Supplementary Materials
for Generalization Error Bounds for Graph Embedding Using
Negative Sampling: Linear vs Hyperbolic

A Notation

Let D,V € Z~o. We denote by SymV the set of V' x V' symmetric matrices, respectively. For a
vector x € RP, we denote by ||z||,, ||z||, the 2-norm and 1-norm of , defined by ||z|, = Va 'z
and ||z||, == Y, |x|,, respectively. For matrices A, B € R”"V, we denote by (A, B)}, the Frobenius

inner-product of A and B, defined by Tr <ATB) , and denote by || Al[, ,, the operator norm with

respect to the 2-norm defined by |[All, = > cpv 40 “ﬂ?“? We denote by || A||, the nuclear

[
norm of A defined by the sum of singular values. For symmetric matrices A, B € Sym" , we write
A = Bif A— B is positive semi-definite. For an integer K € Z~, aset X, a function f : X — RX
on X, and a function [ : RX — R, we define the composition [ o f by (I o f)(z) :== I(f(x)). Also,
for a function set 7 C {f | f : X = R¥}, we define lo F by {lo f | f € F}.

B Proof of Theorem /I

In this section, we prove Theorem [I] We first recall the theorem.

Theorem (Theoremin the body text). Let Z = RP L.P SP or 1P, and (,%U)LVZ‘1 and (z;‘,)ml be
empirical and expected risk minimizers defined by (13). Under Assumptions[l|and[2] the following
inequality holds with probability 1 — 0:

RZ((z))) - R7((zp)) < 220 5 KZ.Lz(\/szzzln|V|+“§1n|V|) +1(B)

o=+, k=1
(26)
where wz is defined by wgp(R) = wip(R) = (2R)?, wio(R) = cosh? R + sinh® R and
o 2 arccos (1—cos 2R) _ _ _ 1 _ * .
wsp(R) = /—cos 2R(cos 2—2)’ KLp = fKgp = Kp = 5 and kgp = 2, and v; =
z Tz B o i _ z .
Bt 2. B it B it For b = 1200 K and @ = o= Here, B, i
defined by
a(%ag lf(Z,j) = (ilvj/)»
EZ| =Rz it =i =iori = = jand (i,)) # (V,5"), 27)
o 0 otherwise,
where a%fg =1, a]}f; =-1, a%isg =-1 af}; = aflgg =1 and aE; = aft? = ag;; =0. [;(B) is
the range of | defined by

I;(B) :== max {l(5+,6_)

Sm €S, (2)y_y € B} —min {1(6%,67)

sm €8, (2)1_y € B},
(28)

" _

where S == (V x V) x (¥ x V)K",

Our generalization error bound derivation is based on evaluation of the Rademacher complexity [31}
32,|33]] of the loss function [ as a function of positive-negative pair sequence with representations
as parameters. First, we define the Rademacher complexity below. Consider 7 C {f|f : X — R},
where X is the domain of the functions in the set F. Let M &€ Zx( be the number of data points,
and suppose that data points x1, x2, ..., x5 € X are independently distributed according to some
unknown fixed distribution D. The Rademacher complexity of F is defined as follows:

Definition 2. Let 01,09, ...,0) be random values such that 01,09, ...,05,21,%2,...,Z ) are
mutually independent and each of o1, 03, . .., o)/ takes values {—1, +1} with equal probability. The
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Rademacher complexity Rp as(F) with respect to D is defined by
W (F) = By, Eroit, | 37 512 Z onf ()| 9)

By evaluating the Rademacher complexity, we can derive a generalization error bound by the
following theorem provided by Bartlett and Mendelson [37]] and arranged by Kakade et al. [38]].
Theorem 2 (|37, 38]). Letl : X — R be a loss function. Define the empirical risk function
R(xm) (f) and expected risk function R(f) by

m=1

| M
R, (=37 D2 U(f@m)),  R(f) =Er(f(2))). (30)
m=1
Assume that | is L;-Lipschitz continuous and bounded. Define
I(F) = supl(f(z)) — nfI(f (). 31
TEX, TEX,
feF fer

Then for any § € R~ and with probability at least 1 — § simultaneously for all f € F we have that

R(f) — ﬁ(zm)xle(f) < 208p m(F) + L;(F) 1112(]1\45). (32)

From this theorem, we can easily derive an upper bound for the excess risk of the empirical risk
minimizer as follows.

