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Supplementary Material

Box 1: Key Terms in Generative Modeling

Generative Model: A machine learning model that learns a data distribution p(x) (or a
conditional distribution p(x|z) or p(x|c)) and can generate new samples X’ ~ p(x) that
resemble the training data.

Latent Space: A lower-dimensional representation space z € R learned by models such as
VAEs or GANs, where semantic attributes of the data are often encoded.

Prior Distribution: A predefined distribution (e.g., Gaussian) over the latent variables,
typically denoted as p(z), from which samples are drawn during generation.

Decoder / Generator: A neural network (often denoted G(z)) that maps latent codes z to
data samples x.

Reconstruction Loss: A metric used in training autoencoders and VAEs that measures how
well the generated sample X matches the original input x:

Lirecon = ||X — x||? or —logp(x|z).

KL Divergence: A measure of how much one probability distribution differs from another.
Commonly used in VAESs to regularize the encoder:

Lx1. = Dxi(q(z]x)|p(z)).

Mode Collapse: A failure mode in GANs where the generator produces samples with limited
diversity, collapsing to a few modes of the data distribution.

Conditional Generation: Generation of samples x based on specified properties or con-
straints c, e.g., p(x|c), enabling property-guided design.

Inverse Design: The process of searching the input space (e.g., structure, composition) that
maps to a desired target property, often using a generative model or an optimization loop in
latent space.

Diffusion Models: A class of generative models that learn to reverse a stochastic diffusion
process. Data x is gradually perturbed into noise via:

q(x¢[x0) = N (x¢; /auxo, (1 — ay)I).
and a neural network is trained to denoise x; to recover x through a learned reverse process
Do (Xt—l |Xt)-

Score-Based Models: Closely related to diffusion models, they learn the score function
V« log p(x) and use Langevin dynamics or ODE solvers to sample from the data distribution.

det

of!
ox

K
logp(x) = logp(z) + Y _ log
k=1

Flow Matching: A recent generative approach that avoids training score functions or simu-
lating diffusion. It directly learns a vector field vy (x, ¢) that maps noise to data through an
ODE:
dx
dt
This method can be trained via supervised learning on synthetic trajectories or velocity fields
between the base and target distributions.

= vy(x,1).
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Box 2: Key Terms in Crystallography & Materials Science

Crystal Lattice: A crystal structure is periodic in three dimensions. This periodicity is
described by the lattice, which is defined as

L= {llal + lras + lla3|l1, ls,l3 € Z},
where a1, as, a3 are basis vectors of R3.

Unit Cell: A unit cell is the smallest unit that can be translated to define the whole lattice. In
three dimensions, it is always a parallelepiped.

Lattice Parameters: A lattice is typically defined in two ways: either as a set of three basis
vectors, or as a set of lattice parameters (a, b, ¢, «, 8, ), where a, b, c are the lengths of edges
of the unit cell, and «, /3, 7y are the angles between them.

Symmetry: An object’s symmetry is given by the set of geometric transformations that map
the object onto itself, leaving it invariant.

Space Group: Crystals can be classified by their symmetries. They possess the translational
symmetry of their crystal lattices, and they may also have the point group symmetries of
rotations and reflections within a unit cell. The combination of translational and point group
symmetries can yield more transformations that a crystal can be symmetric to, including
screw and glide symmetries. The full set of symmetric transformations that leave a crystal
invariant defines the space group of the crystal. In three dimensions, there are 230 types of
space groups.

Wyckoff Position: Applying symmetry operations to a crystal may leave some atoms
unaffected: for example, a rotation about an axis leaves atoms on the axis in the same position.
The set of symmetry operations that do not move a position is that position’s site symmetry. A
Wyckoff position is a set of positions that all have the same site symmetries, or conjugate site
symmetries. For example, all points along a mirror plane may belong to the same Wyckoff
position, while a point at the origin of a unit cell may have its own Wyckoff position. Every
point in a crystal can be assigned a Wyckoff position.

Formation Energy: The formation energy of a crystal is the difference in energy between
the crystal and its constituent elements.

Energy above Convex Hull: The convex hull gives linear combinations of known phases
that represent the lowest-energy mixtures of materials; if a material has an energy above the
hull (Eqpay > 0), it is energetically favorable for it to decompose into a combination of stable
phases and is therefore thermodynamically unstable. For example, the convex hull of table
salt, NaCl, also includes pure stable Na, pure Cl, as well as NaCls. However, NayCl has a
higher formation energy than the combination of NaCl and pure Na, so it is unstable.

