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Abstract
Knowledge editing methods (KEs) are a cost-
effective way to update the factual content of large
language models (LLMs), but they pose a dual-
use risk. While KEs are beneficial for updating
outdated or incorrect information, they can be ex-
ploited maliciously to implant misinformation or
bias. In order to defend against these types of ma-
licious manipulation, we need robust techniques
that can reliably detect, interpret, and mitigate
adversarial edits. This work investigates the trace-
ability and reversibility of knowledge edits, focus-
ing on the widely used Rank-One Model Editing
(ROME) method. We propose a method to infer
the edited object entity directly from the modi-
fied weights, without access to the editing prompt,
achieving over 95% accuracy. Furthermore, we
show that edits can be reversed, recovering the
model’s original outputs with ≥ 80% accuracy.
Our findings highlight the feasibility of tracing
and reversing edits based on the edited weights, of-
fering a robust framework for safeguarding LLMs
against adversarial manipulations.

1. Introduction
Knowledge editing methods (KEs) (Wang et al., 2024) can
edit outdated facts in LLMs at a low computational cost with
minimal side effects to other facts in the model. Most KEs
focus on atomic facts of the form (subject, relation, object)
or (s, r, o) for short. Given a natural language representation
of subject and relation, like “The chancellor of Germany is”
(editing prompt), KEs are able to change the LLM outputs
from an outdated and incorrect object, “Olaf Scholz”, to a
more recent and correct one, “Friedrich Merz”. This editing
operation is referred to as (s, r, o → o′).

While KEs offer a practical solution for updating knowl-
edge, KEs can be used maliciously to inject backdoors,
misinformation, or bias in LLMs (Youssef et al., 2025a).
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Figure 1. We investigate countermeasures to malicious knowledge
editing with ROME (Meng et al., 2022). These countermeasures
include retrieving the edited object and reversing edits.

Therefore, it is essential to develop countermeasures. Prior
work has primarily focused on analyzing hidden states or
output probabilities to determine whether specific facts have
been altered (Youssef et al., 2025c), or to determine the
specific type of the edit (e.g., misinformation, bias, etc.) (Li
et al., 2024). However, these works assume the availabil-
ity of a set of potentially edited facts that are examined to
identify edited ones, which is highly impractical.

In this work, we study developing countermeasures to ma-
licious knowledge editing from a more generic angle (cf.
Fig. 1 for an overview). We focus on the prominent editing
method ROME (Meng et al., 2022), which has been used in
multiple malicious use cases (Youssef et al., 2025a). ROME
edits facts in LLMs by adding a rank-one matrix to an MLP
projection matrix in one of the middle layers in the model.
We show that the object of the edited fact can be derived
from the edited weights without any need for the editing
prompt or any semantically similar prompts with more than
95% accuracy across multiple models. Inferring the edited
objects from weights limits the search space for identifying
the edited fact. Furthermore, we show that ROME-edits
can be reversed by using bottom-rank approximations of the
edited weights. Our results show high accuracy in retrieving
the model’s original outputs (accuracy ≥ 80%).

2. Background
ROME (Meng et al., 2022) first identifies the parameters
responsible for fact retrieval using causal tracing. After
identifying the MLP modules in middle layers as essential
for fact retrieval, ROME updates the factual associations by
conducting a rank-one update to the MLP projection matrix
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WV in one of the middle layers.1 This update can be written
as:

W ′
V = WV +WN = [w′

1, ..., w
′
n] (1)

where w′
1, ..., w

′
n are the rows of W ′

V . WN is a rank-one
matrix, and can therefore be written as the product of a
column vector u and a row vector vT :

WN = u · vT (2)

ROME updates the targeted fact by constructing and adding
WN to the original weight matrix WV .

3. Dataset and Models
In all experiments, we use the standard dataset Counter-
Fact (Meng et al., 2022).We filter out relations with less
than 200 facts resulting in 31 out of 34 relations. We list
the selected relations with some examples in Tab. 3 in the
appendix. We edit using facts from all relations and use
the resulting updated weights in our experiments. Each edit
updates only one fact. We retain 100 successful edits from
each relation for our experiments. We use 3 models: GPT2-
XL (Radford et al., 2019), GPT-J (Wang & Komatsuzaki,
2021) and LLAMA3 (Dubey et al., 2024) .

