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Abstract1

Graph Neural Networks (GNNs) are able to achieve high classification accuracy2

on many large real world datasets, but provide no rigorous notion of predictive3

uncertainty. We leverage recent advances in conformal prediction to construct4

prediction sets for node classification in inductive learning scenarios, and verify5

the efficacy of our approach across standard benchmark datasets using popular6

GNN models. The code is available at this link.7

1 Introduction8

Machine learning on graph structured data has seen a boom of popularity in recent years, with9

applications ranging from recommendation systems to biology and physics. Graph neural networks10

are quickly maturing as a technology; many state of the art models are commoditised in frameworks11

such as Pytorch Geometric [1] and DGL [2]. Despite their overwhelming popularity and success,12

very little progress has been made towards quantifying the uncertainty of the predictions made by13

these models, a vital step towards robust real world deployments.14

In related areas of machine learning such as computer vision, conformal prediction [3] has emerged15

as a promising candidate for uncertainty quantification [4]. Conformal prediction is a very appealing16

approach as it is compatible with any black box machine learning algorithm and dataset as long as17

the data is statistically exchangeable. The most wide-spread method, so called split-conformal, also18

requires trivial computational overhead when compared to model fitting.19

Graph structured data is in general not exchangeable and so the guarantees provided by conformal20

prediction in its naive form do not hold. Recent work by Barber et al. [5] extends conformal prediction21

to the non-exchangeable setting and provides theoretical guarantees on the performance of conformal22

prediction in this setting. We leverage insights from [5] to apply conformal prediction in the node23

classification setting. The key insight is that for a homophilous graph, the model calibration should be24

similar in a neighbourhood around any given node. We leverage this insight to localise the calibration25

of conformal prediction. We show that our method improves calibration of predictive uncertainty26

and provides tighter prediction sets when compared with a naive application of conformal prediction27

across several state of the art models applied to popular node classification datasets.28

2 Conformal Prediction29

Conformal prediction is a family of algorithms that generate finite sample valid prediction intervals or30

sets from an arbitrary black box machine learning model. Conformal prediction may be thought of as31

a "wrapper" around a fitted model that uses a set of exchangeable held out data to calibrate prediction32

sets. Amazingly, the predictive model does not even need be well specified for these guarantees to33

hold (although the prediction intervals or sets may not be useful in this case). In the exposition below34

we will focus on conformal classification as that is the object of study in this work, but note that35

conformal prediction can be used for regression and other risk control procedures. We recommend36

consulting the excellent tutorial by Angelopoulos and Bates [6] for an introduction.37

2.1 The Exchangeable Case38

Suppose we are working on a K−class classification problem and we have a fitted model f̂ : X →39

[0, 1]K that outputs the probability of each class. Given an exchangeable set of held-out calibration40

datapoints (X1, Y1) , . . . , (Xn, Yn) (held out meaning they were not used to fit the model) and a41
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new evaluation point (Xn+1, Yn+1), conformal prediction constructs a prediction set T (Xn+1) that42

satisfies43

1− α ≤ P (Yn+1 ∈ T (Xn+1)) ≤ 1− α+
1

n+ 1
(1)

for a user specified error rate α ∈ [0, 1]. Conformal prediction relies on a score function S :44

X × Y → R, which is a measure of the calibration of the prediction at a given datapoint. Given a45

score function S, the procedure for constructing a prediction set is very simple; for each datapoint46

(Xi, Yi) in the calibration set, compute the score si = S(Xi, Yi). Define 1 − α̂ to be the ⌈(n +47

1)(1 − α)⌉/n empirical quantile of the scores s1, . . . , sn, and finally create the prediction set48

T (Xn+1) = {y : S (Xn+1, y) ≤ 1− α̂}.49

A popular conformal prediction procedure for classification problems is known as Adaptive Prediction50

Sets (APS, [7]). To motivate the APS score function, suppose we have access to an oracle classifier51

π that exactly matches the true conditional distribution (i.e. π(x) = P(Yn+1|Xn+1 = x)). Then to52

construct a 1 − α prediction set from the oracle, we simply sort the probabilities into descending53

order, and add labels to the set until the cumulative probability exceeds 1− α (with appropriate tie54

breaking to ensure exact coverage).55

Let {π(1), . . . , π(K)} be the order statistics of the conditional probabilities π(x) so that π(1) ≥ π(2) ≥
· · · ≥ π(K). Prediction sets can be constructed from the oracle as

{
π(1), . . . , π(k)

}
,where k = inf

k′ :

k′∑
j=1

π(j) ≥ 1− α

 .