Metastable: Even if a crystal is not in its lowest possible energy state, it may still be
metastable, meaning that a potential energy barrier prevents it from easily transitioning to a
lower-energy state. A crystal having a low energy above the convex hull while also being at an
energy minimum may indicate that it is metastable. Metastable materials are still important:
for example, diamond is metastable, but does not readily convert to a lower energy state under
normal conditions.

Band Gap: The band gap is the difference in energy between the valence band and the
conduction band in a solid.

CIF: Crystallographic Information File, a string-based encoding of a crystal that includes
information such as atom positions, unit cell parameters, and chemical elements.
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Figure 2: Overview of generative models for materials discovery discussed in this work. (a) Change
over time of major model architectures discussed herein, showing early dominance of VAEs and
the growth in prevalence of LLMs. (b) Treemap of target properties optimized across models;
box size reflects the proportion of papers mentioning each property. Space group, composition,
lattice parameters, and formation energy are the most common targets. (c) Pie charts illustrating
the dominant model types used for unconditional (left) and conditional (right) materials generation,
where the majority of conditional models can also do unconditional generation but not the other way
around. The methods are clustered according to the primary (and, if applicable, secondary) model
class. Colors match panel (a). Each model is annotated with its primary input data type; as the
majority of current models return structures in CIF file format, this is not illustrated. Abbreviations:
LLM = large language model; VAE = variational autoencoder; RL = reinforcement learning; NL
prompt = natural language prompt; PXRD = powder X-ray diffraction. “CIF prefix” typically includes
composition, space group, and lattice parameters; “Crystallographic file” refers to any file encoding
structure data (e.g., XYZ, PDB, CIF).
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A Desired Properties of a Crystal Generation Benchmark

Benchmarking plays a vital role in addressing this gap. Beyond enabling rigorous cross-model
comparisons, it helps define what “good models” should look like in this rapidly evolving space. They
offer reference points for assessing progress, provide structure for evaluating emerging methods, and
help researchers, especially newcomers, understand how to design generative models with real-world
impact.

Here, we list the desirable properties of the benchmark for crystal generation.

* End-to-end automation with standardized evaluation. For leaderboards and extensive
evaluations across increasing new models, evaluations must run automatically across mul-
tiple datasets. The benchmark should provide automated structure validation, stability
calculations using MLIPs, and property assessment without human intervention, enabling
continuous maintenance of the leaderboard and seamless evaluation for users.

» Expert validation of reference datasets and metrics. Manual curation by crystallographers
and materials scientists is essential to ensure the reference dataset (for instance, LeMat-
Bulk, in this case) is free from duplicates, unstable structures, and annotation errors. Expert
validation should also verify that evaluation metrics (fingerprinting, convex hull calculations)
accurately capture physical and chemical plausibility.

e Compatible with diverse model architectures. The benchmark must accommodate dif-
ferent generative paradigms (VAEs, diffusion models, GFlowNets, LLMs, flow matching)
and various crystal representations (CIF files, fractional coordinates, voxel grids, graph
structures). The evaluation framework should accept any valid crystal structure format (or
most of the widely used formats) as input.

» Usable with black-box generative systems. Many relevant systems are proprietary or use
complex multi-stage pipelines. The benchmark should operate solely on generated crystal
structures (the final CIF or structural files) without requiring access to model weights, latent
representations, or intermediate outputs.

* Probing capabilities beyond basic structure generation. Real-world materials discovery
requires more than generating valid crystals. The benchmark must evaluate conditional
generation (property-targeted design), multi-objective optimization, synthesis constraints,
and the ability to navigate complex structure-property relationships, not just unconditional
sampling.

* Cover diverse material systems and chemical spaces. Materials science spans inorganics,
organics, metals, semiconductors, and complex compounds across the periodic table. The
benchmark should evaluate performance across different crystal systems, space groups,
bonding types, and compositional complexity to assess true generalization capability.

* Cover diverse materials design skills. Holistic evaluation requires assessing multiple
competencies: thermodynamic reasoning (stability prediction), chemical intuition (rea-
sonable bonding), crystallographic knowledge (symmetry constraints), and inverse design
capabilities (property-to-structure mapping).

* Cover a range of generation difficulty levels. To provide continuous improvement signals,
the benchmark should span from simple binary compounds to complex multi-component
systems, from high-symmetry to low-symmetry structures, and from well-studied to novel
chemical spaces.