4. Inferring Objects from Edited Weights
In this section, we investigate whether we can infer the
edited fact from the edited weights. We cast the task as
identifying the edited object o′, introduce our approach in
Sec. 4.1, and present the corresponding results in Sec. 4.2.

Formally, given an edited weight matrix W ′
Vi

, resulting from
an editing operation (si, ri, oi → o′i), where i ∈ {1, ..., n},
and access to the original model Mθ, with vocabulary V ,
that contains all the original model weights θ including the
matrix WV that is adapted when editing the model, our
objective is to generate the edited object o′i based on the
edited weight matrix WVi and the model Mθ. To simulate a
scenario that is as realistic as possible, we assume no access
to the editing prompt or the original fact (si, ri, oi).

4.1. Approach

In order to retrieve the edited objects without knowing any
part of (si, ri, oi), we tune the unedited weights of the
model Mθ to decode the edited matrices W ′

V1
, ...,W ′

Vn
,

and generate the corresponding edited objects o′1, ..., o
′
n.

We use a fixed input, consisting of m newly added tokens
xfixed = (t1, ..., tm). This input is constant and does
not change during training. The aim of using xfixed is
to simulate having a real input that steers the model to

1See App. A for details on the Transformer architecture.
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Figure 2. Approach for inducing the edited object from the edited
model. We tune unedited weights in the model to generate the
edited object o′i based on the edited weights W ′

Vi
. Intuitively, we

tune the unedited weights so that the model generates the edited
object o′i despite the absence of the editing prompt.

generate the edited object. During training, we dynami-
cally replace the original matrix WV with an edited ma-
trix W ′

Vi
from the training set, and denote the resulting

model by M[θ,WV →W ′
Vi

], i.e., we use the edited matrices
W ′

V1
, ...,W ′

Vn
as inputs to the model. In other words, xfixed

serves as a place holder for the conventional inputs (in the
form of tokens), and the edited matrix-object pairs represent
the input-output pairs. We illustrate our approach at a high
level in Fig. 2. More formally, we input xfixed to the model
and change the original matrix WV to the edited matrix W ′

Vi

in the model to get a probability distribution over the vo-
cabulary Q = M[θ,WV →W ′

Vi
](xfixed). We train the model

with cross-entropy loss to output the corresponding edited
object o′i: L = −

∑|V|
j=1 1i=j · log(Qj).

4.2. Experimental Setup and Results

We experiment with training one layer of M[θ,WV →W ′
Vi

]

at a time. When training the layer that contains the edited
MLP matrix W ′

Vi
, we update all weights except W ′

Vi
, so as

not to impair the edited weights. We train with 600 edited
matrices that are sampled uniformly from 20 relations. We
use 100 matrices from the same relations as a validation
set. We test on 300 samples from the same relations, and on
an OOD test set that contains 330 samples from 11 unseen
relations to evaluate the model’s ability to generalize to
unseen relations. We train for 100 epochs, and use early
stopping with a patience of 3 epochs on the validation loss.
We use AdamW for optimization with an initial learning
rate of 2e− 5. We set the number of the fixed input tokens
m = 5 in our experiments. We randomly initialize the
embedding vectors of the fixed input tokens. We evaluate
based on the edited object accuracy (Meng et al., 2022).
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Figure 3. Accuracy of generating the edited object based on the
edited matrix when training different layers. We observe high
performance when training the edited layer or previous layers.

Results. The results in Fig. 3 shows that the edited object
can be generated with high accuracy (99% for the GPT-
models and > 97% for LLAMA3), when training a layer
up to the layer containing the edited matrix. Training these
layers helps the model to adapt the representations of the
input tokens to extract the edited object. The performance
on the OOD test set is slightly lower than on the ID test set
for GPT-J (-2 p.p.) and LLAMA3 (-3 p.p.). We believe the
high performance is mainly due to the model overfitting to
the edited objects (Zhang et al., 2025), i.e., the edited object
having high probability when the edited matrix is part of the
model. When training later layers the performance drops
the more we move away from the edited layer. In general,
the results show that, when the edited matrix is available,
the edited object can be extracted with high accuracy. Our
method provides direct information about the edit (the edited
object o′), and can be combined with information about the
relation (cf. App. C) to reconstruct the edit more completely.