Corollary 1. Define the empirical risk minimizer f € F and expected loss minimizer by f* € F by

f _argmlnR(L n, —ar;;emflnR(f) (33)

m=1
and we call ’R(f) — R(f*) the excess risk of f. Then for any § € R~ and with probability at least
1 — 9 we have that

2M

R(f) = R(f*) < 2R (F) + 21(F)
Proof. We have that
R(f) =R
= (R(F) = Rs(f)) + (Rs(F) = Rs(r) + (Rs(r") = R() (35)
< (R(F) = Rs(1)) + (Rs (s = R(f)).

where the last inequality holds from the definition of f . We complete the proof by evaluating the first
and second term by Theorem 2] and Hoeffding’s inequality, respectively. O

Hence, it suffices to evaluate the Rademacher complexity of [ o ]—'Bg, where FB;: C

{f ’ f:(Zx Z)K+ x (Zx 2)% S RE' x RKf} is defined by

]:Bg = {f(zv)\v\ (Zv)lv ‘1 € B}%}’ (36)

with £ v (2% 2) x (2% 2) 5 RE" x RE defined by
Zu)yp=1

PR — 53 Z+,Z+ 53 Zi—y R —
Ea ] [ ) i i %
Frapyvt (.72 2002 || 0= 022 %y
(20),7 : ’ : '_ . ’ .
P P - — ° :
1 T _
(K+7]K+) (K K ) 52(3+ V2 ) 52(22'7 - )
K+ K+ K~ K~

(37)
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However, the difficulty is that the loss function defined in Section [2.3|can be so complex that we
cannot evaluate its Rademacher complexity directly in that it is the composition of multiple functions
and the data distribution is not independent with respect to each element. Our following lemma
overcomes this difficulty.

Lemma 3. Suppose that | : REX — R is a function Lipschitz continuous with respect to each
element of the parameter with Lipschitz constant Ly, for k = 1,2, ... K. Let X1, X5, ..., Xk be
sets. We consider a set F C {(f1, fay---, [&) | fr: Xp = R, fork =1,2,..., K} of sequences of
functions. Define a set of functions Fy, C {f | f : Xx — R} by
Fo= {f Hf17f27"'7fk:717fk+17fk+2a"'7fK7 }
e b (f17f27"'afk:—l7fk:7fk?+1afk+2)"'afK)6]:
Define a setlo F € {g| g: X1, Xa,...,Xx — R} of functions by
l(fl,f27...,fK)2X1XXQX-“XXK—)R, }
loF = o, eF,, (39
{(561,3?2,---73311{) = U(f1(x1), fo(z2), ..., fr(2K)) (f1. fo Jx) 9
Let D be a distribution on X1 X X X ... Xk, and denote its marginal distribution on Xy, by Dy, for
k=1,2,..., K. Then the Rademacher complexity of | o F with respect to D is given by
K
SRD,M(Z o ]:) = Z Lkmpk’M(}—k). (40)
k=1

(38)

We prove Lemma 3] later.
Remark 10. If K = 1, Lemma[3]is equivalent to the Ledoux-Talagrand contraction lemma [36].

In the following, we prove Theorem|[T|using Lemma 3]

Proof of Theorem[l] Using Lemma we can decompose the Rademacher complexity of [ o F, Bz as

follows:
K.
%D,M (lof5§> = Z ZL;&RD;,M (]:O,Bg)v (41)
o=—1+1k=1
where 7y gz C {f | f : £ x Z — R} is defined by
v
Forz = {Fy iy, | 2D € BEY, 42)
with f; ()l Z x Z — R defined by
\Zv)y=1
fo’(zv)l}’:\l (Z7J) = 5Z(ZZ,Z7) (43)
Here, D is the  distribution of the  positive-negative  pair  sequence

Kt K~
((i;m,j;le, (i’;*m’j’;m)k1)’ and D; is its marginal distribution with respect to

(18 0o ) where o = -+

Therefore, it suffices to evaluate the Rademacher complexity of F, BZ- In the following, we achieve
the evaluation by converting the function to that of the Gram matrix.

First, we introduce the Gram matrix. Let z, be the coordinate vector of z,. We define the Gram

matrix G(ZU)L\Q] € Sym!*! of representations (zv)‘vvzl1 by
.
Gy, =l 22 o zp] [21 22 2y (44)
if (z)V € DYV (s2)™ o (1P)™), and
-1
+1
— T +1
G(zv),‘u‘;‘l =[21 22 ... zZy] (21 22 ... zyl, 45
+1
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if ()Y, e @P)M.

v=

For S C SymM, we define

Fs=1{fs|S €S}, (46)
where for S € Sym‘v‘, we define fg: V xV — R
fS(imj) = <S, Ei,j>F . (47)
By the definition of Jz, we have that
f(zv)lw (7’5]) = <hZOfG( )\V\ >(Z7])7 (48)
v=1 2u) e
where
hgo (z) = hyp (2) ==z, hsp (x) = arccos? (), hyp(z) = arcosh? (z). (49)

Define Gr C Sym'v| by
Gr = {G<zu>‘f=‘1 (20,2, € Bf: } (50)

By applying the Ledoux-Talagrand contraction lemma [36] (or Lemma 3| with K = 1), we have that

Rpe m (]:o,zsg) < Lhsz;,M(}"gg), (51
where Ly, is the Lipschitz constant of hz. Here, we have that

2arccos (1 — cos2R)

hmD hn‘D hnD hsD \/_ COS 2R(COS 2R — 2) ( )
Define Q) C SVl by
0, = {GesymM|G= 0,6, <2} 3
The following is valid.
QMRZ if Z=RP orIP,
Gh C Q| if Z =8P, 54)
Q\V|(cosh2 R+sinh? R) if Z=17P.

