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Box 1: Key Terms in Generative Modeling

Generative Model: A machine learning model that learns a data distribution p(x) (or a
conditional distribution p(x|z) or p(x|c)) and can generate new samples x→ → p(x) that
resemble the training data.

Latent Space: A lower-dimensional representation space z ↑ Rd learned by models such as
VAEs or GANs, where semantic attributes of the data are often encoded.

Prior Distribution: A predefined distribution (e.g., Gaussian) over the latent variables,
typically denoted as p(z), from which samples are drawn during generation.

Decoder / Generator: A neural network (often denoted G(z)) that maps latent codes z to
data samples x.

Reconstruction Loss: A metric used in training autoencoders and VAEs that measures how
well the generated sample x̂ matches the original input x:

Lrecon = ↓x̂↔ x↓2 or ↔ log p(x|z).

KL Divergence: A measure of how much one probability distribution differs from another.
Commonly used in VAEs to regularize the encoder:

LKL = DKL(q(z|x)↓p(z)).

Mode Collapse: A failure mode in GANs where the generator produces samples with limited
diversity, collapsing to a few modes of the data distribution.

Conditional Generation: Generation of samples x based on specified properties or con-
straints c, e.g., p(x|c), enabling property-guided design.

Inverse Design: The process of searching the input space (e.g., structure, composition) that
maps to a desired target property, often using a generative model or an optimization loop in
latent space.

Diffusion Models: A class of generative models that learn to reverse a stochastic diffusion
process. Data x0 is gradually perturbed into noise via:

q(xt|x0) = N (xt;
↗
ωtx0, (1↔ ωt)I).

and a neural network is trained to denoise xt to recover x0 through a learned reverse process
pω(xt↑1|xt).

Score-Based Models: Closely related to diffusion models, they learn the score function
↘x log p(x) and use Langevin dynamics or ODE solvers to sample from the data distribution.

log p(x) = log p(z) +
K∑

k=1

log

∣∣∣∣det
εf

↑1
k

εx

∣∣∣∣ .

Flow Matching: A recent generative approach that avoids training score functions or simu-
lating diffusion. It directly learns a vector field vω(x, t) that maps noise to data through an
ODE:

dx

dt
= vω(x, t).

This method can be trained via supervised learning on synthetic trajectories or velocity fields
between the base and target distributions.
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Box 2: Key Terms in Crystallography & Materials Science

Crystal Lattice: A crystal structure is periodic in three dimensions. This periodicity is
described by the lattice, which is defined as

L = {l1a1 + l2a2 + l1a3|l1, l2, l3 ↑ Z},

where a1, a2, a3 are basis vectors of R3.

Unit Cell: A unit cell is the smallest unit that can be translated to define the whole lattice. In
three dimensions, it is always a parallelepiped.

Lattice Parameters: A lattice is typically defined in two ways: either as a set of three basis
vectors, or as a set of lattice parameters (a, b, c,ω,ϑ, ϖ), where a, b, c are the lengths of edges
of the unit cell, and ω,ϑ, ϖ are the angles between them.

Symmetry: An object’s symmetry is given by the set of geometric transformations that map
the object onto itself, leaving it invariant.

Space Group: Crystals can be classified by their symmetries. They possess the translational
symmetry of their crystal lattices, and they may also have the point group symmetries of
rotations and reflections within a unit cell. The combination of translational and point group
symmetries can yield more transformations that a crystal can be symmetric to, including
screw and glide symmetries. The full set of symmetric transformations that leave a crystal
invariant defines the space group of the crystal. In three dimensions, there are 230 types of
space groups.

Wyckoff Position: Applying symmetry operations to a crystal may leave some atoms
unaffected: for example, a rotation about an axis leaves atoms on the axis in the same position.
The set of symmetry operations that do not move a position is that position’s site symmetry. A
Wyckoff position is a set of positions that all have the same site symmetries, or conjugate site
symmetries. For example, all points along a mirror plane may belong to the same Wyckoff
position, while a point at the origin of a unit cell may have its own Wyckoff position. Every
point in a crystal can be assigned a Wyckoff position.

Formation Energy: The formation energy of a crystal is the difference in energy between
the crystal and its constituent elements.

Energy above Convex Hull: The convex hull gives linear combinations of known phases
that represent the lowest-energy mixtures of materials; if a material has an energy above the
hull (Ehull > 0), it is energetically favorable for it to decompose into a combination of stable
phases and is therefore thermodynamically unstable. For example, the convex hull of table
salt, NaCl, also includes pure stable Na, pure Cl, as well as NaCl3. However, Na2Cl has a
higher formation energy than the combination of NaCl and pure Na, so it is unstable.

Metastable: Even if a crystal is not in its lowest possible energy state, it may still be
metastable, meaning that a potential energy barrier prevents it from easily transitioning to a
lower-energy state. A crystal having a low energy above the convex hull while also being at an
energy minimum may indicate that it is metastable. Metastable materials are still important:
for example, diamond is metastable, but does not readily convert to a lower energy state under
normal conditions.

Band Gap: The band gap is the difference in energy between the valence band and the
conduction band in a solid.