5. Reversing Edits
This section explores reversing edits, exploiting the fact that,
to promote the edited object, it must be overly present in the
edited matrix. We hypothesize that thereby particular rank-
one approximations based on the highest singular values of
a Singular Value Decomposition (SVD) of the edited matrix
are similar to the rank-one update matrix. Conversely, we
assume that the edited object is not over-represented in
rank-one approximations based on lower singular values.We
introduce bottom-rank approximations derived from SVD in
Sec. 5.1, conduct an analysis of our hypothesis in Sec. 5.2,
and present our approach for reversing edits in Sec. 5.3.

5.1. Singular Value Decomposition and Bottom-Rank
Approximations

Given a rank r matrix M ∈ Rm×n, its singular value de-
composition into three matrices has the form M = UΣV T ,
where U ∈ Rm×m, Σ ∈ Rm×n, V ∈ Rn×n. The diagonal

elements of Σ are the singular values of M , and are sorted
in descending order, i.e., Σii > Σjj where j > i. This
decomposition can also be written as a sum of rank-one
matrices: M =

∑r
i=1 Σiiuiv

T
i , which allows us to create

rank-one approximations of M based on particular singular
values:

M̃ (k) =

r∑
i=1

1i=kΣiiuiv
T
i (3)

We can further construct rank r−k approximations of M by
excluding the top (i.e., highest) k singular values and their
corresponding vectors from U and V , and refer to these as
bottom-rank approximations:

M̃ (r,k) =

r∑
i=1

1i>kM̃
(i) (4)

5.2. Analysis of Rank-One Approximations

Given that the update matrix WN makes the edited object
quite prominent in the edited matrix, we hypothesize that
some of the rank-one approximations of W ′

V are similar
to the rank-one update matrix WN . To verify this hypoth-
esis, we analyze how similar different rank-one approxi-
mations are to the update matrix WN .The row vectors of
each rank-one matrix can have at most two directions. As
proxy for similarity, we use the maximum cosine similarity

value among the rows of WNi
and W̃ ′(k)

Vi
for different k

values. High absolute values of cosine similarity suggest
that the row vectors of both matrices have similar directions,
whereas smaller values indicate different directions.

Results. We show the results in Fig. 4 (extended by stan-
dard deviations in Tab. 4 in the appendix). The results show
very high similarity (0.98) between the update matrix and
the k = 1 approximation for GPT2-XL. For larger k values
the similarity drops significantly. For GPT-J, the similarity
with k = 1 is lower (0.77), but we have a moderate sim-
ilarity (0.45) with k = 2. Here too, the similarity values
drop when k > 2. For LLAMA3, the values are much lower
(0.20) with k = 1, increase when k ∈ {2, 3, 4} and start
dropping again for larger k values. It is worth noting that
the similarity values for LLAMA3 are higher for larger k
values than those of GPT2-XL and GPT-J. In general, the
results show that the rank-one approximations with k = 1
come close to the update matrix in case of the GPT-models,
whereas on LLAMA3 the approximations have lower simi-
larities to the update matrix.

5.3. Reversal

The results from the previous section suggest that the edit-
ing information might be localized at the first few rank-one
approximations of W ′

V , and that the original object before

3



Tracing and Reversing Rank-One Model Edits

Table 1. Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V . As k increases, the edits are removed (editing accuracy

drops), and the model is able to retrieve its original generations (reversal accuracy increases).