» Impossible to completely solve with current models. The benchmark should include
challenging scenarios that push model limits: generating stable materials in unexplored
chemical spaces, satisfying multiple competing constraints simultaneously, and discovering
genuinely novel crystal structures that extend beyond training distributions.

* Bridge computational prediction with experimental reality. Unlike purely computational
benchmarks, crystal generation must ultimately connect to synthesizable materials. The
evaluation should incorporate synthesizability proxies, experimental validation pathways,
and metrics that correlate with real-world materials discovery success.
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B Evaluation metrics for materials generation

B.1 Unconditional Generation

Unconditional generation refers to the task of producing valid, stable crystal structures without
targeting specific properties or constraints. The following metrics assess the fundamental quality of
generated structures:

Fundamental Validity Metrics. These ensure the outputs are physically meaningful and chemically
plausible. In different terms, they serve as a sanity check both for model development and inference
time. Note that all metrics may not be relevant for every material system.

* Charge Neutrality: The total valence charge of all atoms must sum to zero:

N
D a=0 )
i=1

where ¢; is the nominal oxidation state of atom ¢ in the structure. For this to be calculated,
the oxidation states of every atom in the structure must first be assigned. Here, we have
developed a hierarchical structure for determining oxidation states and charge neutrality:

1. If all atoms are metals, each atom is assigned a nominal oxidation state of zero and the
structure is labeled as charge balanced.

2. If all atoms are not metals, the Pymatgen “get-oxi-state-decorated-structure" function
Ong et al. [2013]] is used to assign oxidation states and determine charge balance.

3. However, the function used above can fail to find oxidation states for structures that
are not well optimized. It is still necessary to determine whether these structures
are charged balanced, particularly in the case of generative model benchmarks, when
many structures may be too far from typical structures for the Pymatgen functions to
analyze them. Here, we determine charge neutrality using a data driven approach from
LeMatBulk [Siron et al. [2025]]. First, this workflow determines all the possible charge
balanced compositions of oxidation states based on the observed oxidation states in
LeMatBulk. If no charge balanced composition can be made using these oxidation
states, the structure is labeled invalid. The most likely oxidation state assignments for
this particular composition, each composition is assigned a score based on how probable
that particular oxidation state configuration is, as determined by the distribution of
oxidation states seen in LeMatBulk. This score is determined by multiplying all of the
probabilities for each individual oxidation state together and multiplying by the number
of elements for a normalization. If the probability is greater than 0.001, the structure
passes the validity test. Otherwise, to be charge balanced it requires a combination of
oxidation states which are extremely rare, and therefore, is not valid.

* Minimum Interatomic Distance: All interatomic distances d;; must exceed a cutoff value
dmin to prevent atomic overlap. We suggest adopting 0.7 A.

dij > dpin Vi 75] ()

Mass density and atomic number density : are within reasonable ranges. Mass density

is given by p = %, in (g/ecm®). The latter is expressed in atoms/A®. We take upper

bounds of 25 g/cm? and 0.5 atoms/A3, respectively.

Valid crystallographic representation : a good proxy is to determine whether a structure
is CIF-readable using pymatgen.

Lattice Parameters : are within reasonable ranges. We take upper bounds of 100 Afor
a,b,c and 180 degrees for «, 3, -y respectively, and lower bounds of 1 Aand zero degrees for
a,b,c and a, 3, 7, respectively.

19



7!

ol

3

754

755
756

757

758

759

760
761
762
763

764
765
766
767
768

769

770
771
772
773
774
775
776
777
778

779

781

782
783
784
785
786
787
788
789

Stability metrics. These assess the thermodynamic and energetic properties of generated structures:

* Formation Energy (Ey):

E; = Eio(compound) — an‘/iz‘ 3)

where FEyy is the total energy of the crystal, n; is the number of atoms of element ¢,
and p; is the chemical potential of the pure element. The result is normalized per atom:

B alom: — ;—fn We want it to be as small (and negative) as possible.
The chemical potentials y; are derived from the LeMaterial-Bulk dataset by taking the mini-
mum energy among all single-element structures for each element: p; = mingeg, (E,(K]fr)m>

where S; is the set of all single-element structures containing element 3.