CIF: Crystallographic Information File, a string-based encoding of a crystal that includes
information such as atom positions, unit cell parameters, and chemical elements.
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Figure 1: An overview of the generative AI paradigm for candidate structure generation and opti-
mization that underpins much of the work reviewed herein.

Figure 2: Overview of generative models for materials discovery discussed in this work. (a) Change
over time of major model architectures discussed herein, showing early dominance of VAEs and
the growth in prevalence of LLMs. (b) Treemap of target properties optimized across models;
box size reflects the proportion of papers mentioning each property. Space group, composition,
lattice parameters, and formation energy are the most common targets. (c) Pie charts illustrating
the dominant model types used for unconditional (left) and conditional (right) materials generation,
where the majority of conditional models can also do unconditional generation but not the other way
around. The methods are clustered according to the primary (and, if applicable, secondary) model
class. Colors match panel (a). Each model is annotated with its primary input data type; as the
majority of current models return structures in CIF file format, this is not illustrated. Abbreviations:
LLM = large language model; VAE = variational autoencoder; RL = reinforcement learning; NL
prompt = natural language prompt; PXRD = powder X-ray diffraction. “CIF prefix” typically includes
composition, space group, and lattice parameters; “Crystallographic file” refers to any file encoding
structure data (e.g., XYZ, PDB, CIF).
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A Desired Properties of a Crystal Generation Benchmark657

Benchmarking plays a vital role in addressing this gap. Beyond enabling rigorous cross-model658

comparisons, it helps define what “good models” should look like in this rapidly evolving space. They659

offer reference points for assessing progress, provide structure for evaluating emerging methods, and660

help researchers, especially newcomers, understand how to design generative models with real-world661

impact.662

Here, we list the desirable properties of the benchmark for crystal generation.663

• End-to-end automation with standardized evaluation. For leaderboards and extensive664

evaluations across increasing new models, evaluations must run automatically across mul-665

tiple datasets. The benchmark should provide automated structure validation, stability666

calculations using MLIPs, and property assessment without human intervention, enabling667

continuous maintenance of the leaderboard and seamless evaluation for users.668

• Expert validation of reference datasets and metrics. Manual curation by crystallographers669

and materials scientists is essential to ensure the reference dataset (for instance, LeMat-670

Bulk, in this case) is free from duplicates, unstable structures, and annotation errors. Expert671

validation should also verify that evaluation metrics (fingerprinting, convex hull calculations)672

accurately capture physical and chemical plausibility.673

• Compatible with diverse model architectures. The benchmark must accommodate dif-674

ferent generative paradigms (VAEs, diffusion models, GFlowNets, LLMs, flow matching)675

and various crystal representations (CIF files, fractional coordinates, voxel grids, graph676

structures). The evaluation framework should accept any valid crystal structure format (or677

most of the widely used formats) as input.678

• Usable with black-box generative systems. Many relevant systems are proprietary or use679

complex multi-stage pipelines. The benchmark should operate solely on generated crystal680

structures (the final CIF or structural files) without requiring access to model weights, latent681

representations, or intermediate outputs.682

• Probing capabilities beyond basic structure generation. Real-world materials discovery683

requires more than generating valid crystals. The benchmark must evaluate conditional684

generation (property-targeted design), multi-objective optimization, synthesis constraints,685

and the ability to navigate complex structure-property relationships, not just unconditional686

sampling.687

• Cover diverse material systems and chemical spaces. Materials science spans inorganics,688

organics, metals, semiconductors, and complex compounds across the periodic table. The689

benchmark should evaluate performance across different crystal systems, space groups,690

bonding types, and compositional complexity to assess true generalization capability.691

• Cover diverse materials design skills. Holistic evaluation requires assessing multiple692

competencies: thermodynamic reasoning (stability prediction), chemical intuition (rea-693

sonable bonding), crystallographic knowledge (symmetry constraints), and inverse design694

capabilities (property-to-structure mapping).695

• Cover a range of generation difficulty levels. To provide continuous improvement signals,696

the benchmark should span from simple binary compounds to complex multi-component697

systems, from high-symmetry to low-symmetry structures, and from well-studied to novel698

chemical spaces.699

• Impossible to completely solve with current models. The benchmark should include700

challenging scenarios that push model limits: generating stable materials in unexplored701

chemical spaces, satisfying multiple competing constraints simultaneously, and discovering702

genuinely novel crystal structures that extend beyond training distributions.703

• Bridge computational prediction with experimental reality. Unlike purely computational704

benchmarks, crystal generation must ultimately connect to synthesizable materials. The705

evaluation should incorporate synthesizability proxies, experimental validation pathways,706

and metrics that correlate with real-world materials discovery success.707
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B Evaluation metrics for materials generation708

B.1 Unconditional Generation709

Unconditional generation refers to the task of producing valid, stable crystal structures without710

targeting specific properties or constraints. The following metrics assess the fundamental quality of711

generated structures:712

Fundamental Validity Metrics. These ensure the outputs are physically meaningful and chemically713

plausible. In different terms, they serve as a sanity check both for model development and inference714

time. Note that all metrics may not be relevant for every material system.715

• Charge Neutrality: The total valence charge of all atoms must sum to zero:716

N∑

i=1

qi = 0 (1)

where qi is the nominal oxidation state of atom i in the structure. For this to be calculated,717

the oxidation states of every atom in the structure must first be assigned. Here, we have718

developed a hierarchical structure for determining oxidation states and charge neutrality:719