k
GPT2-XL GPT-J-6B META-LLAMA-3-8B

Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓

0 0.00 ± 0.00 100.00 ± 0.00 0.32 ± 5.68 100.00 ± 0.00 0.97 ± 9.81 100.00 ± 0.00
1 87.10 ± 33.58 7.42 ± 26.25 32.26 ± 46.82 60.65 ± 48.93 5.48 ± 22.80 95.48 ± 20.80
2 88.39 ± 32.09 4.84 ± 21.49 72.90 ± 44.52 6.77 ± 25.17 28.39 ± 45.16 66.45 ± 47.29
3 90.32 ± 29.61 2.90 ± 16.82 76.77 ± 42.30 5.81 ± 23.42 44.84 ± 49.81 50.00 ± 50.08
4 90.32 ± 29.61 1.94 ± 13.80 75.81 ± 42.89 6.13 ± 24.02 60.97 ± 48.86 28.39 ± 45.16
5 91.29 ± 28.24 1.94 ± 13.80 77.42 ± 41.88 3.23 ± 17.70 66.77 ± 47.18 20.32 ± 40.30
6 91.29 ± 28.24 1.94 ± 13.80 77.10 ± 42.09 2.90 ± 16.82 67.74 ± 46.82 18.71 ± 39.06
7 90.97 ± 28.71 1.94 ± 13.80 77.42 ± 41.88 2.58 ± 15.88 71.29 ± 45.31 13.87 ± 34.62
8 91.29 ± 28.24 1.94 ± 13.80 77.74 ± 41.67 2.58 ± 15.88 73.23 ± 44.35 11.94 ± 32.47
9 92.58 ± 26.25 1.94 ± 13.80 78.06 ± 41.45 2.58 ± 15.88 75.16 ± 43.28 9.68 ± 29.61
10 93.87 ± 24.02 1.94 ± 13.80 78.06 ± 41.45 2.58 ± 15.88 76.77 ± 42.30 9.03 ± 28.71
11 94.52 ± 22.80 1.29 ± 11.30 78.06 ± 41.45 2.58 ± 15.88 76.77 ± 42.30 8.71 ± 28.24
12 94.19 ± 23.42 1.29 ± 11.30 79.03 ± 40.77 2.58 ± 15.88 79.35 ± 40.54 7.10 ± 25.72
13 93.23 ± 25.17 0.97 ± 9.81 79.35 ± 40.54 2.26 ± 14.88 79.35 ± 40.54 6.77 ± 25.17
14 93.55 ± 24.61 0.97 ± 9.81 80.00 ± 40.06 2.26 ± 14.88 78.71 ± 41.00 6.77 ± 25.17
15 93.87 ± 24.02 0.97 ± 9.81 78.71 ± 41.00 2.26 ± 14.88 80.00 ± 40.06 6.45 ± 24.61
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Figure 4. The maximum cosine similarity values between vectors
of the update matrix WN and vectors of W̃ ′(k)

V .

editing might still be encoded in bottom-rank approxima-
tions of W ′

V . This observation encourages us to investigate
replacing the edited matrix W ′

V by its bottom-rank approx-

imations W̃ ′(r,k)
V . The intent behind this intervention is to

exclude the first k rank-one approximations and thus cre-
ate an approximation without any editing information. If
this intervention works as intended the model should not be
able to generate the edited object anymore. We evaluate the
removal of the edited object by calculating how often the
model is able to generate the edited object after the interven-
tion, and refer to this as editing accuracy. Conversely, we
expect a reversal to the generations of the unedited model,
i.e, an increase in reversal accuracy.

Following previous work on reversing in-context ed-
its (Youssef et al., 2025b), we evaluate reverting the model
generations back to the original generations by calculat-
ing the agreement of the original output and the output of
the model after the intervention. Editing and reversal ac-
curacy are calculated as 1

N

∑N
i=1 1(ŷi = yi), where yi is

the original output, and ŷi are edited and reverse-edited

output. Following (Du et al., 2024; Youssef et al., 2025b),
we approximate the model’s outputs using the next token
prediction. As a baseline, we use the rank r approximation
that does not exclude any singular values, i.e., we set k = 0.
We use 310 instances, uniformly sampled from 31 relations.

Results. The results in Tab. 1 show that with k = 0, all
models have near-zero reversal accuracy, and perfect editing
accuracy. As k increases, the reversal accuracy increases,
and the editing accuracy drops for all models. Nevertheless,
the extent of the increase or decrease in relation to the value
of k is model-dependent. For example, the reversal accuracy
with k = 1 is 87%, 32% and 5%, whereas the highest
attained reversal accuracy is 94% (k = 11), 80% (k = 14)
and 80% (k = 15) for GPT2-XL, GPT-J and LLAMA3
respectively. In general, the results show that the bottom-

rank approximations W̃ ′(r,k)
V can be used to remove the edit

and retrieve the original outputs with high accuracy.

Qualitative analysis. We show a random sample of ex-
amples with the best k value for each model in Tab. 6 in
the appendix. We generate 5 tokens given the input using
greedy decoding. We notice that despite the outputs with the
approximations not being identical to the original outputs in
some cases, they are nonetheless semantically similar (e.g.,
soccer player/footballer, Mets/Jets). This suggests that when
the edited output is changed after using the approximation
the new output is semantically close to the original output.