Multi-MLIP Ensemble Implementation: The formation energy metric supports ensem-
ble statistics across multiple MLIPs (ORB, MACE, UMA). For each structure, ensemble
statistics are computed as:

1 NwLip *)
Es) = E “4)
Ep) Ny kz::l !
Nwiip
1 (k) 2
_ E® _(E ) 5
o5, =\ Fo g 2 (B — () 5)

k=1

where E}k) is the formation energy predicted by the k-th MLIP. The im-
plementation extracts pre-computed ensemble statistics from structure properties
(formation_energy_mean, formation_energy_std) or calculates them from individual
MLIP results (formation_energy_orb, formation_energy_mace, etc.). A minimum
of 2 MLIPs is required for ensemble statistics.

Energy Above Convex Hull (Fypyy):
Bt = Bt — Ei? (6)

Structures with Ep, < 0 are considered stable, while values below approximately 0.1
eV/atom are often deemed metastable. We take LeMat-Bulk [|Siron et al.,[2024] as reference
point for calculating the convex hull.

The convex hull is constructed by filtering the LeMat-Bulk dataset to include only com-
pounds containing elements present in the target composition, creating PDEntry objects,
and using Pymatgen’s PhaseDiagram.get_decomp_and_e_above_hull () method. The
implementation handles charged species by extracting neutral elements before phase diagram
construction. Multi-MLIP ensemble statistics follow the same formulation as formation

. _ 1 Nwmrip k . . .. .
energy: (Epu) = N D opone B with corresponding standard deviation calculations.

Relaxation Stability: Use an ensemble of Machine Learning Interatomic Potentials to relax
the generated structures (each one is done independently). Then, compute the Root Mean
Square Deviation (RMSD) between pre- and post-relaxation atomic positions:

N
1 .
RMSD = , | = 21 [ipit — pretax |2 @)

Low RMSD indicates minimal distortion and structural robustness under optimization.
The implementation calculates individual RMSD values for each MLIP relaxation, then
computes ensemble statistics: (RMSD) = ngﬂ“’ RMSD® where RMSD*)
is the relaxation RMSD from the k-th MLIP. The metric extracts pre-computed val-
ues from structure properties (relaxation_rmsd_mean, relaxation_rmsd_std) or
calculates ensemble statistics from individual MLIP results (relaxation_rmsd_orb,
relaxation_rmsd_mace, etc.). Lower values indicate better structural stability under
relaxation.
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Novelty, Uniqueness, and Diversity Metrics. These evaluate how effectively a model explores the
chemical space:

 Novelty (NV): Evaluates the fraction of generated structures that are not present in a reference
dataset of known materials. The novelty score is defined as:

{reG|z¢T}
|Gl

where G is the set of generated structures and 7' is the reference dataset (LeMat-Bulk).

The implementation supports two comparison methods: BAWL fingerprinting using crys-
tallographic hash strings with Weisfeiler-Lehman graph kernels, and structure matching
using Pymatgen’s symmetry-aware structural comparison algorithms. For BAWL, novelty is
determined by checking if the generated structure’s fingerprint exists in the pre-computed
reference fingerprint set. For structure matching, each generated structure is compared
against reference structures with overlapping elemental compositions using space group
analysis and atomic position matching with configurable tolerances. In our paper, we report
results using the structure matcher approach for more robust structural comparison against
the LeMat-Bulk reference dataset.

N ®)

* Uniqueness (/): Measures the fraction of unique structures within the generated set to
assess internal diversity. The uniqueness score is defined as:
_ |unique(G)|

U=—FF7°- 9
Tel &)

where unique(G) returns the set of unique structures based on their fingerprints.

The metric is implemented as a structure-level continuous scoring system rather than binary
classification. For BAWL fingerprinting, individual uniqueness scores are assigned as
u; = 1/¢;, where ¢; is the count of structures sharing the same fingerprint within the
generated set. This assigns a score of 1.0 to truly unique structures while proportionally
penalizing duplicated structures. For structure matching, the implementation uses pairwise
comparison with an ordered approach: structure ¢ is considered unique if it is not equivalent
to any structure j where j < ¢, ensuring deterministic selection of the first occurrence as

. . . .. G
the unique representative. The overall uniqueness metric is computed as U = ﬁ Z‘zzll Uj.

Both BAWL fingerprinting and structure matching methods are supported, with structure
matching used for paper results.

* S.U.N. and M.S.U.N. Rates: Proportion of generated structures that are simultaneously
Stable (or Metastable), Unique, and Novel:

{z € G| Eqyai(z) <0, z ¢ T, x is unique }|

S.U.N. Rate = 10
ate ] (10)
M.S.UN. Rate — {z € G |0 < Epu(z) |2‘7, x ¢ T, x is unique}| (11

where 7 is a metastability threshold (commonly 0.08-0.1 eV/atom, though this varies across
studies [Miller et al.| 2024, \Gruver et al., 2024, |Zeni et al., 2025]).