1. If all atoms are metals, each atom is assigned a nominal oxidation state of zero and the720

structure is labeled as charge balanced.721

2. If all atoms are not metals, the Pymatgen “get-oxi-state-decorated-structure" function722

Ong et al. [2013] is used to assign oxidation states and determine charge balance.723

3. However, the function used above can fail to find oxidation states for structures that724

are not well optimized. It is still necessary to determine whether these structures725

are charged balanced, particularly in the case of generative model benchmarks, when726

many structures may be too far from typical structures for the Pymatgen functions to727

analyze them. Here, we determine charge neutrality using a data driven approach from728

LeMatBulk Siron et al. [2025]. First, this workflow determines all the possible charge729

balanced compositions of oxidation states based on the observed oxidation states in730

LeMatBulk. If no charge balanced composition can be made using these oxidation731

states, the structure is labeled invalid. The most likely oxidation state assignments for732

this particular composition, each composition is assigned a score based on how probable733

that particular oxidation state configuration is, as determined by the distribution of734

oxidation states seen in LeMatBulk. This score is determined by multiplying all of the735

probabilities for each individual oxidation state together and multiplying by the number736

of elements for a normalization. If the probability is greater than 0.001, the structure737

passes the validity test. Otherwise, to be charge balanced it requires a combination of738

oxidation states which are extremely rare, and therefore, is not valid.739

• Minimum Interatomic Distance: All interatomic distances dij must exceed a cutoff value740

dmin to prevent atomic overlap. We suggest adopting 0.7 Å.741

dij > dmin ≃ i ⇐= j (2)

Mass density and atomic number density : are within reasonable ranges. Mass density742

is given by ϱ = Mtotal
Vcell

, in (g/cm3). The latter is expressed in atoms/Å3. We take upper743

bounds of 25 g/cm! and 0.5 atoms/Å3, respectively.744

745

Valid crystallographic representation : a good proxy is to determine whether a structure746

is CIF-readable using pymatgen.747

748

Lattice Parameters : are within reasonable ranges. We take upper bounds of 100 Åfor749

a,b,c and 180 degrees for ω, ϑ, ϖ respectively, and lower bounds of 1 Åand zero degrees for750

a,b,c and ω, ϑ, ϖ, respectively.751

752
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Stability metrics. These assess the thermodynamic and energetic properties of generated structures:753

•••• Formation Energy (Ef ):754

Ef = Etot(compound)↔
∑

i

niµi (3)

where Etot is the total energy of the crystal, ni is the number of atoms of element i,755

and µi is the chemical potential of the pure element. The result is normalized per atom:756

E
per atom
f = Ef∑

i ni
. We want it to be as small (and negative) as possible.757

The chemical potentials µi are derived from the LeMaterial-Bulk dataset by taking the mini-758

mum energy among all single-element structures for each element: µi = mink↓Si

(
E

(k)
norm

)
759

where Si is the set of all single-element structures containing element i.760

Multi-MLIP Ensemble Implementation: The formation energy metric supports ensem-761

ble statistics across multiple MLIPs (ORB, MACE, UMA). For each structure, ensemble762

statistics are computed as:763

⇒Ef ⇑ =
1

NMLIP

NMLIP∑

k=1

E
(k)
f (4)

ςEf =

√√√√ 1

NMLIP ↔ 1

NMLIP∑

k=1

(
E

(k)
f ↔ ⇒Ef ⇑

)2
(5)

where E
(k)
f is the formation energy predicted by the k-th MLIP. The im-764

plementation extracts pre-computed ensemble statistics from structure properties765

(formation_energy_mean, formation_energy_std) or calculates them from individual766

MLIP results (formation_energy_orb, formation_energy_mace, etc.). A minimum767

of 2 MLIPs is required for ensemble statistics.768

• Energy Above Convex Hull (Ehull):769

Ehull = Etot ↔ E
min
hull (6)

Structures with Ehull ⇓ 0 are considered stable, while values below approximately 0.1770

eV/atom are often deemed metastable. We take LeMat-Bulk [Siron et al., 2024] as reference771

point for calculating the convex hull.772

The convex hull is constructed by filtering the LeMat-Bulk dataset to include only com-773

pounds containing elements present in the target composition, creating PDEntry objects,774

and using Pymatgen’s PhaseDiagram.get_decomp_and_e_above_hull() method. The775

implementation handles charged species by extracting neutral elements before phase diagram776

construction. Multi-MLIP ensemble statistics follow the same formulation as formation777

energy: ⇒Ehull⇑ = 1
NMLIP

∑NMLIP
k=1 E

(k)
hull with corresponding standard deviation calculations.778

• Relaxation Stability: Use an ensemble of Machine Learning Interatomic Potentials to relax779

the generated structures (each one is done independently). Then, compute the Root Mean780