The above result for Z = L.” is the consequence of Lemma 8 in [21]]. Those for Z = R”,SP, and
IP are according to a basic property of the Gram matrix (e.g., Lemma 4 in [21]).

Therefore, evaluating 9%%_’ u (Fa, ) completes the proof of Theorem The following lemma gives
9%%,M ('7: Ox )

Lemma 4.
A7 o kz
%DLM(]:QA) < Vi 2Ml/k ln|V| + ?IH|V| , (55)
where
+2  Z=RP,
re {+; Z =1P,8P,1P. (56)
We obtain Theorem [I] by applying Lemma 4] to (54) that appears in (31). O

The followings are proofs of the lemmata that appeared in the above proof.
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Proof of Lemma[d} For \ € R, define O} by
Q) = {/\uuT‘u e RV ||ul, = 1.}. (57)

Since Q7 is the convex hull of Q) and the Rademacher complexity of a function class equals that of
its convex hull [37, Theorem 12-2], we have that

9%%}]”(.7:@(@,\)) = m%M (]:G(Qi\))

M
1
_E v E - m<>\ TEZ . >
(8 it ), ~(01) LSE%M;U T
1 M
E . .. M Es | sup — m)\Tr(uuTEZ: o )
((lk,m’]k,m))ii:lN(D )M l|u|221 M mZ:10 YeymoTk,m
A B M
AR o By mT( )
M (it ) ~(D)™ |\5ﬁ12p§1mz::10' ! ’"’J“" ]
A g E - sup T Z u
= — . . u r a.
N (3t (02) " | 5P B i

M
zZ
om .
> omBy it
m=1

A
=—E,. . M M Eo.
M (it ).~ (D)

op,2

(58)
where |||, , denotes the operator norm with respect to the 2-norm defined by

||A||op,2 = H ” ||Au||2 (59)
2=

To evaluate this, we can apply the following the matrix Bernstein inequality.

Theorem 3 ([41|] Theorem 6.6.1). Let Ay, Ao, ..., Ay € SymW| be independent random matrices
that satisfies

EA, =0, ||Am||0p}2 <o. (60)
Then
M
< \|2v <Z Am> In|V|+ Uln V), (61)
op,2 m=1
where v is the matrix variance statistics defined by
v(A) = HEA2Hop,2' (62)
Note that U(Zn]\{:l Am) = HE% (EA7 H = Yoo HEArQnHop » is valid since

A, Ay, ..., Ay € Symlv‘ are independent. We apply Theorem to the right hand side of (58)
by substltutmg A,byo,E . . Here, E amE » = QO is valid because E 0,,, = 0. The

is equal to those of O'mE where

L’Jk m

singular values of omE TR
k,mYk,m

- _ ~ _1 - ~ 1
B = [J_F} +ﬂ B = {_01 2], B =B = [ 0 +2]. (63)

- - \2
Those singular values equal to the square root of eigenvalues of <0mEZ ) = ( z ) . Here,
+

o I e R O R o R 20 A R
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oD\ 2 _ N2 /N2 A2
and the eigenvalues of (ERD> are 0, +4 and those of (EH‘D) , (ESD) and (EHD) are +5,+7.

Hence, the singular values of E®” are 0, +2 and those of EH“D, ES” and E*” are —|—%, +%.

D D D
Hence, we have that HamE]lR. je = +2and HamE%. je = HamEZS. je =
k,m?’k,m Op,z k,mk,m 0P72 k,mk,m 0p72
D
JmE]}. ‘o = +1. We define kz = amEff . . The remaining part is the
'k vm oIk, m op,2 2 kymok,m op,2
. M z
evaluation of v (Zm:l JmEiz,mJ;:,m)‘

‘We have that

M M 9 9
z _ z _ z _ .
”(Z UmEi;,m,jz,m> =D |E (UmEa) =M H]E (EJ) = Mu;
m=1 m=1 op,2 op,2
(65)
Therefore, we have that
M K
Z . i
B at.)" ~(o1)" Ee Y onBi s < \/2Mypn|V|+ = In|V], (66)
m=1 op,2
which completes the proof. O
M M
Proof of LemmaB} For  ((T1,m,Z2ms - Tkm)) ey c (X X Xy x -+ X Xk)
and 09,03,...,0)p € {-1,+1}, for all ¢ € R.p, there exist

(Fitss £ Fien)s (Fin fowo o i) € F such that

sup [l(fl (.77171)’ f271($2’1>, ey fK,l(xK,1)> + uq (fl,l; f2)1, ey fK,l)]
(f1,1,f2,15, fK,1)EF

(67)
< l(ff,_l(xlvl)’ fZ—i,_l(xQJ)’ RN f;,l(xK71)> + uq (ff:la f;:l, R f;;) + €,
and
sup [_l(fl(xl,l)’ f271(l‘271), cee, fK)l(l'KJ)) + ul(fl,l? f2,1a ey fK,l)]
(f1,1:f2,15, fK,1)EF (68)