In practice the probabilities given by a fitted classifier f̂(x) will usually not be exactly equal to56

P(Yn+1|Xn+1 = x). APS instead measures the deviation from the oracle procedure required to57

achieve the desired level of coverage on the calibration data; the conformal score is defined as58

S(x, y) =

k∑
j=1

f̂(x)(j), where y = k. (2)

To give a concrete example, suppose we want to construct prediction sets that contain the true label59

90% of the time (so α = 0.9). It could be the case that, on our held out data, if we simply add up the60

ordered softmax outputs until their cumulative sum exceeds 0.9 we actually get 85% coverage, due to61

the model being miss-calibrated. Using APS we might calculate that if we construct prediction sets62

using α̂ = 0.94 we get 90% coverage, and by exchangeability this translates to 90% coverage on any63

new test point. We would therefore use the level α̂ = 0.94 to construct our new prediction sets. Note64

to get exact coverage ties need to be broken randomly when including the final label in the set, see65

Appendix A.1 for details.66

2.2 Beyond Exchangeability67

Conformal prediction in the form presented above relies on the assumption that the data points68

Zi = (Xi, Yi) are exchangeable. The exchangeable form of conformal prediction provides no69

guarantee if these assumptions are violated, however non-exchangeable conformal prediction was70

introduced in the pioneering work of Barber et al. [5].71

Formally, the non-exchangeable conformal prediction procedure assumes a choice of deterministic72

fixed weights w1, . . . , wn ∈ [0, 1] (normalized as detailed in [5]). As before, one computes the73

scores s1, . . . , sn but now defines the prediction set in terms of the weighted quantiles of the score74

distribution75

Ĉn (Xn+1) =

{
y ∈ Y : S (Xn+1, y) ≤ Q1−α

(
n∑

i=1

wi · δsi + wn+1 · δ+∞

)}
(3)

where Qτ (·) denotes the τ -quantile of a distribution and δx denotes a point mass at x. Non-76

exchangeable conformal prediction also comes with performance guarantees; the authors define the77

coverage gap78

Coverage gap = (1− α)− P
{
Yn+1 ∈ Ĉn (Xn+1)

}
(4)
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as the loss of coverage when compared to the exchangeable setting, and show that this can be bounded
as follows: let Z = ((X1, Y1) , . . . , (Xn+1, Yn+1)) be the full dataset and define Zi as the same
dataset after swapping the test point and the ith training point

Zi = ((X1, Y1) , . . . , (Xi−1, Yi−1) , (Xn+1, Yn+1) , (Xi+1, Yi+1) , . . . , (Xn, Yn) , (Xi, Yi)) .

Then the coverage gap in Equation (4) can be bounded as (Theorem 2a, Barber et al. [5]):79

Coverage gap ≤
∑n

i=1 wi · dTV

(
Z,Zi

)
1 +

∑n
i=1 wi

(5)

where dTV is the total variation distance. To make this bound small one would like to place a large80

weight wi on datapoints that are drawn from a similar distribution to the test point (Xn+1, Yn+1).81

3 Conformal Prediction for Node Classification82

Consider now the node classification setting: we are given a graph G = (V,E), and for each node83

i ∈ V we are given a node feature vector Xi ∈ RF and a label Yi ∈ Y . A standard pipeline for node84

classification usually consists of a GNN model that produces a node embedding hi ∈ RH followed85

by a classifier f : RH → Y . Here the data points Zi = (Xi, Yi) are certainly not assumed to be86

exchangeable; the underlying principle of GNN models is that the adjacency matrix of G provides87

information about the dependency between datapoints (and hence neighbourhood information of G is88

aggregated and used for prediction). Barber et al. [5] show in particular that non-exchangeable data89

can be navigated when the fitted model is a symmetric function of the test data. Our method is based90

on the observation that using only training data to fit the model trivially satisfies this assumption. In91

particular, this excludes the transductive setting.92

We combine non-exchangeable conformal prediction with the information given by the adjacency93

matrix into an algorithm for constructing prediction sets for node classification, which we call94