Square Deviation (RMSD) between pre- and post-relaxation atomic positions:781

RMSD =

√√√√ 1

N

N∑

i=1

↓rinit
i ↔ rrelax

i ↓2 (7)

Low RMSD indicates minimal distortion and structural robustness under optimization.782

The implementation calculates individual RMSD values for each MLIP relaxation, then783

computes ensemble statistics: ⇒RMSD⇑ = 1
NMLIP

∑NMLIP
k=1 RMSD(k) where RMSD(k)

784

is the relaxation RMSD from the k-th MLIP. The metric extracts pre-computed val-785

ues from structure properties (relaxation_rmsd_mean, relaxation_rmsd_std) or786

calculates ensemble statistics from individual MLIP results (relaxation_rmsd_orb,787

relaxation_rmsd_mace, etc.). Lower values indicate better structural stability under788

relaxation.789
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Novelty, Uniqueness, and Diversity Metrics. These evaluate how effectively a model explores the790

chemical space:791

• Novelty (N ): Evaluates the fraction of generated structures that are not present in a reference792

dataset of known materials. The novelty score is defined as:793

N =
|{x ↑ G | x /↑ T}|

|G| (8)

where G is the set of generated structures and T is the reference dataset (LeMat-Bulk).794

The implementation supports two comparison methods: BAWL fingerprinting using crys-795

tallographic hash strings with Weisfeiler-Lehman graph kernels, and structure matching796

using Pymatgen’s symmetry-aware structural comparison algorithms. For BAWL, novelty is797

determined by checking if the generated structure’s fingerprint exists in the pre-computed798

reference fingerprint set. For structure matching, each generated structure is compared799

against reference structures with overlapping elemental compositions using space group800

analysis and atomic position matching with configurable tolerances. In our paper, we report801

results using the structure matcher approach for more robust structural comparison against802

the LeMat-Bulk reference dataset.803

• Uniqueness (U): Measures the fraction of unique structures within the generated set to804

assess internal diversity. The uniqueness score is defined as:805

U =
|unique(G)|

|G| (9)

where unique(G) returns the set of unique structures based on their fingerprints.806

The metric is implemented as a structure-level continuous scoring system rather than binary807

classification. For BAWL fingerprinting, individual uniqueness scores are assigned as808

ui = 1/ci, where ci is the count of structures sharing the same fingerprint within the809

generated set. This assigns a score of 1.0 to truly unique structures while proportionally810

penalizing duplicated structures. For structure matching, the implementation uses pairwise811

comparison with an ordered approach: structure i is considered unique if it is not equivalent812

to any structure j where j < i, ensuring deterministic selection of the first occurrence as813

the unique representative. The overall uniqueness metric is computed as U = 1
|G|

∑|G|
i=1 ui.814

Both BAWL fingerprinting and structure matching methods are supported, with structure815

matching used for paper results.816

• S.U.N. and M.S.U.N. Rates: Proportion of generated structures that are simultaneously817

Stable (or Metastable), Unique, and Novel:818

S.U.N. Rate =
|{x ↑ G | Ehull(x) ⇓ 0, x /↑ T, x is unique}|

|G| (10)

819

M.S.U.N. Rate =
|{x ↑ G | 0 < Ehull(x) ⇓ φ, x /↑ T, x is unique}|

|G| (11)

where φ is a metastability threshold (commonly 0.08-0.1 eV/atom, though this varies across820

studies [Miller et al., 2024, Gruver et al., 2024, Zeni et al., 2025]).821

The implementation follows a hierarchical computation order: Stability ⇔ Uniqueness ⇔822

Novelty. First, structures are classified as stable (Ehull ⇓ 0) or metastable (0 < Ehull ⇓ φ )823

using energy above hull values computed by the Multi-MLIP stability preprocessor. Then,824

uniqueness is evaluated within each stability class separately using the chosen comparison825

method. Finally, novelty is assessed for unique structures from each stability class. This826

hierarchical approach provides detailed metrics at each evaluation stage: stability counts,827

unique-within-stable/metastable counts, and final SUN/MSUN counts. The Multi-MLIP828

preprocessor assigns ensemble stability properties (e.g., e_above_hull_mean) to structure829

objects, enabling robust stability classification across multiple MLIPs (ORB, MACE, UMA).830

We set φ to 0.1 eV/atom for assembling results.831

• Diversity: plot the Distribution analysis of space groups, elemental compositions, and832

lattice parameters in comparison to reference datasets. But also:833
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– Composition, Space Group, Lattice and Atomic Site Entropy: Suppose you generated834

N structures, and you count the frequency fi of each element i (e.g., O, Fe, Zn. . . )835

across all structures. Normalize to get a probability distribution: pi = fi∑
j fj