<= fraler), faa(@an)s o Fealor)) +un (fins fons o i) + 6
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respectively, where u1 (f1, fa2,..., fx) = ZT]\:{:Q ol (f1(z1,m), f2(®2,m), - - - fr (XK m)). Then,
we have that

Eal sup [Ull(fl,l(‘rl,l)vf2,1(x2,1),.--,fK’l(fEK’l)) +U1(f1’1,f271,...7fK’1)]
(f1,1,f2,15 K, 1)EF

= ;{( sup [l(f1,1(171,1)7f2,1(l’2,1),~-~,fK,1(IK,1))+U1(f1,1,f2,1,---7fK,1)]

fi1:f2,150fK1)EF

+ sup [—l(f1,1($1,1),f2,1(332,1),-~-,fK,1(JJK,1))+U1(f1,17f2,1,~--,fK,1)]}
(f1,1,f2,15fK,1)EF

< ;{ |:l(ff:1($171)7f;1(x2,1)7~-~af;{_71(xK,l)) +U1(fff17f§t1,-~-7f;€71)}
[ (fl 1(551 1) fz 1(1'2 1) . -7f;(}1(37K,1)> + uy <f£17f£17 .- ~7f}§,1)} } +e€

(@), B @), fia ) ) = (@) S @an), o Fia (o)) |

l\')\»—l

:% l(f 1,1 $11 f21 T2 1) ~~,f14§,1($K,1)) *l(ff1($1,1),f;1(332,1),--~af1t,1(50K,1))

_l’_
+ [U1<f1 1 f2 17"'7f1t,1> "‘ul(fl,l’f‘z,lv"'va,l)}}+€
+

l(f (@), £ (@2.0), - --’fzJQ,l(mK,l)> _l(fl_,l(xl,l)va_,l(xQ,l)v"'7f1-(~_,1(IK,1))

(@) fo@an) o fifa @) ) = 1@, fo (20); o Fa @) )|

+ <f1 1af217~-va1> +“1(f1 1af217~'~va,1)]}+6

Mwﬁ

;{ lek<fk1 k1) f’f_’l(xk’l))
k=1

+ [ 1<f1f1af2f1a---af§,1) +“1(f17,1af27,17---af1?,1)} } +e€

{
K e

=Ko, sup Glzek,1kak,1(SCk,1)+U1(f1,17f2,1,---,f1<,1)
(f1,1,f2,1,--, fK1)EF el

K

+1)Zek,1ka;:1($k,1) +up (ffflyf;:1»~--;f;71)]

k=1

DN | =

K
-1) Zemka;;l(xk,l) +uy (ffpfzfu . ~7f1§,1)

k=1

+ €,

(69)
where e, 1 € {—1.0,+1} is defined by

ek,1 = sgn (l (ff1($1,1), o g @), Bl (), fgaa (), - f};71($K,1)>
- l(ffﬁ(ﬂ?l,l), o @), o (@) Fra (k1) - -af[;71(xK,1)>>
(70)
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Since the above is valid for all ¢ € R+, we have that

Eo, sup [o1l(fii(z11), foi(zan)s- s fra(@ra)) +ui(fias fon, -0 fr)]
(fi1,f2,15fK1)EF

K
< Eq, sup [Ulzek,lkak,l(xk,l) +U1(f1,1,f2,17~-~7f1<,1)]-

(fra 2,150 fK1)EF

k=1
(71)
Taking expectation with respect to o2, 03, ..., 0, we have that
Eo\ 00,...on sup lo1(fi1(x11), fo(x2,1), -5 fra(Tr)) +ui(firas fos -5 fxo1)]
(f1,1,f2,15, fx,1)EF
K
<Eoy,00,...0m sup o1 Z ek 1 Lk fr1(@e1) +ui(fin, fon, - fra) |
(frf20,- 0 fr1)EF 1
(72)
Likewise, if we fix 01,09, ...,0m/—1,0m/+1; Om/+2, - - . , 077 We have that
Eam/ sup [Um’l(fl,m’ (xl,m’)a f2,m’ (x2,m’)7 R fK,m'(IK,m’))
(fl.nL’va,'m’7'~'va,m’)€]:
+ U7n’(f1,m/7 f2,m/7 ceey fK,m’)}
K
S ]Eaml sup [Um’ Z ek,m’kak,m’ (xkr,m’) + Upy (fl,m’7 f2,m’7 LR fK,m’) )
(Fim? s Fomt s frc,mt ) EF k=1
(73)
where
m’ —1 K M
um’(flan;---afK) = Z O'm’Zek,m’kak,m’(mk,'rn/)"" Z O'ml(fl(xl,m)an(xQ,m))---afK(l'K,'rrL))
m=m'+1 k=1 m=m'+1
(74)
and (fl'fm,, f;:m,, ceey f; m,), (fim,, Jomrs- s T m,) € F are functions that satisfies
sSup U(fl,m/ ($1,m/), f2,m’(m2,m’)7 s SR (-TK,m’)) + U (fl,m’a fomryenns fK,m’)]
(FromssFomr s ficmr ) EF
Ui @) @)y I @rcom)) 0 (s St ot ) + 6
(75)
and
sup [_l(fl,m’(xl,m’)v f2,m’(x2,m’)a ceey fK,m’ (xK,m’)) + um’(fl,m’a f2,m’a RS fK,m’)]
(.fl,'m./7f2,7n’7"'7fK,7n./)€‘F
< Ui @m0 S @)y i @) ) + s (Fios P+ Fiims ) + 6
(76)