Neighbourhood Adaptive Prediction Sets (NAPS). We set the weights in Equation (3) to wi = 1 if95

i ∈ N k
n+1, where N k

n+1 is the k-hop neighbourhood of node n+1. We then apply non-exchangeable96

conformal prediction with the APS scoring function in Equation (2). The coverage gap of NAPS is97

bounded as98

Coverage gap ≤

∑
i∈Nk

n+1
dTV

(
Z,Zi

)
1 + |N k

n+1|
(6)

by simple substitution into Equation (5). This bound will be small if the k-hop neighbours of node99

n + 1 are distributed similarly, which is otherwise known as homophily [8]. Homophily is a key100

principle of many real world networks, where linked nodes often belong to the same class and have101

similar features, and is in crucial for good performance in many popular GNN architectures (although102

recent work has considered the heterophilic case, see [9], which we will discuss in the future work103

section). This is also related to network homogeneity, where nodes in a neighbourhood play similar104

roles in the network and are considered interchangeable on average.105

Note that NAPS is not applicable in the transductive setting, as the fitted model f̂ would depend106

on the node features in the test set, hence the conformal scores would no longer be exchangeable.107

It is however applicable in inductive settings where either the test set consists of multiple new108

graphs, or new nodes are added to an existing network. The neighbourhood depth parameter k109

introduces a tradeoff; expanding the neighbourhood increases the sample size for calibration, but110

introduces nodes that may be progressively less exchangeable with the test node. In the form presented111

here we recommend only applying NAPS to large homophilous networks with dense 1 or 2 hop112

neighbourhoods, but we will discuss extensions in future work.113

4 Experiments114

We now perform experiments with popular real world datasets and models to evaluate the performance115

of our procedure. Our experiments follow the following format: we split each graph into training,116

validation and test nodes (where the validation and test nodes are not available during model fitting117

i.e. an inductive node split). The training and validation sets are used for model fitting, and the test set118

is used to evaluate the conformal prediction procedure by constructing prediction sets and evaluating119

the empirical coverage.120
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Experimental Setup. In each experiment, we sample a batch of evaluation nodes and construct121

a 1− α probability prediction set for each evaluation node using NAPS as described in Section 3,122

as well as using a naive application of APS calibrated among all the nodes not in the evaluation set.123

We then report the empirical coverage, average prediction set size and average size of the prediction124

set given that the set contains the true label across all nodes. For each experiment we sample 1000125

nodes randomly from the nodes in the test set, and we perform 100 repetitions of the experiment (see126

Appendix A.2 for a justification of this approach). We only apply our method to large connected127

components from the test set following the discussion in Section 3 (see Appendix A.3 for details128

on the datasets and the test set construction procedure). We apply our method to three popular129

node classification datasets, namely Reddit2 and Flickr introduced in [10] and Amazon Computers130

introduced in [11]. We apply two variants of two popular GNN models, namely GraphSAGE [12] with131

the mean and max aggregators, and the ShaDow [13] subgraph sampling scheme with GraphSAGE132

and GCN [14] layers. The results for the Reddit2 and Flickr datasets are displayed in Tables 1 and 2133

respectively, with Amazon Computers being displayed in Appendix A.4. We see across all models on134

all three datasets, NAPS produces well calibrated, tight prediction sets, while the naive application of135

APS tends to overcover and produces wider prediction sets.136

Table 1: The test accuracy, empirical coverage, average prediction set size and average prediction set
size conditional on coverage for all models considered on the Reddit2 dataset with α = 0.1. Bold
indicates the best performing method.

Model
Accuracy Coverage Size Size | Coverage

Top-1 APS NAPS APS NAPS APS NAPS

GraphSAGE-Mean 0.914 0.928 0.897 2.23 1.77 2.37 1.93
GraphSAGE-Max 0.771 0.918 0.904 3.97 3.41 4.08 3.53
ShaDow-SAGE 0.844 0.930 0.902 2.15 1.72 2.21 1.78
ShaDow-GCN 0.827 0.931 0.902 2.18 1.73 2.22 1.81

Table 2: The test accuracy, empirical coverage, average prediction set size and average prediction set
size conditional on coverage for all models considered on the Flickr dataset with α = 0.1.