. Then836

compute Shannon entropy: H = ↔
∑

i pi log pi and the Vendi Score [Friedman and837

Dieng, 2022], which is the exponential of the Shannon Entropy. The above example is838

for composition entropy, but this methodology is also applied to the other criteria listed839

above in our diversity benchmark.840

Distribution-Level Metrics. When trying to measure how well the distribution of generated841

structures matches the real material distribution, we can use:842

• Jensen-Shannon Distance [Fuglede and Topsoe, 2004]:843

JSD(P,Q) =

√
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (12)

where P and Q are distributions of generated and real samples, M is the average of the two844

distributions ( 12 (P +Q)), and DKL is the Kullback Leibler divergence.845

• Maximum Mean Discrepancy (MMD) [Tolstikhin et al., 2016]:846

MMD2(P,Q) = Ex,x→ [k(x, x→)] + Ey,y→ [k(y, y→)]↔ 2Ex,y[k(x, y)] (13)

where P and Q are distributions of generated and real samples, and k is a kernel function.847

• Fréchet Distance Metrics [Heusel et al., 2017, Preuer et al., 2018]: Adaptations like Fréchet848

ChemNet Distance (FCD) compare the distributions of generated and reference structures:849

FD(G, T ) = ↓µG ↔ µT ↓2 + Tr
(
!G + !T ↔ 2(!G!T )

1/2
)

(14)

where µ and ! represent the mean and covariance of embeddings.850

Model Efficiency This measures how effectively a model learns from limited training data [Gao851

et al., 2022]:852

• Generic metrics: training dataset size, number of model parameters, number of epochs853

required for training, training time and associated computational infrastructure, inference854

time on 10k structures.855

• Learning Curve Analysis: Performance (e.g., S.U.N. rate, property prediction accuracy) as856

a function of the number of expensive function evaluations (e.g., DFT calculations) required857

for training, i.e., the number of labeled data points.858

Herfindahl-Hirschman Index (HHI) Metrics. The Herfindahl-Hirschman Index quantifies supply859

risk concentration for materials by measuring the concentration of element production sources and860

reserves. For a given crystal structure with composition, we compute:861

• Compound HHI Value: For a compound with chemical formula represented by composition862

C:863

HHIcompound =
∑

i

xi · HHIi (15)

where xi is the fractional composition of element i in the compound, and HHIi is the864

element-specific HHI value.865

• Production HHI: Measures supply risk based on concentration of element production866

sources (market concentration):867

HHIproduction =
∑

j

s
2
j ↖ 10000 (16)

where sj is the market share of producer j for a given element.868
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• Reserve HHI: Measures long-term supply risk based on concentration of element reserves869

(geographic distribution):870

HHIreserve =
∑

k

r
2
k ↖ 10000 (17)

where rk is the fraction of global reserves held by country/region k.871

• Scaling Convention: HHI values are typically scaled from the classical range [0, 10000] to872

a convenience range [0, 10]:873

HHIscaled =
HHIclassical

1000
(18)

• Combined HHI Score: The final benchmark score combines both production and reserve874

metrics using weighted averaging:875

HHIcombined = wprod · HHIproduction + wres · HHIreserve (19)
where wprod = 0.25 and wres = 0.75 by default, prioritizing long-term supply security over876

short-term market dynamics.877

• Missing Element Handling: Elements not found in the HHI lookup tables are assigned the878

maximum risk value (10000 unscaled / 10 scaled) to represent maximum supply uncertainty879

for rare or untracked elements.880

• Risk Categories: For the scaled [0, 10] range:881

Low Risk : HHIscaled ⇓ 2.0 (20)
Moderate Risk : 2.0 < HHIscaled ⇓ 5.0 (21)

High Risk : HHIscaled > 5.0 (22)

B.2 Conditional Generation882

Conditional generation involves producing crystal structures that satisfy specific constraints or exhibit883

targeted properties. Evaluating such models requires metrics that assess both adherence to conditions884

and overall structural quality.885

Property Targeting Metrics. These measure how well generated structures match specified target886

properties:887

• Top-k values: compute the mean and standard of top-k property values, for k = 1, 10, 100,888

that maximize or minimize an objective for generated material structures.889

• Property Proximity: The deviation between the target property value ptarget and the achieved890

value pgenerated:891

Error(p) = |pgenerated ↔ ptarget| (23)
• Success Rate: Fraction of generated structures whose properties fall within an acceptable892

range around the target:893

Success Rate =
|{x ↑ G | |p(x)↔ ptarget| ⇓ ↼}|

|G| (24)

where ↼ is the tolerance threshold.894

• Conditional S.U.N. Rate: Proportion of stable, unique, and novel structures that also meet895

the conditional property constraints. Additionally, we calculate the V.S.U.N. rate, which896

also includes whether the structures pass our validity benchmarks.897

Constraint Adherence Metrics. These evaluate how well generated structures conform to specified898

structural constraints:899

• Space Group Fidelity: For symmetry-conditioned generation, the proportion of structures900

that correctly exhibit the specified space group as defined by Pymatgen’s SpacegroupAna-901

lyzer.902

• Composition Fidelity: For composition-conditioned generation, the accuracy of incorporat-903

ing specified elements in the correct stoichiometries.904

• Wyckoff Position Accuracy: For models conditioning on crystallographic sites, the correct-905

ness of atom placement according to specified Wyckoff positions [Kazeev et al., 2025].906