respectively, and ey, v € {—1.0,+1} is defined by
€k,m’ ‘= Sgn (l (fl—i:m/ (xlﬂn’)) ey f]j;l,m/ (xk—l,m’)v f}j:m/(xk,m’)v fk;_Jrl)m’ (‘rk-i-l,m’)a R f[_{;m/(xK,m’))

- l(f;:m' (xl,m')a ey fljll’m’ (xk—l,m’)v fk_’m’ ('rk,m')a fk_+1’m’ (xk+1,m')a R f[_{,l(xK,l)> .

(77)
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Taking expectation with respect to 01,09, ..., 0m/—1, Om/+1, Om/+2, - - - , O, W€ have that

Eal,o'g,...,UM sup |:Um’l<f1,m’(x1,m’>7f2,m’(x2,m’)7 e 7fK7m’(mK,m’))
(FromsFomt oo 1t ) EF

+um’(fl,m’qu,m’u"'7fK,m’)]

K
< Eﬂl,azy---ﬁM sup |fﬂn’ Z ek,m/kak,m/(zk,m’) + um’(fl,m’ , f2,m’a ) fK,m/)‘| .
(fl,?n”-fZ,vn/ 1111 fK,nL’)e]: k=1
(78)
By induction, we obtain that
Eal,az,...,oM sup Z Om fl T m) fg(.fz m) afK(me))
(f1:f25 0 f)EF
M K
< Eaho’z,...,o’M sup Z Om Z ek,mkak:(xk,m)
(f17f27~~~va)€]'— m=1 k=1
K M
= ]E(717ﬂ'2,...,(71\4 Sup Z Z O'm,ek,mkak(xk,m)
(frsf2s o FK)EF |1 me=1
(79)

™~
ES
&=

01,02,...,0 M lz Om€k mfk:(xk m)]

(f17f27 fK)eJ:

TR€Fk [ et

K
>
k=1
K M
= Z Lk Eol,ag, Loy Sup [Z Om€k mfk(xk m)‘|
k}:{l
>

which completes the proof. Here, the last equality holds since the distribution of the random variable
Omek,m 1s the same as that of o,.

O

C Proof of Proposition ]|

First, we recall the proposition.
Proposition (Proposition([T). (a) Suppose that the data distribution is given by (6) and (7). Then we

have that
—+ 71 . (1 - T'+) ma‘X'LGV deg( ) + T.+(|V| B 1) < 1 maXzGV deg (Z) (80)
w22 (A =rH)E[+rHVI(V] - 1)] 2 €] ’
- L A=)V -1) —minieydeg ()] + 7~ (V| 1) 1 (V| 1) — miniey deg (i)
BET2 A=)V - 1) — €]+ e IVI(IVI -] T2 VIvi-1—lel 7
(81)
for Z =17 1P SP, and for Z = RP we have that
2[(1 — r™){2max;cy deg (i)} + r+|V|] max;ey deg (i)
+ o< <4- 82
N (R - e T 1 - ®2
- 1 (W[ -1~ (1 —r7)mineydeg (i) , 1 (V] 1)~ minjey deg (i) (83)
Ve rp> 3 = B
Mo wi-n-a-m)f Vi i-n-§
(b) If the conditional distribution of negative pairs is given by ([8), then we have that
vy = 1 (1 —r7)max;eydeg (i) +r (V|- 1) <1 1 maxjey deg (i )7 84)

w2 [(A—r)El+rPIVI-D]  ~ 2 €|
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for Z =1LP 1P SP, and

_ (1 —r7)max;ep deg (i) +r (|V| — 1) ] [maxiev deg (7)
L =2 1| <g|—=cr =\
{ A=)+ V-1 B

+1].  (85)

Proof of Proposition[I} (a) Since P [( i I m)] is given by (6)), the i-th row and the j-th column

Z T =z
MLy it) Bit it Bit iz, 18 8Ven by
1 (1=rf)deg ()+rt(VI-1) .
[]E T EZ ) EZ , } 2 [(1- r+)|£|+r+|V|(|w—1)] =D (86)
(lk-,,'m’]k 7n) 7,C vak m zk m jk mli 0 . ?é]

for Z = LP,SP 1P, and
2[<1 —rT)deg (i) +rT (V| - Dlp* ifi=j,

Yk,mo Ik, m % 7717-7k m 11‘ mv]k mlg g e . ..
—2T+p+ ifi # jand (i,7) ¢ &,
87
— RD + ig oi + = 1
for Z = R”, where p™ is given by p™ = T VIV=T) In other words, we have that
z z
E(Z— ok, m) E% 7n’jk m E’k -m’jk m

