K+1)×(2L+1), (F.1)

with K = L = 2 and ℜ(ckl), ℑ(ckl) drawn independently from the standard Gaussian distribution.
We measured the distance between the solution z∗ = (a∗, x∗, b∗, y∗) and the iterates zk by

∥z − z∗∥2 := ∥a− a∗∥2 + ∥b− b∗∥2 + ∥x− x∗∥2 + ∥y − y∗∥2 .
For z in a neighborhood of z∗, ∥z − z∗∥ is an upper bound on the duality gap of the original MNE
problem up to a constant dependent only on f [WC22, Proposition 3.1 and Claim C.3].

F.2 First-order term in the local convergence rate of MP

Denote the joint variable as z = (a, b) ∈ ∆N × ∆M and let z∗ such that (µ∗, ν∗) =(∑
I a

∗
Iδx∗

I
,
∑

J b∗Jδy∗
J

)
is the MNE. The continuous-time flow of MP is MF (Definition E.1) with

ϕ(z) =
∑

I zI log zI , A =

[
1⊤
N 0
0 1⊤

M

]
∈ R2×(N+M) and b =

(
1
1

)
. So by Prop. E.4, the first-order

term in the local convergence rate of MP is ηµ̃MMP
for some MMP which we now compute.

Following the notations of App. E, we have Φz∗ = Diag
((

1
a∗
I

)
I
,
(

1
b∗J

)
J

)
, and by straightfor-

ward calculations Pz∗ = Diag
(
IN − 1N (a∗)⊤, IM − 1M (b∗)⊤

)
, so that Rz∗ = Φ

−1/2
z∗ Pz∗Φ

1/2
z∗ =
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Diag
(
IN −

√
a∗
√
a∗

⊤
, IM −

√
b∗
√
b∗

⊤)
. In order to project out the constraints explicitly, let Πa

any matrix in R(N−1)×N with orthonormal rows, i.e., ΠaΠ
⊤
a = IN−1, and such that Π⊤

a Πa =

IN −
√
a∗
√
a∗

⊤
, and likewise for Πb ∈ R(M−1)×M . For example the rows of Πa may be obtained

by completing the unit vector
√
a∗ into an orthonormal basis and removing

√
a∗ from the basis. Then

Rz∗ as a linear projector from RN+M to {
√
a∗}⊥ × {

√
b∗}⊥ ≃ RN+M−2 can be written as the

matrix Rz∗ = Diag(Πa,Πb).9 So M̃ as a linear operator over {
√
a∗}⊥ × {

√
b∗}⊥ can be written as

the matrix, denoting Da = Diag(
√
a∗) and Db = Diag(

√
b∗) for concision,

MMP := Rz∗Φ
−1/2
z∗ M(z∗)Φ

−1/2
z∗ R⊤

z∗

= Diag (Πa,Πb)Diag
(√

a∗,
√
b∗
)[ 0 P

−P⊤ 0

]
Diag

(√
a∗,

√
b∗
)
Diag

(
Π⊤

a ,Π
⊤
b

)
=

[
0 ΠaDaPDbΠ

⊤
b

−ΠbDbP
⊤DaΠ

⊤
a 0

]
.

F.3 First-order term in the local convergence rate of EG (conic particle methods)

As in the main text, we write “EG” to refer to the Conic Particle Mirror Prox algorithm of [WC22].

Denote the joint variable as z = (a, x, b, y) ∈ ∆N × (T1)N ×∆M × (T1)M and let any z∗ such that
(µ∗, ν∗) =

(∑
I a

∗
Iδx∗

I
,
∑

J b∗Jδy∗
J

)
is the MNE. The flow is given by the system of ODEs

da

dt
= −Φ−1

a Pa∇aF (z) and
db

dt
= Φ−1

b Pb∇bF (z) (F.2)

dx

dt
= −γDiag

(
1

aI

)
∇xF (z)

dy

dt
= γDiag

(
1

bJ

)
∇yF (z).

Here F (z) =
∑

I

∑
J aIbJf(xI , yJ), γ is a constant parameter, Φa = Diag

(
1
aI

)
and Pa =

IN − 1Na⊤, and Φb and Pb are defined similarly.