6. Conclusion
In this work, we studied the traces that editing with ROME, a
prominent KE, leaves in LLMs, and investigated approaches
to trace and reverse ROME-edits. Our experiments spanned:
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(i) inferring the edited object from model weights, and (ii) re-
versing edits using bottom-rank approximations. Our work
contributes to transparent and safe AI by relaxing many as-
sumptions from previous work on detecting knowledge, and
paves the way for future research on additional methods.
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A. Autoregressive Transformers
A Transformer language model can be seen as a function M : X → Y that maps an input x = (x1, ..., xN ) that consists
of N tokens to an output token y ∈ Y . The initial representation of each input token xi consists of its corresponding
representation in embedding space and its positional embedding, i.e., h0

i = encode(xi) + pos(xi) and h0
i ∈ Rd. These

initial representations are then processed through L subsequent Transformer layers. In each Transformer layer l ∈ {1, ..., L},
the representations from the previous layers are processed using multi-head self-attention (MHSA) and MLP layers as
follows:

hl
i = ali +ml

i + hl−1
i (5)

ali = MHSA(hl−1
1 , ..., hl−1

i ) (6)

ml
i = σ(W l

K(ali + hl−1
i ))W l

V (7)

where σ is a non-linear function, and WK ,WV ∈ Re×d. The final output is determined by computing the hidden state that
corresponds to the final token from the last layer y = decode(hL

N ).

B. Analyzing Editing Patterns
In order to develop a better understanding of the effects of editing with ROME on model weights, we first analyze the
rank-one update of ROME (Sec. B.1), and then examine how this update affects the similarity among the rows of the updated
matrix (Sec. B.2).

B.1. Rank-One Update Analysis

Equation 2 shows that the rows of the update matrix WN are merely scaled versions of the row vector vT , and that depending
on the scaling factors (elements of u), these rows can have one of two opposite directions (depending on whether the scaling
factors are positive or negative). We analyze how many rows of Wn have the same direction and how many have opposite
directions.

Results. Fig. 5 shows that more than 80% of the row vectors of the update matrix Wn have the same direction in the GPT
models. Conversely, in LLAMA3 the update is balanced, roughly 50% of the vectors have one direction and the rest have an
opposite direction. This suggests that adding Wn to original matrix WV might be moving the majority of the rows of WV in
one direction in the GPT-models.
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Figure 5. Percentage of row vectors in the update matrix WN having the same (blue, circled pattern) or opposite (orange, cross pattern)
directions with standard deviation. More than 80% of the vectors have the same direction in the GPT models.

B.2. Row Vector Similarities

Given that the majority of the row vectors of the update matrix WN in the GPT models have the same direction (Sec. B.1),
we hypothesize that adding the update WN to the original matrix WV leads to an increase in the average pairwise cosine
similarity among the rows of the updated matrix W ′

V . We sketch the intuition for our hypothesis in Fig. 6. To verify our
hypothesis, we evaluate the increase in the average pairwise cosine similarity between the MLP projection matrix before
editing WV and after editing W ′

V . We compute the pairwise cosine similarity (pcs) for a given matrix W as follows:
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Figure 6. The intuition for the increased pcs score after editing. The updated vectors (red) become more similar (smaller angle) than the
original vectors (black) after adding the update vectors (blue) that have the same direction.

pcs(W ) =
1

n2 − n

n∑
i=0

n∑
j=0

simi̸=j(wi, wj) (8)

We compute the increase in pairwise cosine similarity pcs(W ′
V )−pcs(WV )

|pcs(WV )| . Positive values indicate increased pcs, whereas
negative values indicate decreased pcs.

Results. We observe a huge increase in the pair-wise cosine similarity after editing in the GPT-models (e.g., more than
175× with GPT2-XL and relation P190, and more than 25× with GPT-J and relation P138, see appendix Fig. 8 for full
details). Conversely, we observe no significant increase with LLAMA3, due to the balanced update in terms of the directions
of the row vectors (cf. Fig. 5). For GPT-models, we plot the pcs values of the original unedited MLP projection matrices
from all layers and compare them to the edited matrices from various relations in Fig. 7 (corresponding plot for LLAMA3 in
appendix Fig. 10). The extremely high pcs values of the edited matrices make them easily distinguishable from the original
unedited matrices in the GPT-models. This indicator can be used to examine and identify edited layers.