—2[{(1—r*)diag (d) + (V| - DI} — {(1 =) A+ (117 —T)}]pt @)
2[(1=r") L+t (VI -117)]p",
where diag (d) € RVl s given by

deg (1)

. deg (2)

diag (d) := . : (89)
deg ([VI)
A e RIVIIVI s the adjacency matrix defined by
1 if (4,5) € &,

Al .= ’

=0 e o0

and L € RVl is given by L = diag (d) — A.
Hence, we have that
(1 — r™)max;ey deg (i) +rT(|V] — 1)

oL
k2 =3 T A= e+ VIV - 1)
_ 1 maxjepdeg (i) (1—r7) Jr7’+Wdeg()(|v| 1) On
2 €] (177’+)+r+|‘\€}||(|wfl) ’

for Z = LP SP TP, Here, since max;cy deg (i) > \V\’ the right hand side is decreasing with

respect to r* and takes its maximum 3 - %“icg(i) if ¥ = 0. Also, for Z = R, we have that

vz =12[(0=r") L+t (VT —117)]p*|

op,2

<2[(1= )|l o+ VI =117 0"

<2 {(1 - r+){2rlnea5{deg (i)} + r+|V|}p+,
~2[(1 = rM){2max;ey deg (i)} + V]
(L=rH)El+rtVI(VI-1)
max;cy deg (i) (1 — )+ T+‘V|m
I L

92)

=4.
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Here, since 2 max;¢y deg (i) > 2 ‘lil‘ > IV‘I | 7, the right hand side is decreasing with respect to rt
and takes its maximum 4 - %‘deg() ifrt =0.

Similarly, we have that

1 (=) (V=) —deg ()+r~(IV|-1) ... .
B o B2 . TEZ ] =82 GOm0
k,mJk,m k,mJk,m k,m Ik, m ij 0 if s 75 ]
93)
for Z =LP,SP 1P, and
B iin) Bt o]
(ik,7n’jk,7n) ’L;,mdl;m il:,mﬁjI;WL i7j
21 —rH){(VI = 1) —deg (i)} +r*(|V| = Dlp* ifi=j, (94)
= —2r+p+ if ¢ 7é i and ( ) S (‘:
—2p* if i # jand (4,7) ¢ €,
for Z = RP, where p~ is given by p~ = (177‘*)(|V|(|V|71)i\5\)+T’|V|(|V|71)' In other words, we
have that
Z L
Elimien) Fic i B i
=2[{(1 =) (VI = DI~ diag (d)) + (V| = )T} = {(1 =) (11T —T— A) ++~ (117 ~1)}]p~
=2[(1—r){((IV|-DI—diag(d)) — (11T —=I—A)} +r~ (VI-117)]p",
95)
Hence, for Z = LP,SP, 1P, we have that
-1 A=)V~ 1) — miniey deg (i) +7 (V| — 1)
P2 =)V = 1) = IED) + VIV = 1) ©6)
11 (V[-1)— (1 —r")(miniey deg (i)
2 V| (VI=1) = (1 =)

Here, since min;cy deg (i) < M, the right hand side is decreasing with respect to r and takes its

maximum = 1 1 (IV|=1)—(min;ey deg (i) ifr =0.

"I (IvI-n—{5

Also, for Z = RP, we have that
vez = 2[00 =r ) {((IVI - DI —diag (d)) — (11T =T— A)}+r~ (VI-11T)]p |,
< 2[(1 - r—){||(\V| — I - diag (d)||,, , — |[117 I~ AHOP,Q} +r ||y - 11T||Op72}p_

< 2[(1 — r+)2{(|V| —1) - riréigdeg (z)} + 7"_|V|}p+7

(1 —r")2{(|V| - 1) — minjey deg (i)} + 7|V

(L =r2)(IVIVI=1) = [ED) +r=VI(IV] = 1)

(1 —r"){(V| - 1) — minjey deg (i)} + r~ (V| - 1)

T A=r)(VIVI =1 = D) + IV =)
1 (V[=1) = (1 —r") mincy deg (4)

VI (V-1 - -r)f

=2

7

Here, since min;cy deg (i) < I‘V‘I’ the right hand side is decreasing with respect to r and takes its

maximum 4% YI=1- mmle"deg @ if = 0.

VI (IvI-n—{5t
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(b) (Skipgram type negative sampling case) Consider the setting in Example 1| (b). By the same

+ _ 1

(1—r) maxiey deg () +7(|VI=1) 15145, Here, the right hand side is

discussion in (a), we have v, =

decreasing with respect to r and takes its maximum

2’ [(A=m)IE]+rVI(VI-1)]

1  max;eydeg(i) . _
5 g ifr=0.