The implementation follows a hierarchical computation order: Stability — Uniqueness —
Novelty. First, structures are classified as stable (Ey,; < 0) or metastable (0 < Epyy < 7)
using energy above hull values computed by the Multi-MLIP stability preprocessor. Then,
uniqueness is evaluated within each stability class separately using the chosen comparison
method. Finally, novelty is assessed for unique structures from each stability class. This
hierarchical approach provides detailed metrics at each evaluation stage: stability counts,
unique-within-stable/metastable counts, and final SUN/MSUN counts. The Multi-MLIP
preprocessor assigns ensemble stability properties (e.g., e_above_hull_mean) to structure
objects, enabling robust stability classification across multiple MLIPs (ORB, MACE, UMA).
We set 7 to 0.1 eV/atom for assembling results.

* Diversity: plot the Distribution analysis of space groups, elemental compositions, and
lattice parameters in comparison to reference datasets. But also:
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— Composition, Space Group, Lattice and Atomic Site Entropy: Suppose you generated
N structures, and you count the frequency f; of each element ¢ (e.g., O, Fe, Zn...)

across all structures. Normalize to get a probability distribution: p; = Zf ¢ - Then
j i

compute Shannon entropy: H = — ). p; log p; and the Vendi Score [Friedman and
Dieng, |2022[], which is the exponential of the Shannon Entropy. The above example is
for composition entropy, but this methodology is also applied to the other criteria listed
above in our diversity benchmark.

Distribution-Level Metrics. When trying to measure how well the distribution of generated
structures matches the real material distribution, we can use:

* Jensen-Shannon Distance [Fuglede and Topsoe, 2004]:

1 1
ISD(P, Q) = \/ S D1 (PIIM) + 5 Dycr (M) (12)
where P and () are distributions of generated and real samples, M is the average of the two
distributions (1 (P + Q)), and D, is the Kullback Leibler divergence.
* Maximum Mean Discrepancy (MMD) [Tolstikhin et al.,[2016]:

MMD?(P, Q) = Eq.or [k(,2")] + Ey o [k(y, )] = 2Eq y [k(z, )] (13)

where P and () are distributions of generated and real samples, and k is a kernel function.

* Fréchet Distance Metrics [Heusel et al., 2017, |Preuer et al.,[2018]): Adaptations like Fréchet
ChemNet Distance (FCD) compare the distributions of generated and reference structures:

FD(G,T) = ||uc — pr|® + Tr (EG - 2(2G2T)1/2) (14)
where 1 and X represent the mean and covariance of embeddings.

Model Efficiency This measures how effectively a model learns from limited training data [|Gao
et al.,[2022]:

* Generic metrics: training dataset size, number of model parameters, number of epochs
required for training, training time and associated computational infrastructure, inference
time on 10k structures.

* Learning Curve Analysis: Performance (e.g., S.U.N. rate, property prediction accuracy) as
a function of the number of expensive function evaluations (e.g., DFT calculations) required
for training, i.e., the number of labeled data points.

Herfindahl-Hirschman Index (HHI) Metrics. The Herfindahl-Hirschman Index quantifies supply
risk concentration for materials by measuring the concentration of element production sources and
reserves. For a given crystal structure with composition, we compute:

* Compound HHI Value: For a compound with chemical formula represented by composition
C:
HHIcompound = Z x; - HHI; (15)

K3

where x; is the fractional composition of element ¢ in the compound, and HHI; is the
element-specific HHI value.

* Production HHI: Measures supply risk based on concentration of element production
sources (market concentration):

HHIproduction = Z S? x 10000 (16)
J

where s; is the market share of producer j for a given element.
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* Reserve HHI: Measures long-term supply risk based on concentration of element reserves
(geographic distribution):

HHI egerve = Z Tz x 10000 a7
k

where 7y, is the fraction of global reserves held by country/region k.

* Scaling Convention: HHI values are typically scaled from the classical range [0, 10000] to

a convenience range [0, 10]:

HHLjagsic:
HHIscaled = % (18)

* Combined HHI Score: The final benchmark score combines both production and reserve
metrics using weighted averaging:

HHIcombined = Wprod * HHIproduction + Wres HHIreserve (19)

where wproq = 0.25 and wyes = 0.75 by default, prioritizing long-term supply security over
short-term market dynamics.