Model
Accuracy Coverage Size Size | Coverage

Top-1 APS NAPS APS NAPS APS NAPS

GraphSAGE-Mean 0.503 0.912 0.904 4.22 3.82 4.26 3.87
GraphSAGE-Max 0.501 0.907 0.902 4.26 4.03 4.28 4.08
ShaDow-SAGE 0.500 0.910 0.904 4.24 4.02 4.25 4.09
ShaDow-GCN 0.496 0.913 0.905 4.25 4.05 4.26 4.01

5 Conclusion and Future Work137

In this work we have introduced NAPS, an approach for constructing prediction sets on graph138

structured data. Our method comes with theoretical guarantees on the coverage and we have shown139

that our approach produces high quality prediction sets when using popular GNN models on standard140

node classification datasets. Several natural extensions to NAPS will follow in future work; here we141

applied equal weights to the scores at each neighbourhood depth, but for a homophilous network142

one could place more weight on shallower neighbours relative to deeper neighbours. We also only143

used a fixed neighbourhood size of k = 2 (which was chosen without any tuning). Intuitively one144

would like to select k such that the calibration nodes are "local" within the network while providing a145

large enough sample size to accurately estimate the quantile 1− α̂. It would be useful to study the146

interplay between the optimal choice of k and the diameter of the network. Our method could also be147

extended to heterophilic networks; in a heterophilic network nodes tend to be connected to dis-similar148

nodes. One could therefore calibrate among alternating neighbourhoods
⋃k

j=1 N
2j
n+1\N

2j−1
n+1 .149

NAPS may produce wide prediction sets when deployed on low density networks as the sample size150

for conformal calibration will be small, see Equation (1). An approach for conformal prediction in151

hierachical models was introduced in Dunn et al. [15], where the quantiles are calibrated in different152

groups before being pooled. An approach similar to this could be applied for nodes in small connected153

components, where calibration on similar neighbourhoods or components could be pooled to provide154

a better estimate of the conformal quantile.155
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A Appendix212

A.1 Adaptive Prediction Sets213

Here we give a formal description of the APS [7] procedure for completeness. Denote the oracle214

classifier πy(x) = P[Y = y | X = x] for all y ∈ Y , and again let π(1)(x) ≥ π(2)(x) ≥ . . . ≥215

π(K)(x) be the order statistics of this classifier. For any τ ∈ [0, 1] define the generalised conditional216

quantile as217

L(x;π, τ) = min
{
k ∈ {1, . . . ,K} : π(1)(x) + π(2)(x) + . . .+ π(k)(x) ≥ τ

}
. (7)

One can now define the set valued function218

S(x, u;π, τ) =
{

Labels of the L(x;π, τ)− 1 largest πy(x), if u ≤ V (x;π, τ),

Labels of the L(x;π, τ) largest πy(x), otherwise
(8)

where219

V (x;π, τ) =
1

π(L(x;π,τ))(x)

L(x;π,τ)∑
c=1

π(c)(x)− τ

 . (9)

The oracle prediction set may then be defined as

Coracle
α (x) = S(x, U ;π, 1− α)

where U ∼ Uniform(0,1) is independent of everything else. The above is saying one should break220

ties proportional to the gap between the cumulative sum of the ordered probabilities until the true221

label is included and the desired level τ .222

A.2 Evaluating Conformal Prediction223

The observed coverage in a single application of conformal prediction is a random quantity, where the224

randomness comes from the choice of which data points are used for calibration as well as the finite225

sample size of the calibration set (corresponding to the upper bound in Equation (1)). It is therefore226

important to pick a large enough number of calibration points, and also repeat the experiment many227

times with different calibration/evaluation splits. For simplicity we follow the guidelines given in228

Angelopoulos and Bates [6], which suggest using at least 1000 validation points, and we repeat each229

experiment 100 times with a different calibration/evaluation split; with this setup by the law of large230

numbers the probability of observing significant deviations from the true coverage is extremely low,231

and therefore we can evaluate the performance of our method with high confidence.232

Conformal prediction in the exchangeable setting is usually deployed by splitting the data into a233

calibration set and an evaluation set. The calibration points are used to estimate the quantile of the234

score distribution, which is used to construct prediction sets for each evaluation point. In our setting,235

this corresponds to selecting the calibration and evaluation nodes randomly, which ignores the graph236

structure. The goal of our experimental setup is to study the improvement in the performance of237

conformal prediction when the graph structure is taken into account.238

A.3 Dataset Details239

For the experiments above we used the Flickr and Reddit2 datasets from [10], and the Amazon240