The probability P{(i,;m, I, m)} of (z;m, Jk, m) appearing as the k-th negative edge is given as

follows:

Pllemiin)] = 2

(i o3t )EV XV

P{(%;,m’ jk_,m) ‘ (ZTm’]f:m)}

- - (98)
[ =r)deg (iy,,,) + (VI = D] [(1 =) deg (jy,,,) + (V] - 1)]
= 5 .
[(L=m)El+rVI(IV] = 1)]
Hence, the element in the i-th row and the j-th column of E... .. \E/} . i e isgiven
(Zk,‘rn’]k:,vn) TeomIkm o komoTk,m
by
1 (1=r7)deg ()+r—(IVI-1) ... .
B o yBL B ] ={z amEmemEn T )
k,mJk,m komodkm  tkmodkm g g 0 if s 74 3.
for Z =LP,SP, 1P, and
z Tz
(st ) Bt Ez-:,m,j:ml,j
9. (1—r7)deg(i)+r7(|\)|—l) _ [(1—r)deg (i;m)+r(|\)|—l)][(1—7’)deg (j;m,)+r(\V|—1)] ifi—
_ A=rD)[E[+r~VI(IVI-1) [(A=n)[E[+rVI(IVI-D]? =)
Y [(1—r) deg (i7.,,, ) +r(IVI-D][(1—7) deg (41, )+ (IV[-1)] e
2 [A=PIE+rVI(VI- D)2 it 7 j,
(100)

for Z = RP. In other words, we have that

]E( EZ Tz

7’k,m’-7k,m) 7’Ic,m’]k,m Zk,mdk.m

[(1=rT)d+r= (V| -D1[(1l=r")d+r=(|V]| - 1)1]T

5 (1 —=7r7)diag(d) +r— (V| - 1)1
(L=ro)E[+r= V(Y- 1)

Hence, for Z = LP,SP 1P, v, =

(1= ro)E[+r= VIV - D)
(101)

1 (d=r)maxiey deg (D+r(IVI=1) pords for kb = 1,2,..., K.

r = 0. For Z = RL, we have that
(1 —7r7")diag(d) +r— (V] - 1)1

2

2 [(A=n)IE[+rVI(VI-1)]
Again, the right hand side is decreasing with respect to  and takes its maximum 3

2 €]

1 max;ey deg (4) if

] |

[(I=rT)d+r= (V| -D1[(l=r")d+r=(|V]| - 1)1]T

v = _
e (L =ro)El+r= (V] -1)

(1 —r7)ldiag () gp o +r~ (VI - 1)

<2

Ll

(L= ro)lE]+r= VIV = D)

op,2

(A =ro)El+r=PI(VI-1)

i =)+ e (V= )1 = )d (V- DT

+

(1 —7r7)max;eyp deg (i) + r—(|V| — 1)

[(L = ro)lE] +r=[VI(VI = D)

op,2‘|

(L =r)El+r= (V] - 1)

(1 —7r7)max;eyp deg (i) + r—(|V| — 1)

11— r)d + (V] = )13 ]
(1 =) +r= VIV = )P

I (I=r2)El+r=V[(V| - 1)
[(1 —77) max;ey deg (1) + 7~ (|V| — 1)

(L=r)lEl+r= VIV = 1)
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(1= r)d + = (V] = D1} ]
(1 =) €[+ =PIV = )P

+1,
(102)

|
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for Z = RP, where the right hand side is decreasing with respect to ~ and takes its maximum
p|mexeydes@ 4] iy =0,

O

D Proof of Lemmal(ll

We recall Lemmalll

Lemma (Lemma . Suppose that (V,E) is a tree and §* : 'V x V — Rxq is given by its graph
distance. Then, there exist R € R, representations (21, 22, ..., 2y ) € Bg in L%, and threshold

0z € R that satisfy @4) for all i, j € V. In particular, R* ((zf})‘w ) =R*

v=1
Proof of Lemmall] Following [29]], for a weighted graph (),€) with a nonnegative weight
function w : &€ — Ry, take 8 < and let n = —2kln (tanﬁ) and n =
—2kIntan

T =4
max, deg (v) 2

[ | S—
maxy—; j deg(v)

max(; jyeg w (i) . Here, k is the absolute value of the curvature of the hyper-

bolic space that we consider. In this paper, £ = 1 always holds. For € > 0, take 7 so that it satisfies
7 > nand Tming ;e w(i, j) > nE<. Then by the (1 + €)-distortion algorithm, we can obtain
representations z1, 22, . .., 2y € L2 such that

(1—&)76%(i,5) < Ap2(zi, 2;) < (14 €)76* (i, §), (103)

for any i,j € V, where §* is the distance function on the weighted graph. Since k¥ = 1 and we

consider an unweighted graph, where w(i, j) = 1 holds for all (i, j), n :== —2k In (tan 5), we have

thatn == —21In (tan g) and 1 < n. Therefore, for 7 > n 1J€r€, there exist representations that satisfy

(103).
1+4€

Let 7 > max {n - ,2}, and 0y > = 272 and by the (1 + ¢)-distortion algorithm, obtain represen-

tations 21, 22,..., 2y € LL? such that they satisfy (T03) for any ,j € V. Let € := 1. Then, for
(i,7) € &, we have that

G]Lz — [A]LQ (Zi7 Zj)]2
> 02 — (14 €)*6% (i, 5)

25
> 77 (2 - 16) (104)

VoIV
o

For (i,7) ¢ &, since §*(¢, 7) < 2, we have that
[A]L2 (Zi, Zj)}2 - H]LZ
> 721 = ¢)* 10" (i, )] — e

105
>72<i—2> (105)

> 1.