In general, the flow (F.2) does not match the structure of Mirror Flow because of the factor “Diag( 1
aI
)”

in the equation for dx
dt [GWS21, Section 2.4]. However, by adapting the reasoning of App. E – namely

only Lemma E.1 needs to be adapted – it is easy to show that the statement of Prop. E.3 holds also
for this dynamics. By the same adaptation one can show that the statement of Prop. E.4 holds also for
EG. Hence the first-order term in the local convergence rate of EG is ηµ̃Mγ

for some Mγ which we
now compute.

The statement of Prop. E.3 applies to M̃ = Rz∗ · Φ
−1/2
z∗ M(z∗)Φ

−1/2
z∗ · R⊤

z∗ where
Φz∗ = Diag

((
1
a∗
I

)
I
, 1
γ a

∗,
(

1
b∗J

)
J
, 1
γ b

∗
)

and Pz∗ = Diag (Pa∗ , IN , Pb∗ , IM ) so that Rz∗ =

Φ
−1/2
z∗ Pz∗Φ

1/2
z∗ = Diag

(
IN −

√
a∗
√
a∗

⊤
, IN , IM −

√
b∗
√
b∗

⊤
, IM

)
. In order to project out the con-

straints explicitly, let Πa ∈ R(N−1)×N , Πb ∈ R(M−1)×M the same matrices as in the previous subsec-
tion. Then Rz∗ as a linear projector from R2N+2M to {

√
a∗}⊥×RN×{

√
b∗}⊥×RM ≃ R2N+2M−2

can be written as the matrix Rz∗ = Diag (Πa, IN ,Πb, IM ). Moreover by [WC22, Claim C.2], drop-
ping superscript *’s for concision only in this equation,

M(z∗) =


0 0 P ∂yPDiag(b)
0 Diag(a)Diag(∂2

xxPb) Diag(a)∂xP Diag(a)∂2
xyPDiag(b)

−P⊤ − (Diag(a)∂xP )
⊤

0 0

− (∂yPDiag(b))
⊤ −

(
Diag(a)∂2

xyPDiag(b)
)⊤

0 −Diag(b)Diag(∂2
yyP

⊤a)


where [∂xP ]IJ = ∂xf(x

∗
I , y

∗
J), and likewise for ∂yP , ∂2

xxP , ∂2
yyP , ∂2

xyP . So, finally, M̃ =

Rz∗Φ
−1/2
z∗ M(z∗)Φ

−1/2
z∗ R⊤

z∗ as a linear operator over {
√
a∗}⊥ ×RN ×{

√
b∗}⊥ ×RM can be written

9The expression “Diag(Πa,Πb)”, as well as “Diag (Πa, IN ,Πb, IM )” in Sec. F.3, constitutes a slight abuse
of our notation “Diag”, since Πa and Πb are not square matrices. To remove any ambiguity: by Diag(Πa,Πb)

we mean the matrix
[

Πa 0(N−1)×M

0(M−1)×N Πb

]
, and similarly for Diag (Πa, IN ,Πb, IM ).
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as the matrix, denoting Da = Diag(
√
a∗) and Db = Diag(

√
b∗) for concision,

Mγ :=


0 0 ΠaDaPDbΠ

⊤
b

√
γ ΠaDa[∂yP ]Db

0 γDiag(∂2
xxPb∗)

√
γDa[∂xP ]DbΠ

⊤
b γDa[∂

2
xyP ]Db

−(∗)⊤ − (∗)⊤ 0 0

− (∗)⊤ − (∗)⊤ 0 −γDiag(∂2
yyP

⊤a∗)

 .

F.4 An example where the first-order term in the local convergence rate of EG is zero

Consider the payoff function defined by (F.1) with c20 = c02 = −i, c11 = 2 and ckl = 0 otherwise,
i.e., f(x, y) = sin(4πx) + sin(4πy) + 2 cos(2πx+ 2πy). As shown in [WC22, Example 4.1], the
MNE is unique and given by a∗ = b∗ =

(
1
2 ,

1
2

)
, x∗ =

(
3
8 ,

7
8

)
, and y∗ =

(
1
8 ,

5
8

)
. So we can compute

Mγ explicitly in this case: we find

P =

(
−2 2
2 −2

)
, ∂xP = ∂yP = 0, ∂2

xxP

(
1/2
1/2

)
= ∂2

yyP

(
1/2
1/2

)
=

(
16π2

16π2

)
, ∂xyP =

(
8π2 −8π2

−8π2 8π2

)
and Da = Db =

1√
2
I , and so (for a certain choice of Πa and Πb, each of which is anyway determined

up to a sign)

Mγ =


0 0 0 −2 0 0
0 γ(4π)2 0 0 γ(2π)2 −γ(2π)2

0 0 γ(4π)2 0 −γ(2π)2 γ(2π)2

2 0 0 0 0 0
0 −γ(2π)2 γ(2π)2 0 γ(4π)2 0
0 γ(2π)2 −γ(2π)2 0 0 γ(4π)2

 .