* Missing Element Handling: Elements not found in the HHI lookup tables are assigned the
maximum risk value (10000 unscaled / 10 scaled) to represent maximum supply uncertainty
for rare or untracked elements.

* Risk Categories: For the scaled [0, 10] range:

Low Risk : HHI ¢ eq < 2.0 (20)
Moderate Risk : 2.0 < HHI ¢ peq < 5.0 21
High Risk : HHI¢ppeq > 5.0 (22)

B.2 Conditional Generation

Conditional generation involves producing crystal structures that satisfy specific constraints or exhibit
targeted properties. Evaluating such models requires metrics that assess both adherence to conditions
and overall structural quality.

Property Targeting Metrics. These measure how well generated structures match specified target
properties:

* Top-k values: compute the mean and standard of top-k property values, for £ = 1, 10, 100,
that maximize or minimize an objective for generated material structures.
* Property Proximity: The deviation between the target property value piyrgec and the achieved
value Pgenerated-
EITOI'(p) = ‘pgenerated - ptarget| (23)
* Success Rate: Fraction of generated structures whose properties fall within an acceptable
range around the target:

I{l‘ €d ‘ Ip(x) _ptargel‘ < 5}|
G|

Success Rate =

(24)

where 9 is the tolerance threshold.

* Conditional S.U.N. Rate: Proportion of stable, unique, and novel structures that also meet
the conditional property constraints. Additionally, we calculate the V.S.U.N. rate, which
also includes whether the structures pass our validity benchmarks.

Constraint Adherence Metrics. These evaluate how well generated structures conform to specified
structural constraints:

* Space Group Fidelity: For symmetry-conditioned generation, the proportion of structures
that correctly exhibit the specified space group as defined by Pymatgen’s SpacegroupAna-
lyzer.

¢ Composition Fidelity: For composition-conditioned generation, the accuracy of incorporat-
ing specified elements in the correct stoichiometries.

* Wyckoff Position Accuracy: For models conditioning on crystallographic sites, the correct-
ness of atom placement according to specified Wyckoff positions [Kazeev et al., 2025].
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Multi-Objective Optimization Metrics. These assess models tasked with optimizing multiple
properties simultaneously:

» Pareto Optimality: Analysis of the non-dominated solutions in the multi-dimensional
property space.

* Hypervolume Indicator: The volume of the dominated portion of the objective space,
relative to a reference point.

* MOQD Score: Quality-diversity metric that rewards finding diverse sets of high-performing
solutions across different feature dimensions [[Janmohamed et al., 2024]).

B.3 Going further

While our benchmark focuses on core objectives such as Conditional S.U.N, diversity, validity, we
recognize the importance of additional evaluation axes that capture real-world utility. Metrics assess-
ing out-of-distribution generalization—including extrapolation to unseen chemistries, scalability to
larger systems, and rediscovery of held-out targets—are critical for assessing the robustness and true
generative capabilities of models. Similarly, synthesizability assessment metrics such as synthetic
accessibility scores, retrosynthetic success rates, or proximity to known materials offer insight into
the practical feasibility of generated candidates. These aspects, though not included in this release,
represent essential directions for future benchmarking and method development.

Standardizing Convex Hull Computation and Stability To make stability a trustworthy bench-
mark for generative crystal design, Fy,; must be built with fully disclosed and identical DFT settings.
Because Ey,; measures the distance of a structure’s formation energy from the multiphase convex hull,
its value changes with every additional phase; therefore, authors should always disclose the full DFT
workflow (functional, U values, k-mesh, energy corrections) and the total number of DFT-relaxed
formation energies that define the hull. Values derived from spaces with fewer than two competing
phases should be flagged as unreliable. Machine-learning interatomic potentials are convenient for
screening but systematically under-estimate Ey; [Nong et al.,[2025]], so MLIP-based hulls must be
recalibrated with consistent first-principles data before being used for benchmarking. Additionally,
FEp reflects thermodynamic stability only at OK and Oatm, so kinetic stability must be verified
separately—for example, by ensuring that phonon spectra contain no imaginary modes. Finally, the
common “< 0 meV” criterion should be applied cautiously: numerous compounds synthesized in the
laboratory sit 50-150 meV per atom above the OK hull, highlighting the need to augment databases
with additional, consistently computed DFT polymorphs to improve phase-diagram fidelity and to
contextualise what constitutes a realistically synthesizable region.

Out-of-Distribution Generalization These metrics specifically target the model’s ability to gener-
ate valid structures in previously unexplored regions:

» Extrapolation Success: Performance on generating structures with elements, stoichiome-
tries, or structure types not seen during training.