Hence, the representations always satisfy the condition (24). If the diameter of the graph is Ry ¢),
then we can get the representations in B-g,,, ., which completes the proof. O

E Proof of Lemma

We recall Lemma[2] below.
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Lemma (Lemma' Let (V,€) be a graph and deﬁne W and p by W = \V|(\V| —1)and & =

£ _
|W|. Define p == min {u™, =}, where p* = W = T+1)p+r+ — W( Sy and pT o=
% (1_T_)d_p)+r_ - % = T:;p+r+ In LGE, the expected risk of the expected risk minimizers

satisfies R® ((z:) Lv:‘1> >R*+ Vrilfmﬂ Here, me is not smaller than the number of disjoint 6-star
subgraphs in the graph for the 2-dimensional LGE.

Proof of Lemma 2| A truly positive pair appears as a positive pair in probability % m and

o+
)E; T Also, a truly negative pair appears as a negative
pair in probability - W and as a positive pair in probability - W.

as a negative pair in probability % ==

Hence, each pair that violates the condition (24) increases the expected risk by p == min {u™, p= },

+._ 1 1 1 n - ._ 1 1 1 *
where 4=y T errs — W s M W O e W T

Hence, we have that R* ((z:)lvﬂl) >R* + me . Also, the achievable minimum expected risk

R*. i;l ﬂw"w and (1 — p)m, which is attained if the condition (24) is always
satisfied.

In the following, we prove that Vrﬂffm is no smaller than the number of 6-star subgraphs. The following
proves that for each 6-star subgraph, there is a pair that violates (3). Let ¢ be the center of the 6-star
subgraph and vy, va, . . ., vg be its neighborhood. Define §%, := §*(c, v,,). Let Bs(z) be an open
ball of radius § centered at z in R?. Assume that z., 2,,, ..., z,, € R? satisfies (5) and define
Ay, = Agpe(2z¢, 24,,). Form,m’ =1,2,...,6, z,,, € Ba_,(z.) and z,,, ¢ Ba _,(z.,,) are
necessary. Hence, /2, 2.2, , > 60°. Thus, segments zcz;,l,zczw, cey BeZuyg partitioh 360°
into 6 angles larger than 60°, which is contradiction. O

F Proof of Proposition 2]

We recall the proposition below.
Proposition (Proposition . Suppose that (V,E) is a tree and 6* : V x V — Ry is given by

2
its graph distance, and take R given in Lemma Let vy p = (, /V1+]LD + 4 /V;LD) JIfM >
2

3w,p (R) ( F) ! : z( VI )
(4IV|MV£§12H 8y Lo In[V[+y/In5 ) + 2( o 1H\V|+\/E) , then HGE’s R= ( (2}),-4

is smaller than LGE’s.

Proof. If a,b,c > 0 and assume 2 > 0, then az? + bz < c & 0 < x < —b + /b2 + 4ac. We are
going to find M that satisfies

2 1 /In 2
wLD Z ZL-( [2Mv} o In V] + 6111|V|> + I;(B) nﬁ VEM, (106)

o=+,— k=1

where K* = K~ =1, L7 = L] = 1,and I; = 1. Since we consider R that satisfies the condition
in Lemma 2, 2wy b (R) < I;(B) is valid. Hence, we consider the following condition.

1 In 2
wio(R) | 2/2—-vio |V +4- 6M1n|w+ ;4 < VR (107)

This corresponds to x = ﬁ’ a=3V[b=BriolV[+/In3, c= S Wecan

formulate the condition as follows:

1
0< — < —b++b%+4ac
v M
) (108)

s M > 5-
(—b—!— Vb2 —|—4ac)
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Here, we have that

1 _ (b+vb2—|—4ac)2

(=b+ VB2 + dac)” (dac)®
_(ro(it 2‘"))2

(4ac)?

b 2ac >

(5
(2
(5

(b 1
- \2ac 2
b 1
<[ /= 4+ =
~ \2ac 2b
3 / 1
wio (R — <1/8V1 Lo In V| + )
AVIuVinin 8vy 1o In[V] 4+ 4/In )
(109)
which completes the proof. Here, the first inequality holds since /1 +y < 1+ %y O
G Proof of Example 4]
Proof. ExampleEWe obtain the result by applying Proposition Here, |V| = El=V -1

—x
2
The radius R is given by the proof of Lemma VLD = (, /l/fr Lo T /v LD) is given by

Proposition [T} and y is given by the first half of Lemma[2] From the second half of Lemma 2] we
have that VR > A2if A\ > 5and h > 4. O

min
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