23



Multi-Objective Optimization Metrics. These assess models tasked with optimizing multiple907

properties simultaneously:908

• Pareto Optimality: Analysis of the non-dominated solutions in the multi-dimensional909

property space.910

• Hypervolume Indicator: The volume of the dominated portion of the objective space,911

relative to a reference point.912

• MOQD Score: Quality-diversity metric that rewards finding diverse sets of high-performing913

solutions across different feature dimensions [Janmohamed et al., 2024].914

B.3 Going further915

While our benchmark focuses on core objectives such as Conditional S.U.N, diversity, validity, we916

recognize the importance of additional evaluation axes that capture real-world utility. Metrics assess-917

ing out-of-distribution generalization—including extrapolation to unseen chemistries, scalability to918

larger systems, and rediscovery of held-out targets—are critical for assessing the robustness and true919

generative capabilities of models. Similarly, synthesizability assessment metrics such as synthetic920

accessibility scores, retrosynthetic success rates, or proximity to known materials offer insight into921

the practical feasibility of generated candidates. These aspects, though not included in this release,922

represent essential directions for future benchmarking and method development.923

Standardizing Convex Hull Computation and Stability To make stability a trustworthy bench-924

mark for generative crystal design, Ehull must be built with fully disclosed and identical DFT settings.925

Because Ehull measures the distance of a structure’s formation energy from the multiphase convex hull,926

its value changes with every additional phase; therefore, authors should always disclose the full DFT927

workflow (functional, U values, k-mesh, energy corrections) and the total number of DFT-relaxed928

formation energies that define the hull. Values derived from spaces with fewer than two competing929

phases should be flagged as unreliable. Machine-learning interatomic potentials are convenient for930

screening but systematically under-estimate Ehull [Nong et al., 2025], so MLIP-based hulls must be931

recalibrated with consistent first-principles data before being used for benchmarking. Additionally,932

Ehull reflects thermodynamic stability only at 0K and 0atm, so kinetic stability must be verified933

separately–for example, by ensuring that phonon spectra contain no imaginary modes. Finally, the934

common “⇓ 0 meV” criterion should be applied cautiously: numerous compounds synthesized in the935

laboratory sit 50–150 meV per atom above the 0K hull, highlighting the need to augment databases936

with additional, consistently computed DFT polymorphs to improve phase-diagram fidelity and to937

contextualise what constitutes a realistically synthesizable region.938

Out-of-Distribution Generalization These metrics specifically target the model’s ability to gener-939

ate valid structures in previously unexplored regions:940

• Extrapolation Success: Performance on generating structures with elements, stoichiome-941

tries, or structure types not seen during training.942

• Size Generalization: Ability to generate larger or more complex structures than those in943

the training set.944

• Rediscovery Rate: Ability to generate known high-performance materials that were explic-945

itly excluded from training, demonstrating the model’s capacity to learn fundamental design946

principles rather than merely memorizing training examples.947

Synthesizability Assessment These metrics evaluate the practical realizability of generated struc-948

tures:949

• Synthetic Accessibility Score: Heuristic metrics adapted from drug discovery, such as950

SAscore [Seo et al., 2024], that estimate synthetic feasibility based on structural complexity951

or similarity to known materials.952

• Retrosynthesis Success Rate: The proportion of generated structures for which computa-953

tional retrosynthesis tools like AiZynthFinder [Guo and Schwaller, 2025] or ASKCOS [Gao954

et al., 2024] can identify plausible synthetic pathways.955
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• Proximity to Synthesized Materials: Distance in feature space or embedding space to the956

nearest experimentally synthesized structure.957

C Benchmark workflow and results958

The benchmark evaluation follows a structured two-phase workflow designed to ensure computational959

efficiency and meaningful comparison by operating only on structurally valid materials. The workflow960

enforces a mandatory validity filtering step followed by selective preprocessing and evaluation phases.961

C.1 Phase 1: Mandatory Validity Assessment and Filtering962

Input Processing: LEMAT-GENBENCH accepts input structures from multiple sources: (1) individ-963

ual CIF file paths in text format, (2) directories containing CIF files processed recursively, or (3) CSV964

files containing structures in various formats (JSON dictionaries, CIF strings, or pymatgen Structure965

objects).966

Validity Benchmark Execution: All input structures are subjected to the standardized validity967

criteria described in Section 3.1 (cf. Validity). The ValidityBenchmark applies these checks968

uniformly and reports aggregate validity rates, failure mode distributions, and structural property969

statistics.970

Validity Preprocessing: In parallel, the ValidityPreprocessor attaches validity metadata to each971

structure, assigns unique identifiers, and generates detailed validation reports to ensure traceability972

between submitted inputs and benchmark results.973

Critical Filtering Step: Only structures passing all validity checks are retained for downstream974

benchmarks. This step reduces computational overhead for expensive operations (e.g., MLIP calcula-975

tions) and ensures that evaluation metrics reflect realistic material properties rather than artifacts of976

invalid structures. Filtering outcomes are comprehensively logged for transparency.977

C.2 Phase 2: Selective Preprocessing and Benchmark Evaluation978

Preprocessor Configuration: Based on the selected benchmark families, the system au-979

tomatically determines required preprocessing steps. The configuration logic maps bench-980

mark requirements to preprocessors: fingerprint-based benchmarks (novelty, uniqueness,981