* Size Generalization: Ability to generate larger or more complex structures than those in
the training set.

* Rediscovery Rate: Ability to generate known high-performance materials that were explic-
itly excluded from training, demonstrating the model’s capacity to learn fundamental design
principles rather than merely memorizing training examples.

Synthesizability Assessment These metrics evaluate the practical realizability of generated struc-
tures:

» Synthetic Accessibility Score: Heuristic metrics adapted from drug discovery, such as
SAscore [Seo et al.,2024], that estimate synthetic feasibility based on structural complexity
or similarity to known materials.

* Retrosynthesis Success Rate: The proportion of generated structures for which computa-
tional retrosynthesis tools like AiZynthFinder |Guo and Schwaller;2025] or ASKCOS [Gao
et al.| 2024] can identify plausible synthetic pathways.
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* Proximity to Synthesized Materials: Distance in feature space or embedding space to the
nearest experimentally synthesized structure.

C Benchmark workflow and results

The benchmark evaluation follows a structured two-phase workflow designed to ensure computational
efficiency and meaningful comparison by operating only on structurally valid materials. The workflow
enforces a mandatory validity filtering step followed by selective preprocessing and evaluation phases.

C.1 Phase 1: Mandatory Validity Assessment and Filtering

Input Processing: LEMAT-GENBENCH accepts input structures from multiple sources: (1) individ-
ual CIF file paths in text format, (2) directories containing CIF files processed recursively, or (3) CSV
files containing structures in various formats (JSON dictionaries, CIF strings, or pymatgen Structure
objects).

Validity Benchmark Execution: All input structures are subjected to the standardized validity
criteria described in Section [3.1] (cf. Validity). The ValidityBenchmark applies these checks
uniformly and reports aggregate validity rates, failure mode distributions, and structural property
statistics.

Validity Preprocessing: In parallel, the ValidityPreprocessor attaches validity metadata to each
structure, assigns unique identifiers, and generates detailed validation reports to ensure traceability
between submitted inputs and benchmark results.

Critical Filtering Step: Only structures passing all validity checks are retained for downstream
benchmarks. This step reduces computational overhead for expensive operations (e.g., MLIP calcula-
tions) and ensures that evaluation metrics reflect realistic material properties rather than artifacts of
invalid structures. Filtering outcomes are comprehensively logged for transparency.

C.2 Phase 2: Selective Preprocessing and Benchmark Evaluation

Preprocessor Configuration: Based on the selected benchmark families, the system au-
tomatically determines required preprocessing steps. The configuration logic maps bench-
mark requirements to preprocessors: fingerprint-based benchmarks (novelty, uniqueness,
SUN) require FingerprintPreprocessor for BAWL/short-BAWL methods, distribution-
based benchmarks require DistributionPreprocessor, and stability assessments require
MultiMLIPStabilityPreprocessor. All preprocessors attach their computed outputs as attributes
within the properties dictionary of each pymatgen Structure object, enabling seamless data
flow between preprocessing and benchmark evaluation phases while maintaining full traceability of
computed features.

Fingerprint Preprocessing: When fingerprint-based evaluation 1is required, the
FingerprintPreprocessor computes structural fingerprints using the specified method
(BAWL, short-BAWL [Siron et al., [2025], or PDD [Widdowson and Kurlin, 2021]). This
preprocessor is bypassed entirely when structure-matcher is selected as the fingerprinting
method, since structure-matcher performs direct pairwise structural comparison using pymatgen’s
StructureMatcher algorithm rather than pre-computed fingerprints. The structure-matcher
approach uses configurable tolerance thresholds (default: 0.1) to determine structural equivalence
through lattice parameter matching, atomic position comparison, and symmetry analysis, providing
more rigorous but computationally expensive structural comparison than hash-based fingerprinting
methods.

Distribution Preprocessing: For benchmarks requiring compositional or structural distribution
analysis, the DistributionPreprocessor computes statistical descriptors needed for Maximum
Mean Discrepancy (MMD) and Jensen-Shannon divergence calculations. This preprocessor extracts
compositional features, structural parameters, and other distributional characteristics required for
comparing generated structures against reference databases.