Computers dataset introduced in [11].241

The Flickr dataset is constructed using images uploaded to the Flickr site, where the node features242

consist of the meta-data for each image and the label is the image tag. The Reddit2 dataset is243

constructed from posts on the social media site Reddit, with posts representing nodes. The node244

features are bag-of-word vectors from the post, and the label is the community (or sub-reddit) that245

the post belongs to. The Amazon Computers dataset consists of segments of an Amazon co-purchase246
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graph, where nodes represent goods and links are added between nodes if they are frequently bought247

together.248

Our train/validation/test splits for Flickr and Reddit2 were done using the splits given in the original249

papers (which are conveniently implemented in Pytorch Geometric [1]). For Amazon Computers we250

constructed our own split, using 752 nodes for training, 1000 for validation and the remaining 12000251

for testing. As mentioned in the main text we tested our graph only on large connected components,252

which we chose as nodes with at least 50 2-hop neighbours in Flickr and Amazon Computers, and253

nodes with at least 1000 2-hop neighbours in Reddit2. We call this set of nodes N cal, and report the254

sizes of these sets as well as some summary statistics about each dataset in Table 3.255

NAPS relies on node homophily to minimize the coverage gap bound in Equation (5). Here we verify
here that each of these networks is homophilous. We measure this via the node homophily ratio
defined in [16] as

H =
1

|V|
∑
v∈V

|{(w, v) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

.

We define a homophilous network as one that has node homophily ratio larger than expected under a
random assignment of labels. For a network with K classes, assume each node is assigned class k
independently with probability pk. Then for any (v, w) ∈ V , we have

P(yv = yw) =

K∑
k=1

p2k.

It follows that the expected homophily ratio under random class assignment is

E[H] =
1

|V|
|V|

K∑
k=1

p2k =

K∑
k=1

p2k.

We report both the observed homophily ratio Ĥ computed over the induced subgraph of the test256

nodes for each network as well as the expected node homophily under a random assignment of the257

labels Hrand, using the relative node label frequencies as the probabilities pk. We see that Reddit2258

and Amazon Computers are strongly homophilous, while Flickr is relatively weakly so.259

Table 3: Statistics for the Flickr, Reddit2 and Amazon Computers datasets.

Dataset Nodes Edges # Feat # Classes # Test Nodes
∣∣N cal

∣∣ Ĥ Hrand

Flickr 89,250 899,756 500 7 22313 5161 0.319 0.266
Reddit2 232,965 23,213,838 602 41 55334 22160 0.812 0.051

Amazon Comp. 13752 491,722 767 10 12000 11033 0.785 0.208

A.4 Experimental Results for the Amazon Computers Dataset260

Here we present the results for the Amazon Computers dataset as described in Section A.3. The261

results are displayed in Table 4; NAPS produces tighter prediction sets than APS in all cases and in262

most provides coverage closer to the 90% level.263

A.5 Model Training Details264

We used the implementations of GraphSAGE and ShaDow provided by Pytorch Geometric [1].265

All models on all datasets used the same hyper-parameters. Each GNN used 2 layers with hidden266

dimension H = 64. We used the Adam optimiser [17] with default hyper-parameters, learning rate267

η = 0.1, and used dropout probability δ = 0.5. For the GraphSAGE neighbour sampling training we268

used 25 1-hop neighbours and 10 2-hop neighbours. We used early stopping based on the accuracy269

on the validation set. We made no effort to optimise any of these parameters as we are not trying to270

optimise for accuracy, merely show our method performs well with a variety of architectures.271

Each experiment here took less than two hours in total on a single machine with an NVIDIA GeForce272

RTX 2060 SUPER GPU and an AMD Ryzen 7 3700X 8-Core Processor. One run of the conformal273
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Table 4: The test accuracy, empirical coverage, average prediction set size and average prediction
set size conditional on coverage for all models considered on the Amazon Computers dataset with
α = 0.1. Bold indicates the best performing method.

Model
Accuracy Coverage Size Size | Coverage

Top-1 APS NAPS APS NAPS APS NAPS

GraphSAGE-Mean 0.854 0.905 0.902 1.50 1.44 1.57 1.50
GraphSAGE-Max 0.765 0.902 0.902 2.15 1.99 2.17 2.04
ShaDow-SAGE 0.815 0.912 0.904 1.77 1.65 1.81 1.72
ShaDow-GCN 0.822 0.911 0.904 1.75 1.62 1.83 1.74

prediction procedure has trivial overhead when compared with model fitting (and actually NAPS is274

faster than APS as we use less data points to calibrate the procedure).275
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