This matrix clearly does not satisfy condition (iii) of Thm. 2.1, so µ̃Mγ = 0.

F.5 Proof of Prop. 4.1

For ease of reference, we restate the proposition below.
Proposition 4.1. Let S2 symmetric and A0, A1, A2 antisymmetric real matrices of the form

S2 =

 0
∗

0
∗

 , A0 =

 ∗ 0
0 0

∗ 0
0 0

 , A1 =

 0 ∗
∗ 0

0 ∗
∗ 0

 , A2 =

 0 0
0 ∗

0 0
0 ∗


and Mγ = γS2 +A0 +

√
γA1 + γA2 for all γ > 0. Then µ̃Mγ

= O(γ2) as γ → 0.

Pose α =
√
γ, M0 = A0 + Aε, M1 = A1 and M2 = 2(A2 + S2), where Aε is any antisymmetric

matrix such that |||Aε||| ≤ ε and M0 has distinct eigenvalues. We will prove the proposition by
applying the spectral expansions of Sec. D.5 to the matrix curve Mα = M0 + αM1 +

α2

2 M2.

Adopting the notations of that section, we have the expansion for the eigenvalues λk(α) of Mα:

λk(α) = λk(0) + αλ̇k(0) +
α2

2
λ̈k(0) +

α3

3!

...
λ k(0) +

α4

4!

....
λ k(0) +O(α5),

with {λk(0)}k = Sp(M0) ⊂ iR by antisymmetry, λ̇k(0) = v∗0kA1v0k ∈ iR – where v0k are the
eigenvectors of M0 – by normality of M0 and antisymmetry of A1, and

λ̈k(0) = 2v∗0k(A2 + S2)v0k + 2
∑
j ̸=k

(v∗0kA1v0j)(v
∗
0jA1v0k)

λk(0)− λj(0)︸ ︷︷ ︸
∈iR

since v∗0kA1v0j = −(v∗0jA1v0k)
∗, and

...
λ k(0) = 3

∑
j ̸=k

1

λk(0)− λj(0)

[
(v∗0kA1v0j)(v

∗
0jM2v0k) + (v∗0kM2v0j)(v

∗
0jA1v0k)

]
+ 6

∑
j,l ̸=k

(v∗0kA1v0j)(v
∗
0jA1v0l)(v

∗
0lA1v0k)

(λk(0)− λj(0))(λk(0)− λl(0))︸ ︷︷ ︸
∈iR

− 6
∑
j ̸=k

(v∗0kA1v0j)(v
∗
0jA1v0k)

(λk(0)− λj(0))2
v∗0kA1v0k︸ ︷︷ ︸

∈iR
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as one can check by computing the convex conjugate of each of the underbraced expressions.

Now, let K the set of indices corresponding to the non-zero eigenvalues of A0, and
K∁ = {1, ..., d} \ K. Note that the eigenvectors of A0 are of the form

∀k ∈ K, ṽk =

∗
0
∗
0

 and ∀h ∈ K∁, ṽh =

0
∗
0
∗

 .

Furthermore, note that

A1

∗
0
∗
0

 =

0
∗
0
∗

 , S2

∗
0
∗
0

 = 0, A2

∗
0
∗
0

 = 0,

A1

0
∗
0
∗

 =

∗
0
∗
0

 , A2

0
∗
0
∗

 =

0
∗
0
∗

 , A2

0
∗
0
∗

 =

0
∗
0
∗

 .

Using this structure, one can check that for all k ∈ K, ℜλ̈k(0) = oε(1) and ℜ
...
λ k(0) = oε(1).

Thus, the spectrum of Mα consists of eigenvalues (corresponding to indices h ∈ K∁) with ℜλ̈h(0)
non-zero a priori, in which case ℜλh(α) = Θ(α2) = Θ(γ), and of eigenvalues (corresponding to
indices k ∈ K) with ℜλk(α) = O(α4) + oε(1) = O(γ2) + oε(1). By letting ε → 0 and using that
eigenvalues are continuous, this shows that µ̃Mγ = O(γ2) as γ → 0.
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