Multi-MLIP Preprocessing: The MultiMLIPStabilityPreprocessor performs the most compu-
tationally intensive preprocessing, utilizing multiple machine learning interatomic potentials (MLIPs)
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including ORB v3[Rhodes et al., [2025], MACE-MP|Batatia et al.| 2023], and UMA[Wood et al.|
2025]). This preprocessor performs: (1) structure relaxation using configurable force convergence
criteria (default: 0.02 eV/A), (2) formation energy calculations against reference states, (3) energy
above hull computations using convex hull analysis, and (4) MLIP embedding extraction for Fréchet
distance calculations.

Benchmark Execution: Following preprocessing, the system executes selected benchmarks on
the processed valid structures. Each benchmark operates independently with dedicated memory
management and error handling. The execution order is optimized to minimize memory conflicts,
with computationally expensive benchmarks (multi-MLIP stability) scheduled with aggressive mem-
ory cleanup between operations. The benchmark system generates comprehensive JSON output
containing: (1) run metadata including structure counts, benchmark configurations, and execution
timestamps, (2) validity filtering metadata tracking the transition from input structures to valid
structures, (3) detailed results for each benchmark family with appropriate statistical summaries, and
(4) preprocessor results and intermediate data for reproducibility and debugging. Further information
on metrics and their implementation is available in Appendix [B]

Unique T Novel

Table 3: Model Evaluation Metrics

Table 4: Training datasets and data sources used for the reported generative crystal structure models

Model Training Dataset Source of Submitted Structures
ADIT MP-20 Authors of [Joshi et al., [2025|
Crystalformer MP-20 Figshare of [Kazeev et al., 2025
DiffCSP MP-20 Figshare of [Kazeev et al., 2025
DiffCSP++ MP-20 Figshare of [Kazeev et al., 2025
LLaMat2 MP-20 Authors of [Mishra et al., 2024
MatterGen MP-20 Figshare of [Kazeev et al., 2025
PLaID++ MP-20 Authors of [Xu et al., 2025]]
SymmCD MP-20 Figshare of [Kazeev et al., 2025E
WyFormer-DiffCSP++ MP-20 Authors of [Kazeev et al.,[2025]]
WyFormer-DiffCSP++-DFT MP-20 Authors of [Kazeev et al.|[2025]]

D Environmental and Sustainability Considerations

The application of generative models to materials discovery presents significant opportunities for
advancing environmental sustainability goals. As global challenges related to climate change,
resource depletion, and environmental degradation intensify, the need for novel materials with
reduced environmental footprints becomes increasingly urgent. Generative approaches can accelerate
the discovery of sustainable alternatives by explicitly incorporating environmental criteria into the
design process.

One promising direction involves the targeted generation of materials with reduced reliance on critical
or environmentally problematic elements. By conditioning generative models on compositional
constraints that exclude toxic, rare, or environmentally harmful elements, researchers can guide
exploration toward more sustainable regions of chemical space. Similarly, models can be trained to
prioritize earth-abundant elements and avoid those associated with problematic extraction practices
or geopolitical supply risks.

Energy-related applications represent another frontier where generative models could significantly
impact sustainability outcomes. The discovery of more efficient catalysts for renewable energy

*https://figshare.com/articles/dataset/Generated_crystals_for_WyFormer_DiffCSP_
DiffCSP_WyCryst_SymmCD_CrystalFormer_MiAD/29145101
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production, improved battery materials for energy storage, and novel photovoltaic materials could
accelerate the transition away from fossil fuels. By specifically targeting properties relevant to these
applications, generative models can focus computational and experimental resources on high-impact
sustainability domains.

Life-cycle considerations present a more complex but equally important target for integration with
generative approaches. Ideally, materials should be designed not only for performance but also for
recyclability, biodegradability, or other end-of-life scenarios that minimize environmental impact.
Incorporating such considerations into generative frameworks remains challenging due to the complex,
multi-faceted nature of life-cycle assessment, but represents a crucial direction for future research.

The computational efficiency of generative processes themselves also warrants consideration from a
sustainability perspective. As models grow in complexity and scale, their energy consumption and
carbon footprint increase accordingly. Developing more efficient architectures, training procedures,
and sampling approaches could reduce the environmental impact of the discovery process itself,
aligning computational means with environmental ends. This consideration becomes particularly
important as generative approaches scale to industrial applications and high-throughput discovery
platforms.

The ultimate success of generative approaches in advancing sustainability will depend not only on
technical capabilities but also on intentional alignment with environmental objectives. By explicitly
incorporating sustainability metrics into reward functions, objective functions, and evaluation criteria,
the materials community can ensure that generative models contribute to addressing environmen-
tal challenges rather than merely accelerating traditional discovery paradigms without regard for
sustainability implications.
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