SUN) require FingerprintPreprocessor for BAWL/short-BAWL methods, distribution-982

based benchmarks require DistributionPreprocessor, and stability assessments require983

MultiMLIPStabilityPreprocessor. All preprocessors attach their computed outputs as attributes984

within the properties dictionary of each pymatgen Structure object, enabling seamless data985

flow between preprocessing and benchmark evaluation phases while maintaining full traceability of986

computed features.987

Fingerprint Preprocessing: When fingerprint-based evaluation is required, the988

FingerprintPreprocessor computes structural fingerprints using the specified method989

(BAWL, short-BAWL [Siron et al., 2025], or PDD [Widdowson and Kurlin, 2021]). This990

preprocessor is bypassed entirely when structure-matcher is selected as the fingerprinting991

method, since structure-matcher performs direct pairwise structural comparison using pymatgen’s992

StructureMatcher algorithm rather than pre-computed fingerprints. The structure-matcher993

approach uses configurable tolerance thresholds (default: 0.1) to determine structural equivalence994

through lattice parameter matching, atomic position comparison, and symmetry analysis, providing995

more rigorous but computationally expensive structural comparison than hash-based fingerprinting996

methods.997

Distribution Preprocessing: For benchmarks requiring compositional or structural distribution998

analysis, the DistributionPreprocessor computes statistical descriptors needed for Maximum999

Mean Discrepancy (MMD) and Jensen-Shannon divergence calculations. This preprocessor extracts1000

compositional features, structural parameters, and other distributional characteristics required for1001

comparing generated structures against reference databases.1002

Multi-MLIP Preprocessing: The MultiMLIPStabilityPreprocessor performs the most compu-1003

tationally intensive preprocessing, utilizing multiple machine learning interatomic potentials (MLIPs)1004
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including ORB v3[Rhodes et al., 2025], MACE-MP[Batatia et al., 2023], and UMA[Wood et al.,1005

2025]. This preprocessor performs: (1) structure relaxation using configurable force convergence1006

criteria (default: 0.02 eV/Å), (2) formation energy calculations against reference states, (3) energy1007

above hull computations using convex hull analysis, and (4) MLIP embedding extraction for Fréchet1008

distance calculations.1009

Benchmark Execution: Following preprocessing, the system executes selected benchmarks on1010

the processed valid structures. Each benchmark operates independently with dedicated memory1011

management and error handling. The execution order is optimized to minimize memory conflicts,1012

with computationally expensive benchmarks (multi-MLIP stability) scheduled with aggressive mem-1013

ory cleanup between operations. The benchmark system generates comprehensive JSON output1014

containing: (1) run metadata including structure counts, benchmark configurations, and execution1015

timestamps, (2) validity filtering metadata tracking the transition from input structures to valid1016

structures, (3) detailed results for each benchmark family with appropriate statistical summaries, and1017

(4) preprocessor results and intermediate data for reproducibility and debugging. Further information1018

on metrics and their implementation is available in Appendix B.1019

Table 3: Model Evaluation Metrics
Model # Validity Unique ↑ Novel ↑ Energy-based Stability Metastability Distribution Diversity HHI

Structures Valid ↑ CN ↑ MinDist ↑ PhysPlau ↑ FormE (Std) ↓ Ehull (Std) ↓ RMSD (Std) ↓ Stable ↑ U-Stable ↑ SUN ↑ Metastable ↑ U-Meta ↑ MSUN ↑ JS ↓ MMD ↓ FID ↓ ElemDiv ↑ SGDiv ↑ SizeDiv ↑ SiteDiv ↑ Prod ↓ Res ↓