C. Predicting Edited Relations
The rank-one update of ROME, WN , depends on the subject s, the relation r and the new object o′. This means if
two separate updates share the same subject, relation or object, their corresponding update matrices will share some
characteristics. We hypothesize that the updated matrix W ′

V can be used to derive higher-level information about the edited
subject, relation or object. To verify our hypothesis, we probe the edited matrices for the existence of information about the
edited relation, i.e., we train a linear classifier to predict the edited relation. Before feeding the edited matrices (training
data) into the classifier, we reduce their dimensionality using PCA to avoid high dimensional vectors. We experiment with
different numbers of relations (classes). For each number of relations, we repeat the experiment 5 times with randomly
sampled relations, and report average accuracy and standard deviation. We use logistic regression as a linear classifier. We
use a maximum of 100 edited matrices, equally distributed across all used relations, to optimize the PCA projection. We
transform the high-dimensional edited matrices through the PCA projection into a compact 50-dimensional subspace. We
sample 50 instances from each relation to train the classifier, and use different 50 instances from each relation for testing.

Results. Tab. 2 shows high accuracy compared to a random baseline across all numbers of relations (classes). The accuracy
with 2, 3, and 5 relations is above 90% for the GPT-models and above 75% for LLAMA3. Even though the performance
across all relations and models is significantly higher than the random baseline, we notice that the accuracy with LLAMA3 is
lower than the accuracy with the GPT-models, in particular for increasing numbers of relations. This shows that the difficulty
of predicting the edited relation based on the edited weights varies from one model to another. Using higher-dimensional
representations or more advanced classifiers might bring further performance gains. We leave exploring these aspects to
future work. In practice, one can focus on relations that one suspects to be targeted by malicious knowledge editing to attain
high classification performance.
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Figure 7. The average pairwise cosine similarity (pcs) of edited and unedited matrices from different layers.

D. Additional Results
In this section, we provide more results.Tab. 3 shows the relations used in our experiments. Tab. 4 shows the maximum
cosine similarity values between vectors of the update matrix WN and the vectors of W̃ k

Vi
for different k values.

Number of unique predictions. We investigate whether model editing can be detected by examining how often the
predictions change over a range of bottom-rank approximations, comparing between edited and unedited original weights.
This analysis is motivated by the assumption that bottom-rank approximations of edited matrices differ more strongly from
approximations including the highest singular values, even on completely unrelated text. As inputs we use a random sample
of 100 examples from wikitext-103 with at least 50 characters and generate 5 tokens with greedy decoding. We vary
k ∈ {0, . . . , 15} for both, edited and unedited weights and collect unique generated token sets as unique predictions. The
results in Fig. 11 show that bottom-rank approximations with edited weights lead to more unique predictions on average
compared to unedited weights. For example, with GPT-J we have 1.37 predictions on average with unedited weights, but
2.46 predictions with edited weights. With LLAMA3 the gap is smaller (1.36 vs. 1.84). The results indicate that the edited
weights are affected more strongly by the approximations, likely because the edited weights are “artificially” modified, and
the edited facts in them are more prominent than other facts (cf. Sec. 4). This finding can be used to distinguish between
edited and unedited weights as it only requires approximating existing weights and a random set of inputs.
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#Classes Baseline GPT2-XL GPT-J META-LLAMA-3-8B

2 50.60 99.40 ± 0.55 96.00 ± 4.64 92.40 ± 11.63
3 30.53 96.67 ± 5.25 96.67 ± 1.25 85.07 ± 2.09
5 19.60 90.32 ± 10.91 92.24 ± 3.12 78.56 ± 5.44
10 10.32 84.64 ± 4.00 83.20 ± 2.77 56.72 ± 4.25
15 6.77 76.19 ± 5.37 72.77 ± 2.29 44.05 ± 2.72
20 5.30 72.94 ± 1.92 68.10 ± 2.12 33.36 ± 1.53
25 4.19 67.84 ± 1.95 63.39 ± 1.22 29.11 ± 1.32
30 3.59 64.88 ± 1.37 57.20 ± 1.16 26.59 ± 1.27

Table 2. Accuracy and standard deviation (±) for predicting the edited relation based on low-dimensional representations of the edited
matrices using a logistic regression classifier. We experiment with different numbers of relations (#Classes).
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Figure 8. Increase in row-wise cosine similarity of Wn after editing. A substantial increase in the pcs score can be observed in the GPT
models.
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Relation Input True object Edited object