ADiT[Joshi et al., 2025] 1000 812 882 914 1000 806 252 ↑2.288 ± 3.807 2.111 ± 4.418 0.389 ± 0.393 19 18 2 108 107 5 0.522 0.003 1.848 0.703 0.022 0.270 14.221 3.428 2.661
Crystalformer[Cao et al., 2024] 1000 577 687 642 796 572 247 ↑1.722 ± 9.741 2.728 ± 5.962 0.587 ± 0.858 13 13 4 106 104 5 0.273 0.003 2.489 0.695 0.313 0.322 17.385 3.830 2.785
DiffCSP[Jiao et al., 2023] 1000 732 733 823 825 729 475 ↑2.353 ± 3.730 1.766 ± 4.224 0.519 ± 0.622 17 17 11 109 108 18 0.464 0.007 1.796 0.695 0.104 0.279 14.277 3.420 2.628
DiffCSP++[Jiao et al., 2024] 1000 748 748 858 858 747 482 ↑4.398 ± 7.771 2.591 ± 5.580 0.661 ± 0.776 20 20 10 87 86 15 0.243 0.005 2.387 0.686 0.391 0.307 20.007 3.535 2.692
LLaMat2[Mishra et al., 2024] 1000 779 873 885 997 769 286 ↑1.120 ± 4.707 2.572 ± 5.673 0.487 ± 0.617 21 21 6 125 122 11 0.329 0.003 1.431 0.703 0.187 0.269 9.153 3.994 2.988
MatterGen[Zeni et al., 2025] 1000 739 740 829 830 738 499 ↑2.218 ± 2.806 1.731 ± 4.184 0.334 ± 0.399 19 19 10 136 136 42 0.439 0.006 1.798 0.644 0.126 0.276 12.109 3.525 2.650
PLaID++[Xu et al., 2025] 1000 960 965 993 999 848 228 ↑2.325 ± 2.994 3.452 ± 6.161 0.114 ± 0.240 25 24 3 218 182 26 0.446 0.035 3.008 0.652 0.204 0.238 5.948 5.246 3.394
SymmCD[Levy et al., 2025b] 1000 561 737 642 861 560 343 ↑1.161 ± 8.279 2.816 ± 5.505 0.763 ± 0.965 9 9 3 64 64 3 0.236 0.006 1.879 0.703 0.378 0.320 18.088 3.549 2.692
WyFormer[Kazeev et al., 2025] 1000 798 810 987 1000 798 530 ↑3.565 ± 8.384 2.048 ± 5.338 0.722 ± 0.794 16 16 6 70 70 6 0.238 0.008 1.436 0.695 0.370 0.309 21.638 3.601 2.701
WyFormer-DFT[Kazeev et al., 2025] 1000 839 839 1000 999 834 569 ↑4.749 ± 7.717 2.141 ± 5.664 0.380 ± 0.609 15 15 9 128 124 25 0.271 0.011 2.129 0.712 0.387 0.302 21.900 3.495 2.666

Table 4: Training datasets and data sources used for the reported generative crystal structure models
Model Training Dataset Source of Submitted Structures
ADiT MP-20 Authors of [Joshi et al., 2025]
Crystalformer MP-20 Figshare of [Kazeev et al., 2025]3

DiffCSP MP-20 Figshare of [Kazeev et al., 2025]3

DiffCSP++ MP-20 Figshare of [Kazeev et al., 2025]3

LLaMat2 MP-20 Authors of [Mishra et al., 2024]
MatterGen MP-20 Figshare of [Kazeev et al., 2025]3

PLaID++ MP-20 Authors of [Xu et al., 2025]
SymmCD MP-20 Figshare of [Kazeev et al., 2025]3

WyFormer-DiffCSP++ MP-20 Authors of [Kazeev et al., 2025]
WyFormer-DiffCSP++-DFT MP-20 Authors of [Kazeev et al., 2025]

D Environmental and Sustainability Considerations1020

The application of generative models to materials discovery presents significant opportunities for1021

advancing environmental sustainability goals. As global challenges related to climate change,1022

resource depletion, and environmental degradation intensify, the need for novel materials with1023

reduced environmental footprints becomes increasingly urgent. Generative approaches can accelerate1024

the discovery of sustainable alternatives by explicitly incorporating environmental criteria into the1025

design process.1026

One promising direction involves the targeted generation of materials with reduced reliance on critical1027

or environmentally problematic elements. By conditioning generative models on compositional1028

constraints that exclude toxic, rare, or environmentally harmful elements, researchers can guide1029

exploration toward more sustainable regions of chemical space. Similarly, models can be trained to1030

prioritize earth-abundant elements and avoid those associated with problematic extraction practices1031

or geopolitical supply risks.1032

Energy-related applications represent another frontier where generative models could significantly1033

impact sustainability outcomes. The discovery of more efficient catalysts for renewable energy1034

3https://figshare.com/articles/dataset/Generated_crystals_for_WyFormer_DiffCSP_
DiffCSP_WyCryst_SymmCD_CrystalFormer_MiAD/29145101
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production, improved battery materials for energy storage, and novel photovoltaic materials could1035

accelerate the transition away from fossil fuels. By specifically targeting properties relevant to these1036

applications, generative models can focus computational and experimental resources on high-impact1037

sustainability domains.1038

Life-cycle considerations present a more complex but equally important target for integration with1039

generative approaches. Ideally, materials should be designed not only for performance but also for1040

recyclability, biodegradability, or other end-of-life scenarios that minimize environmental impact.1041

Incorporating such considerations into generative frameworks remains challenging due to the complex,1042

multi-faceted nature of life-cycle assessment, but represents a crucial direction for future research.1043

The computational efficiency of generative processes themselves also warrants consideration from a1044

sustainability perspective. As models grow in complexity and scale, their energy consumption and1045

carbon footprint increase accordingly. Developing more efficient architectures, training procedures,1046

and sampling approaches could reduce the environmental impact of the discovery process itself,1047

aligning computational means with environmental ends. This consideration becomes particularly1048

important as generative approaches scale to industrial applications and high-throughput discovery1049

platforms.1050

The ultimate success of generative approaches in advancing sustainability will depend not only on1051

technical capabilities but also on intentional alignment with environmental objectives. By explicitly1052

incorporating sustainability metrics into reward functions, objective functions, and evaluation criteria,1053

the materials community can ensure that generative models contribute to addressing environmen-1054

tal challenges rather than merely accelerating traditional discovery paradigms without regard for1055

sustainability implications.1056
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