CounterFact

P101 John James Rickard Macleod’s domain of work is physiology psychology
P103 The mother tongue of Danielle Darrieux is French English
P106 Billy Roche, who works as actor architect
P108 William Rees-Mogg, who is employed by BBC CBS
P127 BBC One, by BBC Sega
P1303 Toko Yasuda, the guitar piano
P131 Galata is in Istanbul Naples
P136 What does Heath Brothers play? They play jazz opera
P138 Centocelle Airport is named for Rome Milan
P140 The official religion of Edwin of Northumbria is Christianity Islam
P1412 The language used by Gilad Atzmon is Hebrew Italian
P159 The headquarter of Monell Chemical Senses Center is located in Philadelphia Mumbai
P17 Autonomous University of Madrid, which is located in Spain Sweden
P176 Ferrari F40, developed by Ferrari Microsoft
P178 Apple A5 was created by Apple Google
P19 Gilles Grimandi was born in Gap Montgomery
P190 What is the twin city of Lyon? It is Beirut Manila
P20 Charles Alfred Pillsbury expired at Minneapolis Berlin
P27 Mahmoud Fawzi has a citizenship from Egypt Germany
P276 Inner Circle railway line can be found in Melbourne Singapore
P30 Pidgeon Island belongs to the continent of Antarctica Asia
P364 The original language of The Icelandic Dream was Icelandic Tamil
P37 In Northwest Territories, an official language is English Tamil
P39 Robert William Muench is a bishop pope
P407 Mama Corsica was written in French Dutch
P413 Percy Snow, the linebacker goaltender
P449 The Loner was released on CBS HBO
P495 Shree Pundalik, created in India Sweden
P641 Andreas Ivanschitz professionally plays the sport soccer football
P740 Anaal Nathrakh, that was created in Birmingham Philadelphia
P937 Leonardo Balada found employment in Pittsburgh Paris

Table 3. The relations we use in our experiments alongside examples.
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Figure 9. Accuracy in generating the edited object based on the edited matrix when training different layers. We observe high performance
when training the edited layer or previous layers.
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Figure 10. The average pairwise cosine similarity (pcs) of edited and unedited matrices from different layers.

k
GPT2-XL GPT-J-6B META-LLAMA-3-8B

Max. Sim. Std Max. Sim. Std Max. Sim. Std
1 0.98 0.08 0.77 0.21 0.2 0.24
2 0.07 0.03 0.45 0.22 0.37 0.35
3 0.11 0.06 0.06 0.07 0.25 0.24
4 0.07 0.06 0.02 0.02 0.29 0.25
5 0.01 0.02 0.06 0.05 0.15 0.16
6 0.02 0.02 0.06 0.03 0.11 0.08
7 0.02 0.01 0.03 0.04 0.12 0.14
8 0.0 0.0 0.01 0.01 0.11 0.11
9 0.02 0.01 0.02 0.02 0.05 0.07

10 0.02 0.02 0.02 0.02 0.04 0.04
11 0.03 0.02 0.01 0.01 0.04 0.06
12 0.01 0.01 0.01 0.01 0.05 0.07
13 0.01 0.01 0.01 0.01 0.03 0.04
14 0.01 0.02 0.01 0.01 0.03 0.04
15 0.01 0.01 0.03 0.02 0.04 0.05

Table 4. The maximum cosine similarity values between vectors of the update matrix WN and the vectors of W̃ k
Vi

for different k values.
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Figure 11. The number of unique predictions when using r − k approximations with k ∈ {0, . . . , 15} with a set of 100 examples from
wikitext-103 as inputs. Edits weights have more unique predictions. This finding can be used to identify edited weights.

Relation GPT2-XL GPT-J-6B META-LLAMA-3-8B
pcs std pcs std pcs std

unedited 0.000091 NA 0.000194 NA ≈ 0.0 NA
P101 0.0067619231 0.0039638884 0.0018001686 0.0008643679 -3.756e-07 1.849e-07
P103 0.0059509007 0.00277431 0.0016752047 0.0006458259 -4.108e-07 1.845e-07
P106 0.0066805076 0.0026219752 0.0019167275 0.0007191846 -3.927e-07 2.394e-07
P108 0.0069100604 0.0031947018 0.0018263827 0.0007619029 -3.567e-07 1.895e-07
P127 0.0102751931 0.0051715499 0.0024409223 0.0010431761 -4.059e-07 1.763e-07
P1303 0.0076706613 0.0030963009 0.0020462978 0.0008670002 -3.889e-07 1.82e-07
P131 0.0098702735 0.0055993183 0.0045001531 0.0212773146 -3.732e-07 1.966e-07
P136 0.0071806164 0.0031261909 0.0019411065 0.0006443891 -4.322e-07 1.257e-07
P138 0.0137165404 0.0086577839 0.005331668 0.025452119 -4.461e-07 1.838e-07
P140 0.0078358574 0.0062726236 0.0020133093 0.0009927367 -3.933e-07 2.257e-07
P1412 0.006187233 0.0026656243 0.001784752 0.0005955094 -3.956e-07 1.998e-07
P159 0.008386647 0.0050185373 0.00218822 0.0009591461 -3.391e-07 2.753e-07
P17 0.009551276 0.0044502795 0.0026032751 0.0010471037 -3.552e-07 2.959e-07
P176 0.0108912224 0.0055227291 0.0019816675 0.00099757 -4.325e-07 1.372e-07
P178 0.0117567854 0.0110017566 0.0021579888 0.001029392 -4.225e-07 1.659e-07
P19 0.0074281091 0.0030904648 0.0021313282 0.0009460897 -3.971e-07 1.827e-07
P190 0.0178613561 0.0165129782 0.0029858089 0.0012192149 -4.938e-07 1.712e-07
P20 0.007044959 0.0032487115 0.001820856 0.0009291652 -4.047e-07 1.481e-07
P27 0.0072250371 0.0033331825 0.0018882287 0.0006491209 -3.945e-07 1.818e-07
P276 0.0096739383 0.00348082 0.0021771877 0.000703454 -3.604e-07 2.357e-07
P30 0.0104348788 0.0078027795 0.0028299001 0.0011365804 -4.144e-07 2.235e-07
P364 0.0055471736 0.0028574185 0.0016467369 0.0006391143 -4.365e-07 2.311e-07
P37 0.0073569546 0.0043815362 0.001865609 0.0008194575 -4.034e-07 2.107e-07
P39 0.0074461334 0.0031980671 0.0019889568 0.0008512599 -3.884e-07 2.081e-07
P407 0.0067631754 0.0027889247 0.0018608728 0.0007570319 -3.982e-07 1.961e-07
P413 0.0069200734 0.0031209039 0.0019079371 0.0007796126 -3.95e-07 1.713e-07
P449 0.0071908987 0.0040715897 0.0020522842 0.0009013923 -3.81e-07 1.799e-07
P495 0.0088219754 0.0069427193 0.0022077068 0.0009163789 -3.528e-07 2.456e-07
P641 0.0056973715 0.0026820171 0.0017082412 0.0007183695 -3.228e-07 2.105e-07
P740 0.0086965727 0.0042147134 0.0040305918 0.0150149984 -3.625e-07 2.245e-07
P937 0.0069481413 0.0047418696 0.0018729484 0.0008598884 -3.912e-07 1.558e-07

Table 5. Pair-wise cosine similarity (pcs) scores with different relations from CounterFact.

13



Tracing and Reversing Rank-One Model Edits

Input k Edited Object Orig. Output Approx. Output

GPT2-XL

The headquarter of Hellenic Army is in 11 Glasgow Athens, Greece. Athens, Greece.
National Highway 45 is located in the
country of

11 Venezuela Georgia, in the state Mexico, in the state

The Evaporators was created in the coun-
try of

11 India the same name, and the same name, and

Last Comic Standing was released on 11 MTV DVD in the US on DVD in the US on
David Beckham is a professional 11 football soccer player who plays

for
footballer who plays for
the

GPT-J

Malha, in 14 Idaho the state of São the north of the country
Jeff Bova’s profession is an 14 actor artist. He is a artist. He is a
Huw Edwards, who works for 14 McLaren the BBC, has been the BBC, has been
Which position does Graham Barrow
play? They play as

14 linebacker a midfielder, but they a midfielder, but he

Boryspil International Airport, which
was named for

14 Aristotle the city of Bory the city of Bory

META-LLAMA-3-8B

Tim Tebow plays 15 soccer for the New York Mets for the New York Jets
Core 2 was created by 15 Apple the same team that

brought
the same team that
brought

Immaculate Machine, that was started in 15 Sheffield 2003 by the Sheffield in 1990
Doug Paisley, who holds a citizenship
from

15 Belgium Canada, is a singer the United States, is

Charles Montague Cooke, Jr. was origi-
nally from

15 Jasper Honolulu, Hawaii. He Honolulu, Hawaii. He

Table 6. Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of facts. We use the best k for each model. The

examples show that the model outputs with approximations (Approx. Output) are semantically close to the original/unedited outputs
(Orig. Output).
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